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Overview

In this work we provide new theoretical results fit for use kgidion-makers called
to cope with uncertainty. We will focus on single-objectigecision problems
where a cost function beset by uncertainty has to be minghilrethese contexts,
which are common in control systems engineering, operatiesearch, finance,
etc., a widespread heuristic is that of making a decisioedbas a set of collected
data calledscenarios We will focus on two important approaches to data-based
decision-making: thaverage approackvith quadratic cost function (least-squares
decision rule) and thevorst-case approachith convex cost function (min-max de-
cision rule).

Once the optimal decision has been computed according &etheted data-based
approach, we are interested in the probability that a navaisin, i.e. a new un-
certainty instance, carries a cost no higher than some emalpirmeaningful cost
thresholds. The probability that a cost threshold is noeeged is calledoverage
By describing the coverage properties of meaningful casstiolds, we gain quan-
titative information about the reliability of our decisiolsome recent theoretical
developments have shown that, under the hypothesis that#marios are drawn
independently according to a fixed probability distribaticoverage properties can
- in situations of great interest - be effectively studiea idistribution-free context,
that is, without any knowledge of the probability distrilout according to which
data are generated. In this work, we will follow this same likVe will determine
meaningful cost thresholds (that are, in statistical tenmeaningful statistics of
the data) apt to characterize least-squares and min-méasiates; and provide the
decision-maker with analytical tools to evaluate the dhation of the costs, with-
out knowing the probability distribution of the data.



il Overview

Description by chapters, and notes on original contributions

Chapter[ - Decision-making in the presence of uncertainty

The mathematical framework is introduced, a common backgtdor the con-
cepts used throughout this work is provided. Motivationsoiar studies are given,
and the results in the following chapters are surveyed. Sweor&s related - by
affinity or by opposition - to our approach are briefly disadst the end of this
chapter.

Chapter[2 - The coverage probabilities of the least squaressiduals

This chapter deals with data-based least-squares dexisfonalgorithm to com-
pute characterizing statistics, having interesting itistion-free coverage proper-
ties, is provided. Results presented in this chapter dteispublished.

Chapter[3 - On the reliability of data-based min-max decisims

This chapter deals with data-based min-max decisions withiex cost functions.
The most important known result in this context is given bg theory of the
scenario approach to constrained convex optimizationglwis recalled for com-
pleteness’ sake in the AppendiX A), stating that the enmggireorst-case cost has
distribution-free coverage for a whole class of problemsisTesult is here ex-
tended to all the others empirical costs: the joint proligbdistribution of the
coverages of all the empirical costs turns out to be an oddBigchlet distribu-
tion, independently of the distribution of the data. Theenat in this chapter has
been patrtially published by the author of this thesis togiethith Simone Garatti
and Marco C.Campil [1].

Chapter[ - Data-based min-max decisions with reduced sam@lcomplexity

In this chapter, we propose an algorithm that allows thesi@timaker to charac-
terize, by means of a statistic having guaranteed high agecra min-max decision
even when the number of observed scenarios is smaller tlaametuired by the
standard approach. The idea presented in this chapter bagphbblished, together
with Simone Garatti and Marco C.Campi, in [2].

Appendix[Al- The scenario approach to constrained convex ophization problems
We summarize for easy reference the most important knowrltseis the theory
of the scenario approach for constrained convex optintinati

Appendix[Bl- Generalized FAST algorithm
A more general version of the algorithm of Chapter 4 is presén



Compendio

In questo lavoro si forniscono risultati utili al decisotgamato ad affrontare situa-
zioni di incertezza. Ci concentreremo su problemi decaioca singolo obiettivo,
nei quali si richiede di minimizzare una funzione di costietd da incertezza. In
tali contesti, che accomunano decisori negli ambiti degégneria del controllo,
della ricerca operativa, della finanza, etc., un procedimeanristico diffuso sug-
gerisce di prendere una decisione basandosi su una radcolii, dettiscenari
Prenderemo in considerazione due filosofie comunementeatsloiel prendere
decisioni sulla base degli scenari: I'approccio ai “mingpiadrati”, che prescrive
di scegliere la decisione che minimizza il costo medio tigpagli scenari, e I'ap-
proccio del “caso peggiore”, che prescrive di minimizzaomsto piu alto tra quelli
dei diversi scenari. Una volta calcolata la decisione segamo dei due approcci
considerati, siamo interessati alla probabilita che uravatsituazione porti con
Sé un costo non piu alto di certe soglie empiricamente saatifie. La probabilita
che una soglia di costo non sia superata & adegertura Attraverso la descrizione
delle proprieta di copertura di opportune soglie di costacgquista dunque un’in-
formazione quantitativa circa I'affidabilita della decise adottata. Alcuni recenti
sviluppi teorici dimostrano che, sotto l'ipotesi che glesari siano osservati indi-
pendentemente e in accordo con una stessa distribuziomebdilplita, importanti
proprieta della copertura possono, in contesti di grant&ésse, essere studiate
prescindendo dalla conoscenza della distribuzione dighitita dei dati. Questo
lavoro si colloca in tale prospettiva. Individueremo dedteglie di costo signifi-
cative (le quali altro non sono, in termini statistici, chatistiche significative dei
dati), fornendo al decisore uno strumento per valutaredailiizione dei costi in
corrispondenza della decisione presa, a prescinderedisttdbuzione dei dati.
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Chapter 1

Decision-making in the presence
of uncertainty

In this chapter we introduce the main concepts used thrattghis work, and pro-
vide a common framework for the results proved in the remgirdhapters. In
the following Sectiom 1]1 the problem of making decisionshi@ presence of un-
certainty is formalized. This is done step-by-step, with purpose of providing
motivations for the theoretical set-up used. In Sedfionthe3formal position of
our problem is summarized and specialized to the casesambueithis work. A

brief review of existing results related to our researchchuhes the chapter.

1.1 Theoretical set-up

The problem of making a decision can be abstracted as théepnadf choosing a
valuez from within a decision set’. We are interested in decision problems where
the decision-maker wants to choaseo as to minimize aost The dependence of
the cost on the decisiancan, in principle, be modeled through a real-valued func-
tion /(x), so that the best solution is but the solution to the foll@minimization
problem:

min ().

However, such a formalization turns out to be naive in matuyasions, due to that
the cost incurred by the decision-maker is commonly beseinggrtainty. Uncer-
tainty can enter the problem at various levels, but therevaimly two sources of
uncertainty that are worth mentioning:

¢ unpredictability of phenomena;
e modeling errors.

Indeed, circumstances that are not directly under the ideemmaker control and
are not completely predictable may influence the cost of &iec

1



2 Decision-making in the presence of uncertainty

Example 1 (unpredictability of phenomenaRiver banks should be built up to
reduce the costs incurred in case of floods. The higher thksyahe higher is the
building cost. For a given water level, we can compute thekbdreight required
to prevent severe floods. But water levels changes in thesemirtime depending
on weather conditions, which are variable and unprediatabl

*

Also, it is rare to have a perfect model of the reality undedythe decision
problem:modeling errorsnormally occur when physical systems are involved.

Example 2 (modeling errors) = represents the tunable parameters of an electric
controller and/(x) the maximum output voltage overshoot. Since some physical
aspects of the real system may elude the model underlyingogtgunction (e.qg.
a resistance differs from its nominal value ¥ ; there may be small unmodeled
nonlinearities, etc.), the cost incurred is normally aféstby uncertainty.

*

In real life, both sources of uncertainty comifirend we need a way to face
uncertainty in a general manner. We model the effect of treetainty by intro-
ducing in the cost function an uncertainty variabtaking values in the uncertainty
setA. Thus, the cost function is redefined as a bivariate funcdtiond), where
the presence of shows that to a fixed decisian a variety of possible costs is
associated, depending on the value assumed by

Example 3. In the case of Examplg 1) is the set of possible water levels. In
the case of Examplg 2\ may represent the space of all the possible models of
the system, more concretely, an interval of the possibleegafor an uncertain
resistance.

*

The uncertainty can be faced according to different approaches, as will$e di
cussed in Sectidn 1.4. In this work, we focus onghenario approachintroduced
in the following section.

1.1.1 Scenario Approach

Thescenario approaclis an intuitive heuristic used at large in optimization prob
lems affected by uncertainty. It prescribes to face untedacision problems
based on a finite numbeyY of instances of the uncertain parameferThese in-
stances of, ). 6@ ... 6 are calledscenarios and sometimes we will de-
note them more compactly with"Y. In order to produce the final decisiarf,

Though clear in words, the line of demarcation between niogerrors and unpre-
dictable phenomena sometimes seems to blur. Indeed,effestodeling errors are often
modeled themselves as exogenous “noises”.
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the cost functions associated with the scenarios are #ftegeaken into account.
Concretely, the decision® is obtained as follows:
x* := argmin £ <€(m,6(1)),€(x,6(2)), e ,E(w,5(N))) ,
zeX

where L(+) is a suitable cost-aggregating function, summarizing tleabior of
the N scenario-dependent cost functions. As principal examplesan be the
averagingfunction X S°V | £(z,6®), discussed in Sectidl L.3.1, or therst-
casefunction max;—; _y ¢(x,5®), discussed in Sectidn 1.8.2. Throughout, the
decisionz* will be also called thescenario solution

Although, in principle, theN scenarios required may be constructed by the
decision-maker according to some ad-hoc criterion, we raerasted in the case
where theN scenarios are collected observations, data In this case, we can
interpret the decision:* as a decision based on past experience, and the main
concern withz* is that of assessing its reliability with respect to the vehsdtA of
possible uncertainty instances. Note that, while the nurabpast observations is
finite and equal tav, usuallyA is an infinite setFor example, a possible indicator
of the reliability ofx* with respect to the unseérs is

¢ = max f(z*, %),
i=1,...,N

i.e. the maximum cost associated to the decigibamong the seen scenarios. The
so defined-*, however, is just an empirical quantity dependings®h, ..., 60V,
and it is clear that it is meaningful only if an assessmenthefrisk that a new
uncertainty instance carries a cost higher thais provided. Such a risk, clearly,
depends on “how large” the set

{6 A: ((z",0) <}

is, which we callcoverage sesssociated to*. Ourc* is a significant but particular
case of a data-dependent cost threshold that can be usedrtarctiize a data-
based decision:*. Below, we formally define the concept obverage sefor
general data-dependent cost thresholds.

Definition 1 (coverage set)Let ¢ be a real function defined ovex”. For every
dataD" € A¥, thecoverage satf c(DV) is defined as

{6 € A: £(z*,6) < c(DV)},

wherez* is the decision made based &1", according to some fixed decision-
making algorithm (to be more explicit, we could have writiénas z*(D?), but
such a dependence is left implicit throughout). *

In conclusion, to characterize a solutioh based on a cost threshatdD?),
we need a way to measure the coverage se{df").

Our next step is to introduce a probabilistic framework thiidws us, at the
same time,



4 Decision-making in the presence of uncertainty

1. to interpret a data elemebt” € AY as the result of real observations,
2. to measure the coverage set of a data dependent threghdlg.

We will see that this can be done in a distribution-free cemtthat is, without
assuming the knowledge of the distribution according tocliiata are observed.

1.1.2 Probabilistic framework

We will assume that the sét is endowed with ar-algebra and a probability mea-
surePA, and that scenario&), ..., 5N) are independently chosen by Reality
according toP,, that is,DV can be thought of as a sample frali¥ according

to the product measurf®y. The reader interested in a broader discussion of this
assumption and its practical meaning is referred to SedtidnFor basic concepts
of probability, we refer the reader e.g. td [3]. Finally, wélwot discuss explic-

itly measurability issues in this work: we limit ourselvesassuming that all sets
considered are measurable.

Usually, the probability® . underlying the data-generation mechanism is unknown
to the decision-maker. Consequently, we assumePtRatxists but that it remains
hiddento the decision-maker. In view of these positions, it seeatamal to con-
sider the unknown quantity

Pa{d € A: L(a*,6) < c(DV)}

as a suitable measure of the coverage setdf'). We denote this quantity as the
“coverage probability o&(D™)”, or just as the “coverage @f(DV)”. SinceD" is
random, the functiow of the dataD” is, according to the statistical nomenclature,
a statistic

Definition 2 (coverage) Given a statistia of the dataD”, the coverage af(D")
is
Pa{d € A: £(z*,8) < c(DV)},

and it is denoted by (c(D™V)). *

Clearly, given a statistie, its coverageZ(c(D)) is a random variable taking
values in[0, 1] with a distribution that, in general, depends on the spepifiblem
at hand, in particular on the specific probability measBire Nonetheless, the
object of this work is to show that there are many cases ofdstevhere statistics
having an intuitive empirical interpretation, like for emplec(D”") = ¢*, are such
that much is known about their coverages, though nothingudsvk aboutPa. In
other words, we will focus on coverage properties thairrdependent P .

1.1.3 Distribution-free coverage properties

We here define classes of statistics whose coverages havengiel properties
that hold true for every possiblea, i.e. in a distribution-free manner.
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A first, important quantity characterizing the distributiof C(c(D?) is the
mean coverag&~[C(c(DV))], i.e. the expected value df(c(DY) computed
over all possibleDY. We introduce the following definition.

Definition 3 (distribution-freea-mean coverage statisticheta € (0,1). For a
fixed number of scenaria¥, a statisticc has a distribution-freex-mean coverage
if, for every probability measur ., it holds that

Ean[C(c(DY))] > a. (1.1)

Thus, on average, ammean coverage statistic is expected to “cover” at least
a proportiona of the possible costs, no matter what is. We are particularly
interested in (empirically meaningful) statistics that & characterizetightly as
distribution-freea-mean statistics, i.e. whose mean coverages are exactyf equ
to « for some probability measuia. Also, it is reasonable to look for statistics
whose mean coverages are equaktior large classe®f probability measures of
practical significance, and this is what we aim to do in theptdrs that follovd

If we know thatc is a distribution-freen-mean coverage statistic, we can im-
mediately answer to the following question:

“What is the total probability of observiniy scenariog®, ..., 5%V,
consequently obtaining* andc(D?) based on them, and that a new
observation carries a cost(z*, §) not higher thare(DV)?”

In fact, we have that

Ean [C(c(DV))] =Ean [Pa{d € At £(z*,5) < c(DV)}]
= [denoting with1{-} the indicator functioh
=Exn~ [Ea [1{6 € A: £(z*,5) < c(DV)}]]
= Eann [L{(DY,8) € AN x A: ¢(z*,8) < c(D™)}]
=PYTH{(DY,6) e AN x A1 £(2*,6) <c(DV)}, (1.2

which is the sought probability. Therefore

PAH{(DN,6) € AN x A 6(a*,6) < ¢(DN)} >

2Clearly, the requirement th@t, ~ [C(c(DY))] be exactly equal ta for everyP, is
too strong and cannot be achieved. In fact, for a giwea (0, 1), the class of statistics
satisfying the propertyE~ [C(c(DV))] = a for everyP,” is empty. To see this, tak@a
as a probability measure concentrated on a unique scehaltiothis case, any statistie
takes a constant value, sayand has a deterministic coverage equal,td ¢ > f(x*,6),
orto0, if ¢ < f(x*,6).
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and the answer to the above question is (independentRxadf “certainly no less
thana.”

In spite of the usefulness of distribution-free results whbmean coverages,
more refined distribution-free characterization€¢¢(D?V)) can be obtained. We
give the following definition.

Definition 4 (distribution-free(e, 3)-coverage statistic)Lete, 5 € (0,1). For a
fixed number of scenaria¥, a statisticc has a distribution-free, 3)-coverage if
relation

PX {DV € AV: C(c(DV) >1-¢} >1-8

holds for all probability measureBa . *

So, if c is a distribution-free(e, 3)-coverage statistic, we can claim that the
coverage ofc(DV) is at leastl — ¢ with confidencel — 3. Of major inter-
est is the case whereis “small”, say0.01, while 3 is “very small’, say10~7,
so that, no matter whdP, is, the coverage oé(DN) is at leastl — ¢ “with
a reasonable degree of certainty”. For fixednd 3, the so-defined statistics
are tightly characterized if there exists some probabilitgasurePa such that
PN {DV € AN : C(c(DV)) > 1 — ¢} =1 — 8. We will show that, for many im-
portant decision-making problems, it is possible to findhtigtatistics such that
the conditionPX {DY € AV : C(c(DV)) >1— ¢} =1 — 3 holds true for large
classes of probability measures that are of practical figimice. Moreover, the
whole probability distribution of (c(D?")) may turn out to be the same for large
classes of probability measures. We give the following défim

Definition 5 (distribution-free coverage statisticlf the probability distribution of
C(c(D™)) is the same for a whole class of probability measufgs we will say
that the statistiac is a distribution-free coverage statisfior the class of problems
characterized by those probability measures. *

Before proceeding, some terminological remarks are wdrifew

Remark 1 (coverage) The term “coverage of the statist¢D'V)” is quite intuitive
and allows us to emphasize our interest in making statembated on the finite
set of observation®”, that “covers” the unseen instances &f Nonetheless,
it is a direct application of a term borrowed from statistidderature, since the
coverage set of(D?) in Definition[1 can be interpreted as a “tolerance region”
in the space), having indeed “coverage probability” equal ©(c(D")), see e.qg.
[4]5]. *

Remark 2 (risk). In some contexts, the focus is on the complementary of the cov
erage set, that is, on the “bad” set of tho§s exceeding the cost threshat¢D?).

The probability of this set is calledsk. With this terminology, a distribution free

(e, B)-coverage statistic has a risk less than or equat with confidencel — 5.

We will prefer to deal with theisk instead of with thecoveragein the min-max
context, i.e. from Chaptéd 3 onward. *
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Admittedly, the notation used up to now to indicate eventguie pedantic,
since the sample space over which the probability measutefised can usually
be understood without ambiguity. Hence, throughout we wig. write more
compactly

PAH{£(z*,6) < ¢(DV)}

in place of
PRFH{(DN,8) € AN x A 0(2*,8) < c(DV)},

and similarly in similar cases.

We are now ready to overview the results achieved in this workis is done
in Sectior 1.B. The following Sectidn 1.2 goes into the iptetations and motiva-
tions of the probability framework introduced in this chaptand can be skipped
without loss of continuity.

1.2 Interpretation of the probabilistic framework

We recall the two main sources of uncertainty entering asi@tiproblem:
e unpredictability of phenomena;
e modeling errors.

The first kind of uncertainty is commonly involved when thédlected scenarios
W ..., 8WN) are the results of field experiments performed in variousrenv
mental conditions, or are retrieved from historical serse® e.g.[[6,17]. Although
the link between probability and physical world is subjecphilosophical contro-
versiel, most engineers seem willing to admit that, in many situnetiof interest,
the data that Reality provides us can be conveniently thioofggs the outcomes of
a random variablé, sampled according to some arcane, but in some sk
ing, probability distributionPA. Arguing in favor of the existence of a certdin
underlying the generation @t), ... 6N) commonly requires using application-
domain knowledge and arguments. Once the existenBg @ accepted, we think
that measuring the coverage sets introduced above baded isrthe most natural
option. Moreover, since we doot assume that the decision-maker knows the ar-
canePx, the only assumption requiring further justification is #ssumption that
oM ..., 6W) are independent. Still, the decision-maker can argue iorfaf/this
assumption based on a-priori knowledge about reality ankisdata-acquisition
procedure. For example, when microscopic phenomena withre@id dynamics
(e.g. thermal agitation) are at the origin of noises, noisaslly turn out to be
independent processes when sampled on a macroscopic titee #8s argument
has been used to justify the commonly accepted noise modgstams and control

3For a recent debate in the systems and control community8kaed the discussion
paperl[9], in particular the contribution of Jan C. Willems.
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engineering, see e.g. the seminal paper [10]. In financerdiog to the classical
Black-Scholes model, logarithmic return increments atisggpced time intervals
are independent, see [11]. Remarkably, independence dadieed by a suitable
data-acquisition procedure, as, for example, in opinidispahere the decision-
maker carrandomly selecpeople to be interviewed. Generalization to contexts
where scenarios are not independent or are not generatertimgrthe saméa

is an open and stimulating research area, beyond the scdipe pfesent work.

As for uncertainty due to modeling errors, we offer here alainnterpretation as
that above. The spack can be thought of in the abstract as the set of all the models
that are candidate to represent the physical reality dét@rgithe cost function, as

in Example_2. More concretely, can be a vector of uncertain parameters, whose
correct values can be estimated through identificationseuhares, see e.g. [12].
The scenarios™, ..., 5™ are then collected as the outputs findependent
identification procedures. Indeed, the output of an ideatiidbn procedure is sub-
ject to some variability, since it depends on the kind of expent performed,

on environmental conditions, and so forth and so on. If wepkca probabilistic
description for this lack of determinisn?A can be naturally defined as the (un-
known) probability according to which the identificationtputs are generated.

The interpretation of the probability framework advocaabadve is not the sole
possible. ProbabilityA may be introduced by the user without any reference to
a supposed state of the world, but just as a technical tockaiat quantifying
the relative importance of the possible occurrenceé. oAccording to this point
of view, scenarios are artificially generated frdm in an independent way, so
that more important values @f are more likely to be considered in making the
decision. A thresholat(D") with guaranteed large coverage is thus associated
with the obtained decision*, so that we can conclude that the most important
instances of are likely to carry a cost no higher thatD” ). Indeed, even though
ourPa-independent quantifications of the coverages are of pdatiinterest when
Pa is unknown, they can still be useful when the probability i®kn, e.g. for
computational reasons.

1.3 Introduction to the problems studied in this work
We recall for easy reference the main symbols introducedebo

X : decision set
x € X : decision variable
A : uncertainty set
0 € A : uncertainty parameter
(A, D,PA) : probability space, where
D : o-algebra over\,
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P : probability measure ovér\, D);

DY e AN : a sample ofV scenarios, independent and identically distributed

according tdPx, i.e., DY is short notation fos(!), ..., §(V):

f: X x A — R : cost function - the cost depends smnd the uncertain;

L: (RX)N — R* : cost-aggregating function - it aggregatés, 6(1)), ..., ¢(z, §(M)).
We concentrate on the scenario solution, defined as

* i (1) (N)
x* arggg/gﬁ(((:ﬂ,é )y-es bz, 6 )),

and study its coverage properties, in the light of Defingi@ri4% andl3, for two
instantiations of the cost-aggregating function that driguitous in applications.

1.3.1 Average setting

When anaveragecost-aggregating function is used, the decisitris chosen as
the one that performs besh averageor the N scenarios, that is

N
1 .
. _ in— 3 (80
R £ fw, o)

N
— i (4)
arggg;(lizlf(xﬁ ). (1.3)

Although many variations on the theme are possible and &iing, in the next
Chapter 2 we will study the case where the cost function J) is a (convex)
quadratic function inc for eachd. Moreover we will assume&’ = R?. In opti-
mization terminology, the problern(1.3) witkw*, §) quadratic in: € R is anun-
constrained quadratic optimizatigproblem, more commonly called a (classical)
least squareproblem. We will discuss the coverage properties of stasistefined
to be as similar as possible to the empirical cd$ts, 5(V), ..., ¢(z*, 6(N)). In
particular, we will focus on distribution—fre%—mean coverage statistics, where
1=1,...,N. Itwill be shown that empirical costdo not havehe desired cover-
age properties, WhiI%—mean coverage statistics can be obtained by considering
suitable approximations d@fz*,6()), ... ¢(z*, 6(V)).

The focus on the particular case of least squares problejustified because,
since Gauss and Legendre proposed to solve regressiorm®kbirough the least
squares method at about the beginning of the XIX centuryespe[21], the least
squares method has been used in countless applicationsTaBleeI.1 for just a
few examples.
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Table 1.1. A few examples of least squares problems.

[ [ Interpretation o [ Interpretation ofz [ Interpretation off(x,5) | References |
Linear regression Data point Coefficients  weighting [ Regression error Chapter 3 of [[1B], see
theory regressor functions also Sectiofi.2]1 of this

work
Facility location Position and weight of the| Location for anew facility [ Cost of the state of the| [14,[15]16 1¥. 18], see|
demand points world also Sectiond_2]1 and
[2.3 of this work
LQ regulator Noises, uncertain model| Control action Quadratic performance] Chapter 2 Section 4 of
matrices index [19], see also Section
[2] of this work
Receding-horizon Uncertain model matrices| Estimated state Deviation of estimated| [20]
estimation outputs from measured
outputs

1.3.2 Worst-case setting

When theworst-casecost-aggregating function is used, the decisitns the one
minimizing the worst-case cost among those carried by tee seenarios, i.e.
* : 7

%" = argmin i:rﬁfi.?fNﬁ(m, & )). (1.4)
Clearly, the worst-case function leads to more cautionasylts with respect to
the average one. We will show that, in this context, stromgsults than those of
Chaptef 2 can be obtained, under more general assumpti@ssinmptions are re-
laxed by allowing for/(x, 0) to be a general convex function infor eachd, and
for x to be chosen in a constrained way, thatzise X C R4, with convex and
closedX.
An immediate application of an already known result, boedvby the theory re-
called in AppendixX_A, establishes that,/fz, d) is convex, the statistic given by
the highest empirical cost associated:tothat is

¢ = max {(z*,60),
i=1,...,N

is a distribution-free coverage statistic for a whole subsproblems. In general, it
isa distribution-freejzg—jj-mean coverage statistic, and can be tightly characterized
as an(e, 3)-coverage statistic for very interesting valueg«of3). In fact, for fixed
d ande, the confidence parametgican be heavily reduced (i.e. the confidence can
be heavily increased) by a small increaseNaf The decision-maker can use this
result about the coverage df by associating with the decisiart a performance
¢* guaranteed at a certain level of probabilityyn Chapte[ B, this result is extended
to all the others empirical cost§z*, 6()), ..., £(z*,6(")). In particular, for the
same set of problems for whiefi is a distribution-free coverage statistic, we have
that thejoint probability distribution of the coverages of all the empirical costs
0(z*,6W), ..., L(z*,6™)) can be computed exactly and daest depend orPx.
Moreover, by denoting witle], . .., ¢} all the empirical costs from the largest to
the smallest, we have tha}_ |, ..., c} arein genera) that is under very mild as-
sumptions, distribution-free coverage statistics, amdclhssic result, which char-
acterizesc* in full generality as a distribution-freg, 3)-coverage statistic, turns
out to be an immediate consequence of the trivial fact¢hat ¢, ;. In short, we
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provide an extension and a reinterpretation of the clagsialr about the coverage
of ¢*, thus providing the decision-maker with an instrument tarabterize in a
distribution-free manner the coverages of all the costsdated withz*.

A possible issue with this approach is that the number ofaiesV required to
guarantee that the coverageddfis no smaller tharl — ¢ with a good confidence
depends on the problem dimensia)ras%: if d is large, it may become difficult
to guarantee a high coverage. In Chapter 4, a way to face ribiidgmn is offered,
by introducing a slightly modified decision-making algbnit and a statistic - a
modified version ot* - whose coverage is far less sensitive to an increasing) of
than its counterpart®. This allows the decision-maker to characterize a worseca
decision by means of a high coverage statistic, using avelatsmall number of
scenariosV.

1.4 Review of the literature

Our work has a two-layered nature.

Layer of the decision-making approaches a decision in the presence of
uncertainty has to be made, and we propose to make the deeisiording
to an intuitive and common sense data-based algorithm (iticpkar, by
minimizing the value of thewverageor of the worst-caseaggregating-cost
function);

Layer of the probabilistic guarantees our theoretical analysis, based on
distribution-free coverage properties of empiricallyrgfigant statistics, al-
lows to characterize the decisiarf, which is made based on a finite data
sample, with respect to the infinitely maogseersituations.

First, we consider some classic approaches to decisioinmakthe presence of
uncertainty, and then we discuss studies about the pradgtabdharacterization of
a solution obtained based on a finite data sample. At the etidisoection we
will give some more specific references related to the twiinggst (average setting
with quadratic cost function and worst-case with convex twsction) considered
in this work.

Decision-making approaches

Standard approaches to face uncertainty in optimizatioblpms can be grouped
into three classes:

e Robust optimization;

e Stochastic optimization;
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e Chance-constrained optimization.

We aim not at providing a complete survey of them, but justaating out how
the main ideas of these approaches reflect in our framework.

Robust optimization

In robust optimization, studied in [22, 23,124, 25] 26,(27], #8 main idea is that
the decision-maker wants to be “robust” with respect toralfgossible uncertainty
instances € A, so that the decision should be made by choosing

&7 1= argmin (I&ég{f(:ﬂ,é)) . (1.5)
If the setA grasps the real range of uncertainty, the decision is odytabbust
with respect to the worst case. However, taking into accallrthe (believed to

be) possible realizations éfcan turn out to be too conservative an approach, some-
times nearly paralyzing the decision-making process. Moghisticated schemes
has been proposed to increase the degrees of freedom of ¢istodemaker in
trading robustness and conservatism, also with the suppprbbabilistic models

for the uncertain parameters. For example, [27] assuméaititertain param-
eters take values on intervals according to symmetriciligions. In all cases,
the decision-maker is called to model suitably the uncetyasetA, and this is

a delicate task prone to arbitrariness (e.g.Lir_[6, 28], wdtho build reasonable
uncertainty sets according to a data-based criterion aygested). The idea of
the data-based worst-case approach, according to wtiich chosen as il (1l.4),

is to simply replace the uncertainty s&tin (I.5) with the data themselves, that is
with {6, ..., 6™}, An important point is also that to solVe(]L.5) is in general
computationally difficult, see e.d. [23,124]: this was ondlef motivations for the
theoretical study of(1]4), see [29,/30] and referencesther

Stochastic and chance-constrained optimization
In stochastic optimization and chance-constrained opétion, the probabilistic
framework is adopted, and the probabiliRy is assumed to bienown Stochastic
optimization has been introduced in [31]. The basic ideagusur notation, is to
choose

z* = argmin Ea [{(z, )] . (1.6)

reX

Clearly, the expected value of the cost has to be computedier to be minimized
and in general this involves the difficult computation of altimariable integral.
This is why the expected value is sometimes replaced by airieaipnean over
N scenarios, thus recovering a problem like (1.3) with averegst-aggregating
function. In other words, the stochastic problém1(1.6) carsblved through a
Monte-Carlo method, where each Monte-Carlo samifilecan be interpreted as a
scenario, see e.d. [32,133]. However, a word of caution aleootinology is neces-
sary, because the term “scenario approach” in stochastgrggmming has usually
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a slightly different meaning than that used in our work. btsastic programming,
the term “scenarios” is usually employed to indicate instsd (!, ..., 6%¥) that
are selected by the decision-maker, who assigns to eaclemf dhprobability, not
necessarily equal t%. The probability is indeed assigned according to some (sub-
jective or objective) criterion, and the decisiohis commonly made by averaging
over the cost functiongeightedby the corresponding probability. However, if the
scenarios are randomly sampled and the uniform samplebdistm is assigned
to them, the “scenario approach” in stochastic programrbwity down to solving
our average problemi (1.3).
More in general, in stochastic optimization any other ofmerdepending orPa
could be placed instead of the expected value. A special @fastchastic opti-
mization is chance-constrained optimization, see €.¢./33436/ 37, 38, 39]. The
idea is to choose™* by optimizing over the seh minus are-probability set of un-
certainty instances af carrying the highest costs. Formally, for a fixed (0, 1),
the chance-constrained problem writes as:
min

z€XCRE veR

subject to.Pa{l(z,0) <~} > 11—k, .7
whose solutionz}., v%,) is the pair consisting of the optimal chance-constrained
decisionz}, and the corresponding cosgt, that can be exceeded with probability
no greater thar. Chance-constrained optimization is notoriously harddives
in general, even though there are notable exceptions whersalution can actu-
ally be computed, seé [36,137,140]. In Chapter 3, we show howotopute N
so that, for a fixeck and very small3, the worst-case cost* associated to the
worst-case decision*, computed according t (1.4), is a distribution-friee/3)-
coverage statistic. This allows us to interpret the scenapproach as a method
to find a pair(z*, ¢*) being afeasiblesolution for the chance-constrained problem
(@ 1) with very high confidencé — 3, independently oPx.

Probabilistic guarantees for sample-based solutions

In the following, we focus on main contributions aiming athadretical analysis
of a decisionz* computed based on a finite data sample. In particular, weioment
three kinds of theoretical studies:

e studies of asymptotic properties,
e studies in statistical learning theory,
e studies about a posteriori evaluations,

and show briefly in what they differ from ours.
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Asymptotic properties and statistical learning theory

The study of asymptotic properties is the study of the prigof the decision

x* when it is made based on a number of datdahat goes to infinity, while our

work aims at providing results for finite, and possibly sniéll In some cases, the
decision of the problem with “an infinite number of scendrisonsidered as the
ideal decision. For example, consider the solutioto the following stochastic

optimization problem

%Q?EAW””’ 9)].
Sometimes, becaude, is unknown or for computational reasons, one tries to
approximate the ideat by means of the minimizer of the empirical mean, that is,
one decides for:*, computed as i (113), instead of for the ideaunattained or
unattainable). In this case, convergence results guaiagt¢hatz* — z are in
order, see e.g. Chapter 5 [n [39]. Also, the decision-makay bre interested in
knowing what the difference is betwegl",_, £(z*,6®"), i.e. the mean of
the empirical costs corresponding to the finite set of @dfaand the true expected
costEa [¢(x*,0)], or even the true expected cost associated to the idealatecis
i.e. Ea[l(z,0)]. Statistical-learning theory faces this and other sinplablems,
and studies the conditions under which it is possible to ggize from N finite
data to a quantity depending on all the infinite possibileds¢e the fundamental
book [41], and[[42] 43]. The basic assumptions of statistening theory are
the same as ours:

o P exists but it is unknown;

e the samples® ... §(N) are independent and identically distributed.

For example, for a given sample-based decision-makingitigo producingz*,
for a fixedn and a very smalb one can find the suitabl® such that

PX{

thus guaranteeing (with very high confiderice- 3) that the empirical mean and
the real expected value differ at most by a small amgufithe magnitude (or even
the finiteness) ofV depends on boundedness properties of the cost funtion)
and on its possible “variability” with respect to the randénmA formula like (1.8),
which represents a typical result that can be obtained ¢ir@tatistical learning
theory, is out of the scope of our work, because it focusesnoexaected value,
that is an average quantity depending on all the ung&emvhile we focus on the
property ofa singleunseen uncertainty instanéeof being or not being covered
by a given cost threshold(D?). Statistical learning theory, howeveanbe used
to study coverage properties, too. In fact, given a datadaecisionz* and a

N

Ealt(a*,5)] — 3 t(a*,60)
i=1

Sn}zl—ﬁ, (1.8)
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cost threshold:(D?), we may define the indicator function of the coverage set of
c(DV) as:
1c(0) == 1{6 € A: {(z*,0) < c(DV)}, (1.9)

wherel{-} denotes the indicator function of the §ef. Mathematically, the cover-
age ofc(D?) is anything but the expected value of the binary functigii) with
respect to the uncertaify that isC(c(DV)) = Ea[1¢(8)]. The difference between
the empirical version af(c(DV)), thatis S~ 1¢(5®), and its true value, that
isEa[Lc(6)], can indeed be studied by resorting to the statistical iegrineory.
However, in the contexts studied in our work, statisticalrténg theory is more
conservative, and requires a large number of scen&ig¢s.g. whend(z,¢) is a
convex function the sought finit¥ may not even exist). Indeed, the usual approach
to this kind of problems is based on uniform convergencelteaiming at guaran-
teeing the convergence of the empirical to the true valuenlytfor 1-(¢), which

is the indicator function defined fdne decisionz* andthecostc(D?) of interest,
but also andat the same timéor all the otherpossible decision-cost pairs (or, at
least, for a large subset of them, asl(inl[44]). We will formahow that results
in statistical learning approach cannot improve the reguleésented in Chapters
and[4, by showing that our results are tight, i.e. not imabte at all. As for
results in the average setting of Chapfer 2, here we limgalfito the observation
that they do not depend directly on the sizef =, which enters instead the bounds
that, to our knowledge, can be obtained according to thisttal learning theory.
Nonetheless, situations that we have not considered inrdsept study (e.g. non-
convex cost functiong(z, d), unusual selection of the cost-aggregating function,
etc.) can at least in principle be faced with the support efdtatistical learning
theory. For recent results on this topic, see €.gl [44]. i8sudn data-dependent
penalties may allow to reduce the gap between conservatif@eron convergence
results and approaches that guarantees one particul@iatecsee e.g.[ [45] and
references therein.

A-posteriori assessments

Assume thatz* and ¢(D") have been computed according to some rule, and
that we have at our disposal an arbitrarily high number ofitamthl scenarios
(this is a rare situation if scenarios come from real expenits). Assume also
that computing/(z*, ) for many d's is easy (this is not always the case, see
the example considered ih_[46]). Then, a posteriori assestncan be easily
made. A Monte-Carlo evaluation can be run &hnew independent uncertainty
instances, e.gdVtD ... §N+M) and the coverage estimated by the quantity
LSM e (8NHD), with 1 (6) defined as in[{Z19). In fact, an application of the
classic Hoeffding's inequality (see e.q. [47] for resultsamncentrations inequali-
ties) yields

PX {

2

M
C(c(DM)) — % Z 1e(3VHD)| < 77} > 1 — ¢ Ar.
=1
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In the following, we give some more specific references abwaitwo distinct
settings (average setting with quadratic cost functionwaocst-case with convex
cost function) considered in this work.

1.4.1 Quadratic cost function

We mention here a pair of works about decision-making witbeutain quadratic
cost function. Results for the robust probldm [1.5) withdraéic ¢(z, §) are pre-
sented in[[48],_49], under some conditions about the streatfithe uncertainty.
In [48] it is also shown that the robust problem is in gener@-édmplete. In
[50], the guaranteed residual-at-risk minimization of theadratic/(z, d) is in-
troduced: similarly to chance-constrained optimizatione obtains the best pair
(xf,, i) such thalPa{l(z}, ) < vk} > 1 — ¢, but, differently from the chance-
constrained case, the conditi®n {¢(z}.,d) < 7%} > 1 — € has to hold not only
for oneknown P, but for asetof distributionsPPx, i.e. those satisfying the condi-
tion that the uncertain parametehas a certain known expected value and a certain
known variance. Moreover, the uncertainty is there assumée constrained ac-
cording to a precise structure.

1.4.2 Average setting with quadratic cost function

About our work

Results presented in Chaptér 2 have been inspired by igaéstis about order
statistics and tolerance regions, see €. _[4| 51,15, 58 canformal predictors,
[53]. Indeed, the result presented in Chapter 2 can be thaigis a generalization
of a classic result, there recalled, about order statistiegscontext where the dis-
tribution of the cost is influenced by an optimization praged Also, as noted in
Remark, coverage sets can be interpreted as tolerancase§lonetheless, such
an interpretation fails to grasp the specificity of our apgio we are not interested
in predicting future realizations @f, but rather in the event that a cost threshold is
not exceeded. The event of a cost not being exceeded is dtindiereticallyas if

it werea tolerance region suitably tailored in the spadce

Some references to related results f6rchosen as in[(113) with quadratic cost
function follows.

Known results in a very restricted context

In a very restricted context, whenc R, A = R and/(z, ) = (z—6)?, the classi-
cal theory of tolerance regions can be easily applied to fimtistics similar to those
obtained in Chaptéi 2 that have distribution—flﬁl%—mean coverages, too. For ex-
ample, the tolerance regions defined@®") := [min;—; _x 6@, max;—; _n @]

is known to have mean coverage no less t%. It is not difficult to see that
the setT'(D?) is a subset of the coverage set of the empirical worst-case co
¢* = max;—1__n4(z* d@). Hence, this proves that, in this restricted context,
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has distribution-fre%-mean coverage, too. Aresult presented in [54] could also
be applied in this same restricted scalar context to obtatistcs with distribution-
free mean coverage: these statistics are by constructicaledsversion of the esti-
mated variance of the sampléd), . .., 6V). For a comparison between prediction
intervals obtained in_[54] and ordinary tolerance regioas K5]. We limit our-
selves to observing that the distribution-fr%%-mean coverage statistic obtained
in Chaptef 2, as well as', remains bounded at the increasing\6fvheneven has
bounded support, while th%ﬁ-mean coverage statistic obtainable by using the
results in[[54] necessarily goes to infinity.

A related result in the general context

The general contexts witt{z, §) = || A(8)z —b(8)||?, whereAd € R"*4is ann x d
matrix andb € R™ a column vector, is studied in_[20], wheré is computed ac-
cording to [1.B) and known results in statistical learningary are applied, under
some a-priori conditions, e.g. boundedness of the unogytaet and of(z, d), in
order to study how neda[¢(z*, §)] is tomin, Ea[¢(x, §)].

1.4.3 Worst-case setting with convex cost function

The results from Chaptéi 3 onward are in the vein of the sled#heory of the
scenario approactor convex optimization,[[29, 30, 56, 57], which, under the
assumption that(z, §) is convex inz, provides the sharpest possible characteriza-
tion of the coverage set of the worst-case cost statistie. rii&in results and other
references to the scenario approach for general congdraimevex problems are
recalled in Appendik’A.






Chapter 2

The coverage probabilities of the
least squares residuals

In this chapter, we study a data-base@rageapproach known as the least squares
method, and show how the least squares solution can be téd@ad through
suitably constructed distribution-free mean coveragéssitzs. In the following
Sectiori Z.1L the data-based least squares problem is fgrataled, with examples,
and our result is introduced. In Sectionl2.2 the main thedsgpnovided followed

by a discussion, while proofs are postponed to Se€fidn 2.Aurerical example

is given in Sectiof 2]3. Some pointers to possible futureld@ments are briefly
discussed in Sectidn 2.5.

2.1 Introduction and problem position

We consider an uncertain optimization problems where asteti modeled as
the selection of a variable € R?, has to be made so as to minimize a (convex)
quadratic cost functiofi(z, §) that also depends on the uncertain random element
0. Whenever the uncertain cost functiéfx, d) is a non-negative functiiy we
can, according to a standard notation, identify the unitgytanstanceé with a

pair (A,b), whereA € R™*? i.e Ais ann x d matrix, andb € R", i.e. bis a
column vector, and rewrit&(x, ) as asquared residual

U(x,8) = | Az — 0%,

that is, as the squared Euclidean norm of the differenced®tvixz andb. Hence,
given a certain, deterministit= (A, b), the best decision would be the minimizer
of thesquared residuadf (A, b).

On the other hand, in the presence of uncertainty, the decisimade by consid-

'The assumption thd{x, §) > 0 will be maintained throughout, but it is immaterial for
the validity of the theoretical results presented in thigpthr.

19
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ering N scenarios, i.eN uncertainty instances
DY =6 63, 6™ = (A1,b1), (A2,b2), ..., (AN, by),

independently generated according to a probability over the uncertainty set
A = R4 x R". The data-based methodlest squareprescribes to minimize
theaverage of the squared residualssociated with th& scenarioD”, so that

N
* 1 2
z” =argmin El [[A;x — by
1=

N
:argminZHAix—bin. (2.2)
1=1

The minimizer of [(2.1) @ the scenario solution*.
A standard application of this approach is in linear regogss

Example 4 (linear regression)Letd andy be two random variables. We want to
regressy against a polynomial of ordef — 1 in 8. During a campaign of data ac-
quisition, N independent observatiori§™), y(1)), ... (8N) 4(N)) are collected.
By letting

A = (1,6(”, (G(i)>2, e (6(i))d_1> e R™ fori=1,...,N, and

we can find the coefficients of the best fitting polynomial byirep
N
minz | Az — b2
=1

So, writing the minimizer* explicitly as a vectorr* = (ag, a1,...,0q-1), We
have that
P(G) =g + 90[1 + 92012 + ...+ Hdiloéd_l

is the sought polynomial modeIE\gﬁe relationship betweethandy.
*

The following example is a well-known facility location griem and will be
further developed in Sectidn 2.3.

2If the minimizer is not unique, an arbitrary solution detéred through a tie-break
rule is taken and denoted hy throughout the paper.

®Indeed, the regression problem is a so-calieadel fitting problemwhere, strictly
speaking, the scenario solutiari represents a model more than a “decision”, and the
“cost” function{(z, §) represents how badly a modefits a data poind.
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Example 5(Weber problem with squared Euclidean norrihere arem clients,
located at pointspy,...,p,, in the spaceR?, to be served by a facility whose
locationz € R? has to be decided. If there is no uncertainty, the heistchosen
by minimizing

() =Y willz = pil %,
i=1

wherew; is a positive weight reflecting the relative importance ot/gg the client
located atp;. However, both the clients’ locations and their relativepiontance
can alter during the course of time, and are subject to uraiety. Past locations
and the associated weights are then obtained from histbdata, so thatV sce-
narios _ _

p(ll)7 v 7p£711)

(4)

w w(l), fOfZZl,,N,
1 2 ¥m

can be used to compute the scenario solution:

N m
* _ : (4) (@) 2
x —argmxmg g w;’ [lz —p;” |l
i=1 \j=1

N

= arg min g | Az — bs]|?,
T
i=1

where we have posed

A [V VB 0 e
o Vel o Yoo .

Wi Wo

I i) 7 i) (i i) (i
bi:[ Wpr@ 0@ wypg()],

(AT andb! indicate the transposes of; andb;). Note that we only require that
scenariosare independent one from the others, while e.g.rthelients’ locations
can be correlated as well as weights are allowed to be locatiependent in a very
complicated way. *

Finally, we mention a well-known problem in systems and cartheory that
involves the least squares method.

Example 6 (finite-horizon linear quadratic regulatorConsider the following lin-
ear system

2t41 = Fz + Bxy + wy, where
F c Rmxm B c Rmxn
2z € R™ wy ERthO,l,...,Tf.
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We look for a control actionr = (:cOT,le,...,:c%_l)T, x; € R* fort =
0,1,...,Tf — 1, that keeps; close to0 with a moderate control effort. Quan-

titatively, the best control action is defined as the one mizing the following
cost function

Ty—1

Uz) = Z (Z?ta + xtTR:Ut) + z%fQszTf, (2.2)
t=0

where@Q; € R™*™, ¢t = 0,...,Ty, are fixed positive definite matrices penalizing
deviations of the state variables from 0 at each timet, and R; € R"*", ¢t =
0,...,Ty — 1, are fixed positive definite matrices penalizing the congfbbrt.
Denote withl,,,«,, the m x n rectangular identity matrix and by, the squared
m x m identity matrix, and, similarly, witld,,,,, € R™*™ and0,, € R™*" the
matrices of zeros. In view of the system equations we have tha

Z1 B 0m><n 0m><n xo
2| | FB B RPN T
: ; Omxn
2Ty Fir-1p pTr=2p ... B TTp—1
P; [m Om Om wo
F U
N I T A N S N
: : s O
FTr I, I, --- I,| LW

which, by denoting witlj the term in parentheses, wi¢hthe matrix multiplyingr,
and by defining := (27,..., z%f)T, writes

z=0x+E&.

Letting @ and R be the followingnT; x mT; andnTy x nTy matrices

1 1
Ql Om e Om 2 RO On o On 2
o 0, o 0,
Om e Om QTf On o On RTffl

the cost functiorf(x) can be written as

U(z) =20 Quzo + | QG + &)||* + | Ra||?
2
01><an _Qézo

= Qg T =9 7
R OanXl
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which is clearly in the formj Az—b||?, with A € RH+n+D)TyxnTy ) ¢ Rmtnt1)Ty

andz € R™. Ifthe initial statez, or the matrices”, B or the vector(wg , ... , wf, )
are affected by uncertainty, the control action (decisiati)can be chosen as
the one that behaves best on average with respect to thewaloseralizations of

20, F, Band(wi ... ,w%f). This is done by minimizingY | || A;z — b;]|?, where
(A1,b1), ..., (AN, by) are built as above for every observed uncertainty instance.
*

Some references about the examples above can be found eiIldbh Chaptelr]1.
Now, let us denote witky; the squared residual 0f;, b;) evaluated at*, i.e.

q; ‘= HAZZC*—bZHQ, ’L'Zl,...,N

and consider a new instance(of, b)) sampled fronP independently ob". The
squared residuabf (A, b) evaluated at* is

q:= || Az* — 0]

qi,...,qy are statistics of Ay, b1),...,(An,by). Overall, qi,...,qn,q are
(univariate) random variables that depend(oh, b1), ..., (An,bn),(A,b). In
particular, each of them depends on all the datathrough the decision*. In
analogy with a classic result about order statistics, weldvask if the probability
thatq exceedsy; can be studied independently®f . First, let us recall this classic
result. Given a univariate samplg r, . .., 7y, we denote withr(y, 72y, . . ., 7()
the order statistics of the's, that is,r(l) <re) << A similar notation
is in force throughout for all univariate samples. The faflag theorem holds true.

Theorem 1. Letry,ry,...,ry be a random sample from a distributidn on R.
For a newr sampled fromf' independently of{, s ..., ry it holds that

1

N+1 .
]PF {TST(Z)}ZN+1, Z—l,...,N, (23)
whereIPg“{r < r(;} is the total probability of seeing, ..., ry andr such that
r S T'(Z) *

Equality in [2.3) holds whenevdr is continuous, see e.d. [52], Chapter 3.

However, this result does not apply to our problem. Indeed,decisionz*
is chosen to minimize the average of the squared residuathas in general, the
squared residuals cannot but be biased toward small valnes evaluated at that
samez*, andPX "' {q < q(;} is normallylessthan . The following is a
simple example illustrating this fact.

Example 7. Consider having two dataD™ = (A1,by),(A2,b2), i.e. N = 2.
We assume that, with probability, A; = A, = 1 andb; # b,. Based orDY,
the least squares solutiari* and the squared residuats;, g, are computed. We
will evaluate the probability that a new instan¢g, b) is such thatg < q(,) and
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show that it is strictly less tha@. First, notice that conditionally to any set of
three instances, let's say = {(1,V¢'), (1,b"),(1,b”)}, the probability of each
permutation of the elements His the same, that is, the role of tinewinstance
(1,b) is played by each element Sfwith probability % As a consequence, for
any set of three instances, the three situations repredent€ig. [2.1 are equally
likely and, sinceg < q(,) holds in one out of the three cases, integrating over all
possible set of three instancas’ yieldsP3 {q < q(2)} = 3. *

q>q) , 4> q(2

q \ \ ) / \\ \ \ /
\\ /’ qa \\
\ / \ /
/ \
YA q2) \\ !

~

q(2)

q2)

Figure 2.1. Given three uncertainty instances, the figure shows thelgeseglations be-
tween the statistig,) of two of them (which play as the dafx" = (1,b1), (1,b2)) and
the squared residual of the remaining instance (which plays as the new instaihds).
Squared residuals, as functionsigfare parabolae: the dashed parabolais- b)?, asso-
ciated with the new instandé, b), while the other two correspond to the dax.

In this chapter we provide statistieg;), : = 1,..., IV, such that

N+1 _ L4

Pr"{a<qu} > NLl

for every possibléPA. These statistics are obtained by addinghargin to the

q(;)'s, according to a rule that does not depend’an We will see that the margin
is small in many situations, so that a good characterizatfari* through a finite
and even small number of scenarivsis possible.

As already remarked in Chapiér 1, the new instant:é) can be interpreted as
the datum(Ax1,bn+1) Observed immediately after the decision has been made
based oDV = (Ay,b1),...,(An,by). For example, in the regression problem
considered in Exampléd 4, the new instance corresponds teetkteobserved data
point (9N 1),y (V1) " In that context, our result guarantees being at lggst
the probability of the event that
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the data point®” are observed, the coefficients of the polynomial
P(0) and the statisti€;) are computed depending @ only, and
the next data pointdN 1), y(N+1)) is such that the squared difference
betweenP (V1)) andy (N +1) is greater thaw;).

According to the Definitiori 13 in Sectidn 1.1.3, the statisji, obtained in this
work is adistribution-free 2 -mean coverage statistidndeed, the coverage of
q;) is a function of the dat®”, defined a&(q(;)) = Pa{(4,b) € A:q < q}

- see Definitiori R in Chaptéd 1. In view df(1.2), we have thatv[C(q;))] =
Pgﬂ{q < qg)}, and therefore the valuygi—1 lower bounds the mean coverage of

d(i)-

Distributions-free results are of great importance sing& pssumptions about
Pa are usually unrealistic. However, one may expect some ceasam, due to
the pretension of guaranteeing the mean coverage agdimmisaiblePa. Intu-
itively, we limit the conservatism by the fact of using sttitis mimicking those of
Theorenfl. This point will be discussed in more detail lateiroSectior 2.2.3,
after the main theorem is stated.

2.2 Main result

First of all, we recall some frequently used notations.

2.2.1 Frequently used matrix notations

1. I denotes the identity matrix.
2. For a matrix)/:

MT = transpose matrix ai/;
M = Moore Penrose generalized inverse\éf

| M| = spectral norm= sup,; [[Mz||, where the norm in the right-
hand side is the Euclidean norm;

Amax (M) = maximum eigenvalue af/ (M square matrix).
3. For a symmetric matrid/, M = 0 (M > 0) meansM positive definite

(positive semi-definite).P > Q (P > Q) meansP — () positive definite
(positive semi-definite).

For further information on matrix concepts see €.gl [58, 59]
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2.2.2 Main theorem

To ease the interpretation of the results here expdség; — b;||> will be conve-
niently written as:||4;z — b;||?> = (z — v;))TK;(z — v;) + hy, with K; = AT A;,
v; = AZTbZ-, h; = ||A;v; — b;||>. Observe that, in general, we hakg = 0 and not
K; = 0. For example, in the regression problem of Exarhpl& Ais always a rank
1 matrix, so that; 0 for everyd > 1.

Now, let us define the followingV statistics of the dat®”, fori =1,..., N,
(ZC* — vi)TfQ(x* — ’UZ') + hz
-1 ; 1N
_ L= if K; <2) 1K,
q; = { with K; := K; + 6K; <ZéVlKg> K; ‘ 62‘2;% ¢ (24)
0+

+00 otherwise

Theorem 2. For every probability measur®, with the notation above it holds

that .
PN < g} > — =1,...,N. 2.5
A {q—q(l)} = N+1’ ? > > ( )

*

The proof is given in Sectidn 2.4 where a slightly strongeit (hore cumbersome)
result than that of Theoref 2 is also proved. Statisgi¢cs ..,qy, as well as
their ordered versiong,), . . ., q(n), have a straight geometric interpretation. The
squared residuay; is the value of the paraboloi¢t—v;)” K;(z—v;)+h; atz = x*.
According to the Theorernl 2, the correspondifgis obtained by evaluating at
x = z* asteepenedersion of the paraboloid, obtained by replacing the makfjx
with K;, see Fig.[2]2. The modifieHl; is given by the originaIK plus a term
whose magnitude depends on the comparison betviigesnd 24 1Ky, that is,

044
between the steepness of thih paraboloid and the steepness of all the others as a
whole. Intuitively, if K; is “small” with respect tOZg 1Ky, thenK; ~ K, so that

#£i

Q; ~ q; (i.e. the margin is small), otherwisg; may become large, or even infinite

if K; 4 624:1Kg. The so-obtained;, . . ., qy are finally ordered and;) is a
(i

distribution—freeNLH—mean coverage statistic. Some remarks are in order.

Remark 3 (characterization of the marginlnder very mild assumptions, at the
increasing ofV the sum>_7"_; K, becomes larger and larger with respect to a fixed
£

-1
K;, so that the terni<; (Zé\]lKg> K; in the definition ofi; tends to zero and
U+i

K; — K;, for everyi, yielding d¢;) — 4 — 0. Hence, our result mimics the
classic result of Theorem 1. In Sectlon 214.3 we prove fdyntlaé convergence of
the margin betweeq;) andqy; to zero under the hypothesis that the distributions
of the K;'s and thew;'s have exponential tails. The rate of convergence of the
margin to zero is problem dependent, as illustrated by thmparison between
the two examples below: in Example 8, the margin goes to zetg/d, while in
Examplé D, the margin is exactly zero for aNy> 8. *
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q;

o R

Figure2.2. The parabolgdz — v;)T K;(z — v;) + h; associated with theé-th instance
(continuous line) is compared with its steepened vergionv; )T K;(x —v;) + h; (dashed
line). Atx = z*, their values are, respectively, the squared resiquahdq; as defined

in (2.4).

In the following two examples, the statistics guaranteedThgoremlL can
be very easily computed by hand, and they are representtivgany possible
situations where<; ~ I,:=1,...,N.

Example 8(parabolae with coplanar vertexes and ideniity. Assume thatl; =
I,i=1,...,N.Thus,K; = I, v; = b;, h; = 0. See Fig[ 2.3(&) for a visualization
of the associated cost functiofig;z — b;||%.

Observe that; < %ZZ#KZ <= N > 8, hence, according to Theordm 2, we
have:

. N+5
Ki=—"21
K3 N—l’
_N+5

A = 196

wheneverN > 8. Clearly, the marging;) — q(;) goes to zero a3/N, e.g. the
margin is less than th&0% of q() with N = 62, less thanl% with N = 602, etc.
*

Example 9 (stack of parabolae)Assume that the scenari@" are such that, for
i=1,...,N,we have

A = |:Id><d:| and b; = [de1:| ’
O1xd Uj

where the subscripts denote the matrix dimensions (@.g, is a row vector of
zeros) anduy, ..., uy are scalar values. Thud(; = Ixq, v; = 0, h; = u?. See
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(a) (b)

Figure 2.3. In (a), three instances of the cost functidng;z — b;||%, with A; = I asin
ExampldB, are shown. In (b), cost functions like those inr&@[9 are shown.

Fig. [2.3(b) for a visualization of the corresponding costdtions. Observe that
%ZéV:lKg - K; <= N > 8, from which, according to Theorelnh 2, we have:
0

. N+5
K; = N Idxd,

d() = d3)>

wheneverV > 8. Thus, forV > 8, it holds that

PN+ <aqal>_ "

alasaot 2y

i.e.,there is no margimand, in this situation, the result of Theoréin 1 is recovered.
*

Remark 4 (the role of dimensior). By its definition(Z.4), q; has a finite value if
Zévle ¢ is “sufficiently large” with respect tds;. This is a technical fact with an
0+i

intuitive interpretation. Consider the regression prabl®f Examplé4. We have
already observed thak(; has always rank 1: hence, the paraboloid associated
with thei-th scenario is flat with respect tb— 1 orthogonal directions, and it does
not influence the solution* with respect to these directions. Thus, in this case, a
necessary condition for the matrix inequali; < %Z%JQ to be true, and for

q; to be significant, is that we have more thahabservations, so th@g 1Kg may

span all the directions. However, thisnst a general fact. Indeed, every time that
K; is nonsingular, each scenario brings information on evergalion at the same
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time: in Examplek]8 arid 9 above, we have seen that for éVerys the condition
K; < %ZLK@ holds true independently @f Hence, in general, the minimum
0+

N such that the considered statistics are significdoes not depend directly ah
but rather it depends on the problem structure and on the arhofiinformation
brought by each scenario.

2.2.3 Distribution-free results and conservatism

The statisticsy(y), - - -, q(), defined in[(2.4), can be computed without using any
knowledge aboulA. Hence, in the light of the distribution-free result of The-
orem[2, a decision-maker that is looking for a statistic vehowan coverage is
guaranteed against all possible probability measBiresan always rely om;) .
However, an expected drawback of distribution-free ressltonservatism, that is
to say, given a problem aralfixedP», there may exist a statistic “better” than
q(;)- Formally,c is better tharg ;) if c satisfies the conditions

1

PX"Ha<e@)) > (.6)
and
(DY) < q; holds for every dat®™ (2.7)
and
PX T {c(DV) < qg)} > 0. (2.8)

Informally, we say thagy; is significantlyconservative if we actually have
PAFHe(DY) < qq)} >0,

rather than simply[(2]18) - the symbat (>>) stands for “significantly less (more)
than". Otherwise, we can consider the conservatism to betiga#ly negligible.
As a starting point in order to study to what extejpf, may be conservative, let us
first consider the statistiq;). The following Theoreml3, proved in Sectibn 214.2,
holds under broad assumptions about the distribution ofi#ha. In particular, we
assume that the squared residuals do not accumulate atrtieevsdue, and this,
in view of TheoreniB, entails that the mean coveragqgfis alwaysno greater

than %7, independently oP ».

Theorem 3. For anyPA such that
PN {q # qr andq # qp foreveryl, ¢ € {1,... N}, £ £ 0} =1,

it holds that

i .
PXJrl{qSQ(i)} < N——i-l’ 1=1,...,N.
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The fact that the mean coveragewf) cannotbe greater tha% entails that,
for any specificP, a statisticc that satisfies:(D") < q(; for all DYV cannot sat-

isfy the conditionP} **{q < c¢(DV)} > ¥4 and, at the same time, the condition

IP’X“{c(DN) < qg)} > 0. Hence, ifq; is always close tey;), q(; cannot be
significantly conservative. On the other hand, note thaptkeence of a (possibly
large) margirg ;) —q(;) > 0is notby itself a symptom of conservatism. Indeed, the
intuition, corroborated by cases like Exanmiple 7, tells as$, teven when a statistic

is constructed based on the knowledge of the speéKica strictly positive margin
(DY) — q(;) is usuallynecessaryo guarante@®) ™' {q < ¢(DV)} > ;. The
conclusion is that the only source of conservatismdgy can be darger-than-
necessarynargin with respect tq ;. However, we have shown that in many cases
the marging ;) — q(;) is small and tends to zero at the increasingofsee Remark
[3. Thus, the result of Theorelm 2, though distribution-fieenany relevant cases
is not significantly conservative.

2.3 Numerical example

The problem here considered is an instance of the Webergmoptesented in
Exampldb. It is inspired by the problem example presentg@dh

2.3.1 An application to facility location

With reference to Examplel 5 above, we havelemand points (clients) whose
weights and locations are uncertain.

We face the problem based dvi = 15 scenarios, independently collected
during a data acquisition campaign. In F[g.12.4 the locatiohthe8 clients in
each of thel5 scenarios are showed. The corresponding weights are irstable
[2.1. The least squares solution turns out tacbe= (0.6208,0.5967). The values
of the statisticsy;), i = 1,..., N, having distribution—freeNLH—mean coverages,
are then computed. Fig.2.5 compares the valueg9f. . . , () with those of the
ordered empirical least squares residugls, . . ., q(y). The margingy;) — q;
turn out to be small.

2.3.2 Monte-Carlo tests

Usually, in real applications the distribution of the unaérty, Pa, is unknown.
However, thel5 scenarios used above have been randomly generated by simu-
lation according to a known distribution, for illustratigpurpose. The nominal
values of the uncertain locations and weights are repontd@dble 2.2. We know

that locations have been generated independently from @ighssian symmetric
distributions centered in the nominal values, with staddkaviation0.11. Weights

in each scenario have been generated according to a mialte/&aussian distri-
bution (truncated to positive values) such that each weighta standard deviation
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Figure 2.4. The clients’ locations ifR? are shown for each of th observed scenarios. In
the representation of the scena#i6, the identities of th& clients are indicated explicitly.
Elsewhere they are omitted for ease of reading.

equal to half its nominal value, while the correlation cardfint between any two
weights isp = 0.1.

Since Theorernl2 holds true for every possiBlg all the results and consider-
ations in Sectiofi 2.3/ 1 hold even in the absence of infoonadbout the real dis-
tribution. However, since we know the underlying data-gatieg mechanism, we
can study the coverage properties of the cost threslaglgs. . . , q ) in the light
of this knowledge. For example, a Monte-Carlo test basetl/oa 2-10° trials al-
lows us to estimate with an accuracy0of02 the mean coverages qfy), - - -, ()
and ofqy), ..., q(n) (with a confidence greater than— 10~°). We obtain that
the mean coverage of ant statistjg, exceedsﬁ, see Fig[2]7, so that a margin
is necessaryo guarantee a mean coverage of at I%s%.

Moreover, we can estimate the whole coverage distributfangiven statistic
q(;)- For M = 1000 times, we generat®/ = 15 scenarios and compute the cov-
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client: 1 2 3 4 5 6 7 8

scen. #1: || 14.57| 1.58| 1.72| 1.15| 2.10| 8.08 | 15.66| 35.24
#2: 10.99| 0.56| 0.80| 1.63| 0.29| 5.32 | 17.17| 29.39
#3: 15.73| 2.42| 1.87| 0.85| 1.17| 15.85| 11.62| 26.37
#4: 10.04| 0.98| 1.25| 1.21| 0.79| 10.12| 9.06 | 27.67
#5: 447 | 0.70| 1.10| 156 | 1.57| 3.09 | 13.67| 24.59
#6: 5,03 |1 0.72| 0.92| 0.72| 1.90| 6.00 | 12.16| 25.30
#7: 10.92| 1.25| 0.59| 0.14| 0.88| 9.60 | 9.74 | 26.61
#8: 735 0.71| 1.56| 0.88| 1.30| 12.94| 23.61| 37.20
#9: 6.77 | 1.17| 1.79| 1.06| 0.37| 5.86 | 14.66| 6.45
#10:| 7.35 | 1.07|097| 1.51| 1.36| 11.46| 9.48 | 13.09
#11:|| 6.73 | 1.10| 1.26| 0.66| 0.03| 7.35 | 6.97 | 27.58
#12:]| 6.99 | 0.55|1.29|0.69| 1.01| 9.60 | 6.82 | 22.25
#13:]] 11.66| 1.46| 0.96| 1.42| 0.86| 4.82 | 14.14| 6.03
#14:]| 13.48| 1.08| 1.32| 1.39| 0.23| 856 | 6.27 | 34.01
#15:| 8.97 | 0.69| 1.42|1.67| 1.34| 8.39 | 11.00| 1.44

Table 2.1. The table reports the weights associated with each of tients, for each of
the 15 observed scenarios.

cient: || 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
location:[[ (0.0,0.0)] (0.0,0.2)[ (0.0,0.4)[ (0.0,0.6) (0.0,0.8)] (0.0,1.0)[ (1.0,0.0)] (1.0,1.0)
weight: 10 1 1 1 1 10 10 20

Table 2.2.The table shows the nominal values of the locations and viitihes clients.
These numerical values are taken from|[60] (however, nakith[60] only the weights
are stochastic, while the locations are considered to métistic).
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Figure 2.5. The figure shows a comparison between the valugggfandq;, for each
i=1,...,N (iisin abscissa). We know that eagfy, has mean coverage guaranteed to
be no less thag\[i—l. For examplegq(14) has distribution-freé%-mean coverage. With the
present datag.4) is practically indistinguishable fromy4) ~ 40.

erage ofq(y4), i.e. of theg-mean coverage statistic. The histogram obtained from
the M = 1000 trials is shown in Fig[ 2.6(a). We perform the same Montel€ar
test with N = 31 and build the histogram of the coverage of gwenean coverage
statistic, which, in this case, i§,s), see Fig.[ 2.6(®). Finally, we compute the
histogram withN = 63 and the correspondiné—mean coverage statistic, which
is q 56, See Fig[ 2.6(¢). We notice that the dispersion of the cgeedistribution
decreases sensibly for increasiiNg

2.4 Proofs

2.4.1 Proof of Theoreni2

We prove below a Theoren 4 which is slightly stronger thanofée[2, and show
that Theorem 2 follows from Theorelmh 4. Throughout, we usentitation

N
Z Ky for Z Ky
(=1
and

N
ZK@ for ZK@.
122 (=1

)£

We start with a Lemma.
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Figure 2.6. Histograms of the coverage @f,4) whenN = 15, (a); ofq(2s) whenN = 31,
(b); of q(s6y when N = 63, (c). In all the three cases, the statistics considered have
distribution—free%—mean coverage.
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Figure 2.7. The mean coverages qf;) andq;), i = 1, ..., 15 are here compared.

Lemma 1. Assume thaE#iKg = 0. For any~y > 0, the following equivalences

hold:
-1

Kz [ Y K| K<yl = K <4 K, (2.9)
044 01
and
1
K;3 > K, K2 <yl < K, < vy Ky (2.10)
(£ L
*

Proof. Fory = 0 the result is trivial. Suppose > 0. We prove [(2.D);[(2.10)
can be proved similarly. Suppose first thét = 0. Multiplying the two sides of

-1
the inequalityKi% (Z#iKZ) KZ-% < ~I on the left and on the right bg(f%,

-1
the equivalent inequalit;(Z#iKg) < yK; ! follows. For positive definite

matricesA and B, A < B is equivalent toB~! < A~! (see e.g.[[58], Section
7.7), so that the last inequality can be reversed(to< ’72(7&in1 which is the
inequality on the right-hand side ¢f(2.9).

-1
Suppose now thai(; > 0. From Kﬁ(ZZ#Kg) Kﬁ < ~I it follows that

(K; + eI)% <Z€¢ZK£) 1(KZ- + eI)% =< ~I for somee > 0 small enough. Since
K; + el = 0, from the first part of the proof we obtaiR; + e/ < VZZ#KE,
which impliesK; < v, ;K. Conversely, start frond(; < >, ., K,. Then,
K; < ">, K, for somey’ < ~ close enough toy, and furtherk; + el <
fy’zg#Kg for anye > 0 small enough. Sinc&; + eI = 0, from the first part of
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-1
the proof we obtaif K; + d)% (Z#iKZ) (K; + e[)% =< 'y'[H Lettinge — 0
—1
givesKi% <Z£¢ZK4> K2 < ~'I < ~I, that is the left-hand side df(2.9). O
Whenevery_, K, - 0, let

-1

1 1
Vi = Amax | K;2 ZKe K;z |,

04i
-1
Wi=Ki+@+2mK [ > K| K. (2.11)
£
Define
(I* — vi)Tf(i(x* — ’UZ') + h;
- _ if K, = 0andy; < —
q; ‘== with K; .= W1+Wz(2ZK5_W) 1W ZZ#Z s Vi < \/_
+00 otherwise
(2.12)

Note thatk; in (Z.12) is well-defined, that is, the inverse in the defamitof K; ex-

-1
ists. To show this, remember thatis the maximum eigenvalue df; 2 <Z£#K4) Kz,

so that .

K2 ZKe Kz <yl (2.13)
O£
and hence
-1
Wi =Ki+ A+ 20K [ K2 | YK | Ki# | K2
0

2K+ (44 27)7% K
= (1 +4v; + 297 K;. (2.14)

Applying Lemmdl tol(Z.13) give&; < ;> K¢, fromwhichK; < 11'7 S K.
Substituting in the previous formula yields

1
Wi < (1445 +29)7 jr <5< 2 Ky, (2.15)

and the matrix that is inverted ih(2]12) is therefore pusitiefinite.

“Note that(K; + €I)* (Z#ZKZ) (K; + el)% =< +'I for a givene > 0 is not suffi-

cient to conclude thak’? (ZZ;&Z-Kg) K? <+'I. Indeed XAX, A > 0, X > 0, is not
monotonic inX in general.
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Theorem 4. For every probability measur® A, with the notation above it holds
that .

(3
N+1’

PX*Ya <@} > i=1,...,N.

*

Before proving the theorem, we show that Theokém 2 followsfrheoreni 4. To
prove this, it is enough to show that < q;. Whenq; = +o0o, thisis trivially true,
so we consider the case wh@nis finite, which holds ifK; < %Z#ZKZ. In view
of Lemmall, conditionk; < %z#ik’g implies thaty; < &. We show that, for
v < 1, K; = K; from whichg; < q;.

Due to thaty; < g, (Z12) givesV; < 2K;, so that

2 K- W; =2 K,—2K; =2> K,.

(£
Thus,
-1
K =W, + W, (22 K- Wi)qu <Wi+ W |2 K| Wi

(£
-1

— [substitute[[Z111) fofV; and letd = K2 > K, K;2]
O£
1944y 2 253 | .2
= K; + K;? 5 D+ (4 + 279;)P% +2(2 +7)°®° | K;2
= [sinced < ~;I]

4.
<1+ K;? <9+2 i

@ + (44 2v)n® +2(2 + %)2%2¢> K;?

-1
=K+ (45467 + 1077 + 89 + K [ > Ko | K;
0£i

. 1
< [since4.5 4 6v; + 1077 4 83 + 29 < 6for y; < R
=< K;.

Proof of Theorem[4
To ease the notation, let

Qi(z) :==(x —v)) T K;(x — v;) + hy = || Asz — b;||%, and
Q(z) :==(x —v)TK(x —v) + h = ||Az — b||.
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With these positions,

N
rt = argn}rinz Qi(z), a; = Qi(z"), g = Q(z").
i=1

Itis also convenient to introduce the minimizer of the lesgtares cost augmented
with Q(x), namely,

N
7= arg mxin {Z Qi(x) + Q(w)} )
i=1

Finally, denote

N
#1 .= argmin ZQe(fﬂ) +Q(x) p,i=1,...,N.
7
The following random variablesa andmyi, ..., my, allow us to establish a rank-
ing amongQ(z), Q1 (), ..., Qn(z). Define:

nw{mm+mwwn@1nz&>o 2.16)

00 otherwise,

m; 1= {Qi(j["]) + [Qi(j[i]) B Ql(i)] if Zé?ﬁi.KZ Rl (2.17)
00 otherwise,

fori=1,...,N.
Lemma 2. For every probability measur@x, with the notation above it holds that

7

Pngl{m S m(l)} Z
*

Proof. The random variablesx andm;, i = 1,..., N, are constructed fror@(x)
andQ;(x),i = 1,..., N, and each of them depends on all Réx) andQ;(x),

i =1,...,N, directly and througt, zl/, andz*. To indicate this, more explic-
itly write m = M (Q(z), Q1(z),...,Qn(x)) andm; = M, (Q(z), Q1(z), ...,
Qn(z)),i=1,...,N. On the other hand, an inspection of the definitions (2.16)

and [2.17) reveals that each of tzNg; (Q(z), Q1(z),...,Qn(2)),i=1,..., N,
is but the functionM applied to a permutation of th@(z), Q1 (z), ..., Qn(z):

m; = M(m;(Q(z), Qi(z),...,Qn(x))), for suitable permutations;,

i=1,...,N.Owing to thatQ(z), Q:(x),...,Qn(x) are independent and iden-
tically distributed, it follows that

IP’XJrl{m <mg)} = Pgﬂ{mg <ordg [m,my,...,my_y,mgyq,. .., myl},
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whereord(i) is the:-th order statistic of the listed elements. Hence,

1
“ N+l (Pgﬂ{m <m}

N
+ ZPXH{mg < ord; [m,my,...,my_1,mpq,... ,mN]}>
/=1

= [1 {-} = indicator function

1
= N——|—1 (EAN+1 []1 {m < m(z)}]

N

+ ZEAN+1 []1 {mg < ord(i) [m, mip,...,mMy_1,My4q,... ,mN]}]>
(=1

1
= N+ 1EAN+1 []l {m < m(i)}

N
+ Z 1 {mf < Ord(i) [ma my,...,My_1,Myg4q,. .. 7mN]}]

=1
1
> 7
T N+1
where the last inequality holds because at leasinong them and my, ¢ =
1,..., N, are in one of the first positions (they can be more thamwhen some
assume the same value). O
Now, fori =1,..., N, define
vi:= sup Q(z")
K,v,h
subject toom < mg;).
(2.18)
Note that in the definition of;, sup is taken with respect toK, v, h), so thaty; is
a function of(Ky,v1, hy), ..., (Kn,vn, hy). If we prove that
dgi) > Vi, (2.19)

then

PNt Ha < dpt =PA Q") < qg)}
> PNTH{Q(e*) < ui}
> P H{m < m}
7

> )
T N+1
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where the last inequality follows from Lemrh 2, and henceofée4 is proved.
Thus, in what follows, we concentrate on proviag (2.19).

Let,for¢=1,...,N,
fre == sup Q(z”)
K,u,h
subject toom < my.
(2.20)

We showthap(i) >v,i=1...,N.

Assume for simplicity thatup in (2.18) is actually anax (if not, the proof follows
by a limiting argument), and IgtK*, v*, h*) be the maximizer. AtK,v,h) =
(K*,v*,h*), we havem < m;, which entails tha(K*,v*, h*) is feasible for
at leastN — i + 1 values of/ in (2.20). Henceyu, > Q*(z*) = v; for at least
N — i+ 1 values ofl. Thus,u) > v;. Sincepg;) > v, it is enough, in order
to prove [(2.1D), to show tha;) > ;). The remainder of the proof amounts to
showing thay; > y;, i = 1,..., N, which plainly entailsy ;) > ) > v

If 3", Ko F 0ory; > % thenq; = +oo andq; > ; is trivially verified
(seel(2.1R)). Hence, we work under the condition

1
ZKg >~ 0andy; < —.
£ V2

By substituting in[(2.20) the expressions (2.16) dnd (2f47jm andm;, we have

pi = sup Q(z")
K,v,h

subject t0:Q(z*) < Q(&) — Q(z*) + 2Q;(21") — Qi(2),
i.e. u; is computed as the supremum@fz*) over the values ofS, v, h such that

Q(z*) is less than or equal to the bounding function in the rightehside of the
inequality. This entails that

pe< swp {QE) - Qe +2Qi6E ") - @)}, (221

K,u,h

where the right-hand side is an unconstrained supremumgmnolwhich can be
more easily handled thah (2]20). We need now to write explitie dependence
of the right-hand side of (2.21) on the optimization varésdk’, v, h. Note that:

i (ZKg)_lngw,
= (ZKHK)* (ZK@U@—FKU),

4l — (Z K+ K) ) (ZKM + Kv) ,

LFi )
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so that

By letting

w = w(K,v) = <Z K+ K)fl <Z Koo + KU) —u, (2.22)
w; = w;(K,v) := <ZK£+K>71<ZK£W+KU) — v, (2.23)

and by noting that
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and that

—1
(ZKZ + K) (ZKeW + Kv) — v; = [same calculations as before

LFi )
—1
= ([ + (ZKz + K) K) w,
04

Q(z*), Qi(21), Q(z) andQ; () can be rewritten as:

Q") = w” (1 n (Z Kg>1K>TK (I n (Z K4>1K>w th,

-1 T ]
Qi =wl [T+ |Y K+ K| K| K|I+(|D) K+K| K |w+h,
L )
Q(d) =w'Kw+h, Qi2)=uw]Kjw;+h;.

Substituting in[(2.211) and noting that by taking the diffeze betweerQ() and
Q(z*) the dependence dnis lost, we have that

pi <sup {wT (K— <I+ (ZKg)1K>TK<I+ (ZKg>1K>>w

1 T -1
+w! |2 (I + (ZKe + K) K) K; (I + (Z}Q + K) K)
044 044

In taking thesup in (2.24), we need to recall that = w( K, v) andw; = w; (K, v),
see [(2.2P) and (Z.23). On the other hamd, (2.22) defines etibijebetween the
pairs(K,v) and the pair§ K, w), since

w = (ZKHlK)l(ZKMJFKU)—U |
v = <ZK4)7 3 Koo - <I+ (Zmy K>w.

Therefore, the supremum with respect 6, v) in (2.24) can be replaced by the
supremum with respect td<, w) as long asv; is written as a function of K, w)
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by substituting in[(2.23) the expression farWe have

w; = <ZKZ+K>_1 (Zng—FK
: [(Z}Q)lZKM - <I+ (ZKg>1K>w]> —u,
_ (Z Ko+ K>_1 (I + K(Z K4>_1> S Ko
~ <ZK5+K>_1<K+K(ZKZ)_1K>w o
(k) (S ) (S 0) Y s
_ (ZKHK)_l(ZKﬁK) (ZK5>_1KU) — v
_ <Z KE)AZ Kovp —v; — <Z Kg)fle
— o —uy— <Z Kg) ' Kw.

By letting

V(K):=2 (I + (ZKZ + K) K) K, (I + (ZKz + K) K) ~K;,
06 04

(2.25)
(2.23) can be rewritten as (recall thdtand K; are symmetric)

pa Ssup {wT <K - <K+ 2K(Z K4)71K+ K(Z KZ)AK(Z Kg)1K>>w
o (o (D) ) v <x*_vi_(zm)lm)+hi}
—sup{ (ZKE) 1( (K)—2ZK¢—K)<ZK¢)71Kw

—2(z" —v;) (ZKK) Kw+ (z* —U)TV(K)(x*—vi)+hl-}.
Finally, letting
A(K) =V(K) -2) K, K, (2.26)
B(K) :=— 2(95 — ) V(K), (2.27)

=(z* — v )TV( )(z* — vi)T + h;, (2.28)



44 The coverage probabilities of the least squares residusal

we have that

e {wTK<Z Ki) AU)(XK) Ko+ BEO(XK) Kut C(K>} |
For everyK > 0, let (2.29)

M(K) = {y eRY:y = (Z K4>71Kw,w c ]Rd} :

that is, M (K) is the image set af through(3" K;) ' K. Clearly, for every fixed
K,

sup {wTK (Z K4>_1A(K) <Z K4>_1Kw + B(K) (Z K4>_1Kw + C(K)}

= sup {yTA(K)y + B(K)y + C(K)}
yeEM(K)

< sup {y"A(K)y + B(K)y + C(K)},

where the last inequality is an equality wh&h- 0 since in this caseM (K) =
R?. Hence, by continuity i > 0 of thesup argument, we have

sup {wTK (Z K4>71A(K) <Z Kg)fle + B(K) (Z Kg)fle + C(K)}

K,w
1

— sup {MK(Z Kg) _1A(K)<Z Kg)_lKuH—B(K)(Z Kg)_ Kuw

K>0,w

+ C(K)}

= sup {y"A(K)y + B(K)y + C(K)}

= sup {y" A(K)y + B(K)y + C(K)} . (2.30)
Y

For every fixedK, y" A(K)y + B(K)y + C(K) admits a maximizer, Saymax,
becaused(K) < 0, as stated by the following Lemrha 3.

Lemma 3. If 32, ;K = 0andy; < 5, thenA(K) < 0, VK = 0.
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Proof. From [2.26) and (2.25) we have that

-1 T —1
AK) =21+ |Y K+K| K| K|I+|Y K+K| K|-K
L )
—QZKZ—K
-1 2

=2K;: [ I+ K2 Y K+ K| K| K?-K —2) KK

(£
-1 2
<2k [T+ K7 | Y K+ K| K7 | K? K —2) K.
£
(2.31)
Observe that
-1
I+E: (Y K+ K| K
(£
-1 -1
<[sinced Ko+ K=Y K= |> K+K| = [> Ki| ]
(#i #i (#i #i

-1

<1+ K2 |Y K| K

£
. . 1
< [by (2.13) and using the assumption that %]
< <1 n i)[
\/5 )
so that
-1 2
I+E: (Y K+ K| K3 <<1+ 1>21
7 o l 7 \/5 .

Substituting in[(2.311), we obtain

A(K) < 2<1+ %)21( ~-K;—2) K, :2((\/§+1)K2~ —ZKZ) <0,

-1
where the last inequality follows sineg < % impIiesKZ-% (Z#Z.Kg) Kﬁ =<
1

\/iI, from which, in view of LemmallK; < %Z#ZKE, entailing in turn that
(V2+1)K; <Y K. O
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Clearly,
1 _
Ymax = _§A(K) 1B(K)T7

yielding
sup {y"A(K)y + B(K)y + C(K)}
— ma {47 A(K)y + BUK)y + C(K)}
. _iB(K)A(K)’lB(K)T +C(K)

= [from (2.27)

= — (2" —v) V(E)AK) ' V(K) (2" — v;) + C(K)

= [from (2.28)

= (z* —v) (V(K) = V(K)A(K) 'V(K))(2* —v;) + hi. (2.32)

Finally, from (Z.29) and(Z.30) we conclude

i < sup (& — o) (V(K) = V(K)A(K) " 'V(K)) (" = v;) + by (2.33)

The final step amounts to showing that > 0
(z* —v)T (V(K) — V(K)AK)'V(K)) (2" — ) + hi < &,
thus concluding the proof. This is done in view of the follogsilemma.

Lemma 4. Assume tha} _,,, K, > 0 and-y; < % LetWW be a symmetric matrix,
W > 0, such that

1. W< 22 Ky,
2. V(K) = W,VK = 0.

It holds that
V(E) - V(E)AK)W(K) = W - W(W -2y Kg>_1I/V, VK > 0.

*

Proof. Suppose first<; = 0. Then,V(K) > 0 (seel(2.2b)), and, fro (K) <
W, we get (see e.g. [58], Section 7.7)

V(K)™' =W
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from which it follows that
V(K)™ — <22 Ko+ K) o
T <QZ K, + K)_l
=2 Ko+ K =2 K- 0= (221@ +K)71 < (221(@)71]
1
=W (2K

where the latter matrix is positive definite becaGse W < 23" K,. This entails
that

1\ L 1\ -1
<V(K)—1 _ (22 Ky + K> > < <W‘1 — <22 K5> > ,
which, by applying the Matrix Inversion Lemma (séel[61] e

V(K)—V(K) <V(K) —2) K- K) VK < W—W(W —2) Kg>_1W,

which is the Lemma statement in view bf (2.26).

WhenK; = 0, sinceV (K) < W < 2> Ky, it holds that
0<V(K)+el < W+EI—<QZK4,

for anye > 0 small enough. Repeating the argument above Witk') + ¢/ and
W + €l in place ofV(K) andV yields

V(K) + el — (V(K) + Ie) (V(K) +el —23 Ko - K) (V(K) + €I

-1
jW+eI—(W+eI)<W+e[—2ZKg) (W + €I,
and the sought result is obtained letting- 0. O

Consider now

-1
Wi=Ki+(@+2uK | Y K| K,
#i
as defined in[(2.11). By (2.15) it holds tHaf, < 2> K,. We now prove that
V(K) = W;, VK = 0, (2.34)

so that, by Lemm@l4, it follows that

V) = VIK)AGK) V() < W, = Wi (Wi = 230 K) W3, V=0,
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which, together with[(2.33), yields
-1
i < (2 — )" <Wz - Wi(VVi - 22 Ké) Wz> (" —v;) +h; = q;. (2.35)

To prove [2.34), rewritd’(K') defined in[(2.2b) as

1 2

-1 _
1 1 1
V(K) = Ki +4K; (ZKz + K) K; +2K? (Kg (ZKZ n K) Kzg) K2,

NI

L )

Since
—1 -1

K| Y K+ K| K=K K| K,
el 0Fi

and since

-1 2 -1

1 1
KD Ki+K| KZ| 2wKZ|[> K| K2,
04 04

-1 -1

1
K2\ Y Ko+ K| KPSKP|Y K| K7 <[y @I3) =<l
0£i 0£i

=
SIS

because

N

=
=

it holds that

LFi )

—1 —1
V(K) = K; + 4K; (ZKE) Ki + 2viK; (ZKE) K;

= Wi

2.4.2 Proof of Theoren B

To ease the notation, let
Qi(z) = (x —v) Ki(w —vi) + hi = || 4w = bi||*, i =1,...,N,
and, by symmetry reasons,

Qnii(z) = (z — )T K(z —v) + h = || Az — b|*.
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Moreover, define
- N+1
#l = arg min Z Qu(x),i=1,...,N+ 1. (2.36)
Rl
#i
Observe that, with this notatiott/Nt1) = 2*. Finally, for everyk = 1,..., N +1,
let

q" = Qu(2M)

and

(&[] ifi<k—1
[’“]::{Q’(x ) sk i=1,...,N.

@ Qi1 (&%) otherwise. ’

N+1]

Note thatq¥*l = ¢ and q[ = q;. As usual,qgl;)] denotes the-th order

statistic ofq[1 ], qgﬂ, . ,q[ ]
Fix a value fori. We have that

PR g < qp}
_ g <

N
< qu)+1]}
- [by eXChangeabi”ty OtKl’ V1, hl)’ LR (KN, UN, hN)a (K, v, h)]
=P {q" < qglj)]}, Vk=1,...,N+1

_ - N+1y (k]
—NHkZlPA {a" < af})}

=1 {-} indicator function

N+1 "
N+1 ZEAN“ [ { b < q(z‘)H
) N+1 .
= o Bav+ [Z 1 {qm < qH}] , (2.37)
=1
It is a fact that
N+1
Z { K] < qgk)]} < i almost surely (2.38)
k=1

so thaty " r ' 1 {q[’ﬂ < qE’g} < i. This latter, plugged in{2.37) gives the the-
orem statement. To conclude the proof, we now show that(%h88ls. Fix

(Klyvlyhl)a SRR (KNavNahN)? (K,’l},h) such that

Kl 4 q andq £ qe,], foreveryl, ¢! e {1,... N}, L £/, (2.39)
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for everyk € {1,...,N + 1}. Note that in view of the proposition assump-
tion, (2.39) holds true with probability by exchangeability of K1, v1, k1), ...,

(K, vy, hy), (K, v,h). We show thas" V1 1 {q[’ﬂ < qE’j}} < 4 holds true
for the fixed(K1,v1,h1),...,(Kn,vN, hy), (K, v,h), by exhibiting indexeg:,
ko, ..., knt1—; such that

dM >ql, j=1. N+1-i

Define
N
Sp=>d, k=1, N+1,
=1
and let theky, ..., kni1—; be the indexes such that
Skj:S(j), j=1,....N+1—u.
For the purpose of contradiction, assume that there existsja=1,... , N +1 — 4,
such that

(k5]
Ol
Equality can be excluded in view 6f (2139), that is, it musitho

q"l <q

. k;
q[kﬂ < qu)f]
— (k] k5]
Then, by definition of order statlstl(q%lj) e ,q(]{[), we have
qhl < qgi)’] < qufgl) << qEJ\’,]) (2.40)

Hence, foranyr € {i,i+1,..., N},

Sk, = St — ) + i)
> [by (2.40)

> Skj — quj_g] + q[kﬂ

= [lettingp; € {1,..., N + 1} \ {k;} be the index such th&Q,,. (zlkal) = q%}]
= Sk, — Q. (1) + Qy (1)

N—+1
= [sinceSy, = Y _ Qu(aM) — Qu, (&)
=1
N+1
= Z Q&M — Q,. (2Rl
=1

N+1
> min { > Qi) - Q, <x>}
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= [by (2.36)
N—+1
- Z QZ@[M) -Q,, (@[M)
=1
= ‘Sva7
that is, Sk, is greater tharV + 1 — i values among, ..., Sx. This contradicts
the fact thats*kj = S(j), withj <N +1—4.
O
2.4.3 Asymptotic result
Here we show thad; N———> q;), under suitable assumptions.
—00
Theorem 5 (asymptotic convergence Assume thatK;, v;, h;), i = 1,2,..., N,

are random elements independently and identically disteét according tdPx,
such that

pr = Ea[K1] = =Ea[KN] = 0, (2.41)
do, x > 0suchthatyy > x Pa{||K;i|| > x} <e X, i=1,...,N, (2.42)

38,7 > 0suchthat/y > 7 Pa{|vi|| >v} <e P, i=1,...,N. (2.43)

It holds thatq(;, —— q(;) almost surely, foi = 1,..., N.
N—oo «

Proof. Condition [2.42) guarantees that the strong law of largebmamn(see e.qg.
Theorem 3, 83, Chapter 1V in][3]) applies, so that

N
Ze:l Ky
N N—oo

pr almost surely (2.44)

Sinceug = 0, we have almost surely thgﬁ,\le Ky > 0 as well asZ{;V:lKg =0
0

for N large enough. Moreover, for any positive functigtV) and for N large
enough, we have also that

1 In N3 In N3
A{ 7o e z”>af<N>} A{;{%” ill>=3 }

In N3
< vpa {c > 22

3
7alnN
o
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and, since>_y_; ﬁ < 0, in view of the Borel-Cantelli Lemma (see e.g. Corol-
lary 2, 810, Chapter Il in[3]), we can conclude that:

if o N —0 thenL max || K;|| — 0 almost surely (2.45)
af(N) ’ f(N) =1, N '
Similarly, using [[2.4B) in place of (2.42), it can be provhdit
In N3 1
if — 0, then max__||v;|| — 0 almost surely (2.46)
Bf(N) f(N)i=1,..,N il

Taking f(IV) = N, by (2.44) and[{2.45), it holds almost surely that

L 10 Ky
—K, < - ==—,
N 7 N

for N large enough. Since

i=1,...,N,

N N
1 15N K, 1 1
SKi < o =ELE e K< D) K = K< 2Y K
N 7N et et

=1
0#i

we have almost surely thgt = (z* —v;)T K;(2* —v;) + hy, i = 1,..., N, for N
large enough, see (2.4). Hence, for eaehl, ..., N, the following bound holds:

|G — il = (2" — 0) T K(a* —vi) + hi — (2% = v) " Ki(2* — v5) + hy))|
= [(&* —v)" (Ki — K;) (2" — )|
—1

N
< [SinCGKZ‘ = K, +6K; ZK@ Kz]
(=1
04
1
N
<6z —ull| K || | D Ke [ K[|z — vl
=1
i+
1
. S Ky .
_ gl — il 1K #i [ K[| 2™ — il
= 1 1 N 1 T
N1 N1 Ni Ni

where the last term tends to zero almost surely in view o#(R .@.45%) and(2.46),
-1
and because* = (>0, Kg) S Ky ) converges almost surely. This
proves thaig; N———> q; almost surely and the theorem statement immediately
—00
follows. O
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2.5 Perspectives for future works

In this chapter we have studied the coverage propertiesatiftits, close to the
empirical costg(z*,6M)), ..., ¢(z*, 6(N)), that can be used to characterize a least
squares solution. We have limited ourselves to proviteancoverage properties,
while the distributions of the coverages has been studigdaoposteriori, through
Monte-Carlo experiments. The theoretical charactenmatf the statistics pre-
sented in this chapter as distribution-frée 3)-coverage statistics is still object
of research. For example, an immediate but weak result caiaéned by a di-
rect application of the Markov’s inequality (see e.g.1[4¥jelding the following
inequality

1| N+1—1
Neoltgn)>1 —el>1 - |- 7
PA{C(q(Z)) >1 6} >1 c |: N +1 :| )
entailing e.g. thatj v is a distribution-frege, 3)-coverage statistic iV > % -1,

i.e. IV scales linearly withe%. However, the dependence én’s a particularly nox-
ious fact, since it makes high confidence statements vergresige in terms of
number of scenarios. Hopefully, an in-depth studying oftilgher moments of
the coverage distribution may lead to better results. Agrofwossible way in the
quest for a bettefe, 5)-characterization is more radical and consists in modifyin
(as little as possible) the statistics themselves accgrirsome suitable scheme:
technically, the key point for this purpose is the probl€éni®? at the core of the
proof in Section Z.U4.

On the other hand, in the following Chaplér 3, we will showtthaomplete
characterization of the coverages of the empirical ot(ats 6™, ..., ¢(z*, 5(V)
is possible when a worst-case approach is followed.






Chapter 3

On the reliability of data-based
min-max decisions

In this and the following chapter, the data-basextst-caseapproach is studied for
general convex cost functions. The following Secfiod 3.ihtikductory. In Sec-
tion[3.2 we offer some background knowledge and state the reallts, followed
by a discussion. Sectidn 8.3 provides a numerical exampide Bectior 3.4 is
devoted to the proofs. SectibnB.5 suggests possible afiplis and developments
of the results here offered and provides a bridge to the riexqtter.

3.1 Introduction and problem position

We consider uncertain optimization problems where a datjsinodeled as the
selection of a variable belonging to a convex and closed setC R¢, has to be
made so as to minimize a cost functiéfx, ¢), convex inz, that also depends on
the uncertainty parametér Precisely,((z, ) is real, convex and continuous in
x, for each possiblé. The uncertaird is a random element that takes values in a
generic set\ according to a probability measuifg, .

The decisionz* is made by consideringy scenarios, i.e.N instances ob, say
61 5@ . M) independently generated accordingPto, and minimizing the
worst-case cost over these scenarios, that is, by solving:

i Oz, 6D). 3.1
e 0 10 ) &

The scenario solutiom* can be computed by rewriting (3.1) in epigraphic form as
EPIy : min c
ceR,zeXCRY

subject to:/(z,6@) <¢, i=1,...,N, (3.2)

and then by resorting to standard numerical solvers, [68¢ Bablé 3.1 for some
examples of min-max problems arising in various applieationtexts.

55
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Table 3.1. A few examples of min-max problems.

[ [ Interpretation off [ Interpretation ofc [ Interpretation o (z, &) [ References |
Linear regression theory Data point Coefficients of the regressior] Regression error 631641 65]
functions
Investment theory Asset return Proportion of the assets in 8 Investment loss [66l167]
portfolio
Control theory Disturbance realization | Controller parameters Output variance [68.13C]

As already discussed in Chapfér 1, a possible indicatoredjtality of the decision
z*is ¢* := max;—;,_n l(z*,5?), i.e. the worst cost among those carried by the
seen scenariosc*, however, is just ammpirical quantity and an assessment of
the risk that a new uncertainty instan€earries a cost(z*, §) greater thar* is
needed in order to gain information on the reliability0f. Quantitatively, this
entails to study the coverage @f, or, equivalently, the variabl® := Pa{d € A :
£(x*,0) > ¢*}, which is called theisk associated witle*. We prefer to focus on
the risk ofc*, instead of on its coverage, which is clearly equal te R (see the
RemarK2 on pade€ 6), because this is more in line with previtarature, which the
theory presented in this and the following chapter builds\&e recall thatR is a
random variable since it dependsohandc*, which in turn depend on the random
sampleDY = () ... §(V) A fundamental result in the theory of the scenario
approach to convex problems establishes that, irresgecfi? A, the probability
distribution function ofR is always equal to or bounded by a Beta probability
distribution with parameteré + 1 and N — d (recall thatd is the dimension of the
decision variable). Thus, we have that the worst-case«dsta distribution-free
coverage statistic in many cases, while in general we hatsttls a distribution-
free (¢, 5)-coverage statistic for any satisfying

e — 5

Due to the logarithmic dependence &f on 3, the statisticc* is very useful in
characterizinge* with very high confidence, even for relatively small (clearly,
this is true on condition that is not too large: in Chaptéid 4 we will deal with this
question).

N > 611<d+1n1>. (3.3)
€

Despite the sharp theoretical result offered by the thebh@ scenario ap-
proach above mentioned, it may be advisable to study otldégdtors besides".
In particular, we here consider the whole set of cdsis, 6()), ... ¢(z*, 6(V))
associated with the various scenari¥, 52, ..., §(N). In the following, these
costs, sorted from largest to smalleswill be indicated bycj,c3, ..., cy, see
Fig.[3.1. With this notation, it always holds thgt= c*.

As is clear from an intuitive point of view;},c3,. .., cy all together provide a
more sensible characterizationadfthan by using:* only, since they provide em-
pirical evidence on how/(z*, ) distributes with respect to the variability of
Assume for instance that the gap between the maximumdcashd the second
greatest cost and, similarly, other gaps between costa@ye. | Then, one expects
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optimization optimization
direction direction
AC C
1=C \\\\\\\\
///// 7
C*
c)
cs

(a) (b)

Figure 3.1. On the left, a pictorial representation of the optimizatwablem [3.2), where
each scenarié”) corresponds to a constraint of the fofa:, §) < ¢, here represented
with a shaded area. On the right, the costs’oére put in evidence.
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that a news carries a cost(z*, §) significantly smaller tham* with a high proba-
bility. On the contrary, when the valuééz*, 5()) concentrate all around, it is
apparent that(x*, §) will be almost always close tg*. A similar idea is followed
e.g. in [69], where empirical costs distribution are useadfiftancial decision op-
timization. In order to put such kind of reasoning on a solighmfitative ground,
the risk ?;, associated with the costs, i.e. the probability to observe an uncer-
tainty instance’ carrying a cost higher tharf, must be evaluated simultaneously
for k =1,..., N. However, the existing result applies to the sglend does not
provide any characterization of the risks associated wttlerocosts. We fill this
gap by studying théoint probability distributionof all the risksR1, R, ..., Ry.
Our main achievement is that, no matter what the probabitidasuréP is, the
joint probability distribution ofR ;1 1, Ri2, ..., Ry is equal to amrdered Dirich-

let distributionwhose parameters depend on the number of scenafriaad the
number of decision variablesonly. Based on this result, the distribution of the
variablesR,, ..., Ry can be tightly kept under control, and our conclusions can
be employed to support decisions in many real cases evemtt sizes ofV.

To sum up, two kinds of quantities are central in the chareetgon of the relia-
bility of z*:

ci Ry
cs RQ
2
and . )
cy Ry

i.e. the vectors of the costs and of the associated riskslevi@ costs are known
as soon as the optimal decision variableis computed, the corresponding risks
are hidden to the decision maker. Nevertheless, their isbability distribution

is known (as given by the theory here developed) so that$ke dan be kept under
control. In particular, since the ordered Dirichlet distttion is thin tailed, the risks
can be bounded with high confidence by dropping the tails efttobability dis-
tribution. This way, a complete characterization of théatslity of +* is obtained,
and important information about the effective distribatiof all the possible uncer-
tain cost(z*, §) is acquired.

In the next Sectioh 312, the main result about the fskf ¢* is recalled more
in depth, our achievements are formally stated and someargl@spects are dis-
cussed.

3.2 Main results

We first give the formal definition of the costs, . . ., ¢, and of their risks.
Definition 6 (costs) We define theostsof the optimal decision variable* as
¢; :==max {c € R: ¢ < {(z*,5V)) for achoice of indexesj among{1, ..., N}},
fork=1,...,N. *
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Clearly,c* =c¢} > ¢35 > --- > cj.

Definition 7. We denote witlR;, the risk of the (empirical) cosf; of the optimal
decisionz*, formally

Ry, ::]P’A{(SEA: E(x*,é) >CZ}, k=1,...,N.
*

Clearly,c; is a statistic of the dat®” = 51, ... §N), having coveragé(c}) =

1 — Ry, and eachR,, is a random variable that depends on the random sabple
throughz* andc;.

Our results are all given under the following assumption.

Assumption 1 (existence and uniquenesdjor every value ofN and for every
value of 6,63 ... §(N) the optimal solution t&EPly in [B.2) exists and is
unique.

*

This assumption can be relaxed, but we here prefer to maiitta avoid technical
complications.

We now show that the risk of* can be studied in the light of the theory of
the scenario approach for general constrained convexgmhl In particular, in
the following, we will reformulate in the present min-maxntext the main result
provided by that theory. For further details on the origimalult and others related,
the reader is referred to AppendiX A. First, we need to foatauin the present
context the definition ofupport scenari@nd offully-supportedoroblem.

Definition 8 (support scenario)For given scenarios™), 5 ... §(N) | the sce-
nario 6, r € {1,..., N}, is called a support scenario for the min-max problem
@) if its removal changes the solution 6Py in (3.2).

*

Loosely speaking, support scenarios are those corresmptwlthe uppermost cost
functions, preventing the solution from moving to any impng direction. The
number of support scenarios can be bounded a-priori. Indee@very value of
oM 5@ . M) the number of support scenarios for the min-max problef) (3.
is at mostd + 1 (see Proposition]2 in the AppendiX A). We say that the min-max
problem isfully-supportedf, for all N > d + 1, with probability one with respect
to the possible™®), 52, ... 60V it has exactlyl + 1 support scenarios.

Now, consider, for any given paiiz,c), z € R? andc € R, the function
defined as follows

V(z,c) :=Pa{d € A: l(z,0) > c}.

According to the scenario approach terminology, with rerfiee to problem (312),
V(z, c) is theviolation probability of the pairz = (z,¢). With this notation, the
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risk R of the worst empirical cost* corresponding to the optimal decisiafi is
given by
R=V(z* c"),

i.e. R is the violation of the optimal solution* = (z*,¢*) to the problem[(3]2).
The main result recalled in the AppendiX A (Theorem 12) dedth V (x*, c*)
and, in our context, boils down to the fact that, wheneverntiie-max problem
3.J) is fully-supported, the equality

d
N\ . A
PN{R<el=1- (1 —e)N 4
Strsg=1-3(7)ea-o 3.4
holds true, that is, the probability distribution functiohR is equal to a Beta with
parametergd + 1, N — d) independently o’ and of the specific problem con-
sidered. For non fully-supported problems, the result $ialsl a bound (Theorem
[13):

d
N\ . A
PN{R<e}>1-) (Z >a(1 — )N, (3.5)
i=0
In the rest of this chapter, we will show that, by a slight $alkzation of the
fully-supportedness assumption, a broader result thaf) t®lds, and the whole
joint probability distribution function of the risks associat@dh all the costs can
be exactly computed without relying on the knowledgéaf

Assumption 2(specialized fully-supportednesd)et consider the min-max prob-
lem@.J)for all N > d + 1. With probability one with respect to the possible data
sampleD”, it holds that:

i) it has exactlyd + 1 support scenarios;
i)y foreveryy € R, Pa{l(z*,0) =~} =0.
*

Point i) of Assumptior is the classic fully-supportedness assiomifsee As-
sumptiorB in Appendix’A) and, since, by definition, the supseenarios carry
the same cost*, it implies that the first/ + 1 costs are equal, i.ec] = ¢ =

= cj,, = c* (see Fig.[311). Sincej = ¢ = --- = ¢}, ,, the associ-
ated risksR1, Ry, ..., R4, are equal too. Point) instead is a non-degeneracy
condition (satisfied in many practical problems) asking tha possible values
of the cost function at*, conditionally on the dat®”, do not accumulate over
the same point. It is easy to show that, whénis satisfied, the remaining costs
Cii1>Chyos - - - Cy are all different from one another.
Before giving Theoren16, we recall that tikedered (N — d)-variate Dirichlet
distributionis the probability distribution having density function

N!

d
P(Vat1,Vdy2, .-, UN) = Jyd_}_l]]-{o Svgp1 Sygpe <o <oy <1
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wherel{-} denotes the indicator function, see e.g.|[51], page 182 clihmilative
distribution function of the orderedV — d)-variate Dirichlet distribution will be
denoted byCDF (7441, ... ,nn), i-€.

CDFg(Nda41,----nN) =

NI [Td+1 d Nd+2 N
W/ I/d_H/ / 1{0 < vgyy < -+ <vy < 1}duvy - - dvgodvgss.
- JO 0 0

(3.6)
See Section 3.2.3 for additional information about Dirthdistributions.

Theorem 6. Under Assumptiorid 1 afndl 2, the joint probability distrilatfunction
of Ryt1,..., Ry is as follows:

N
Pa{Ra+1 < €441, Rayo < €442,..., RN < en} = CDFy(eqt1, €442, - -, €N),
3.7)
so that
N
PA{R1 <e1,Ry <e€3,...,Rq11 < €qy1, Rayo < €4y2,..., Ry < en}

= CDFy(¢, €412, - - - €N),

wheree := min{ej, €. .., €401}

Proof. See Sectioh 3l4.

Theoreni b states that for the class of problems satisfyirgudptiond 11 anf]2,
the risksRy, ..., Ry are pivotal quantities, since their joint probability dilsti-
tion function is the same independently of the specific pwbht hand and, in
particular, independently of the probability measBre It is well known, see e.g.
[7Q], that the marginal distributions of an ordered Dirgthtlistribution are Beta
distributions. Hence, it can be inferred that the probghbdistribution function of
Ry is a Beta with paramete(é, N — k+ 1),k =d+1,...,N, thatis,

k—1 N
PN{R, <e}=1- i(1—eN Tt 3.8
Yme<g=1-3 (7)¢a-9 @8
Specializing[(3.B) fok: = d + 1 and recalling thafz;,, = R because,, = c,
we have that

d
N\ . _
Pifr s d =P <a =1- 3 (3 )ea-ov,
1
i=0
i.e. the result[(3]4) is recovered from Theolgm 6.
The class of problems satisfying Assumptibhs 1[dnd 2 is eeé¢mpty nor “patho-
logical”. Notable examples, like the following one, arisemin-max linear regres-
sion:

min(xh...,xd)eRd maxi=1,..,N |Yi — |:x1 + H(i)w2 + (9(i))2x3 +- (H(i))d_lxd} ‘ )
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whereN > d + 1, and the pointg6®,y®) = 6@ i = 1,... N, are sampled
from A = R? according to a probabilitf?x that admits a density, see [64]. As
is clear, however, specialized fully-supported problemssdnot cover the whole
realm of problems encountered in the practice of optimizati

Remarkably, Theorefd 6 is just a corollary of a more genegallt¢hat continues to
hold even when Assumptidnids dropped and the sole non-degeneracy condition
[2.ii is preserved.

Theorem 7. Under Assumptioris 1 afd:2, the joint probability distribution func-
tion of R4y 1,..., Ry is as follows:

PN{Ra+1 < €as1, Raro < €4r2, .-, Rv < en} = CDFg(€qy1, €dr2,- - - EN).-
(3.9)

*

Proof. See Section 3.4.1.

Although equation[(3]9) of Theoref 7 and equationl(3.7) ofdrem6 are for-
mally the same, the conveyed information is different beeawithout Assump-
tion[2, it is no longer true that* = c¢f = ¢5 = --- = ¢, ;, and [3.9) does not
determine the probability distribution of all the risks lunding the firstd. In fact,
under Assumptionis| 1 amd:2 only, the distribution ofRy, ..., Ry is intrinsically
problem-dependent.

Because of[(3]9), the marginal distribution Bf, ¥ = d + 1,..., N, is still a
Beta as in[(3.18). Under the assumptions of Thedrem 7, we dgrconclude that
c* > c§+1, so thatR < Rgy1, entailing that the probability distribution a@t is
dominated by that oR;. 1, that is

d

N\ . .

PN{R < e} > PN{Rgy1 < e} =1-— Z < ; )el(l — eVt
=0

Hence,
4 /N
PN{R<e} >1-— (1 —e)N
Yr<az1-3 (7)o

and the inequality[(3]5) for general (i.e. not necessauillyfsupported) problems
is recovered. Furthermore, our study has thus shown thaighehand side of
@B.8) is theexactprobability distribution of the risk associated with a ctistrer
thanc*. Moreover, by observing that necessarily

Ry <--- <Ry < Rgy,

because:] > ¢5 > --- > c§+1, we have thai?;,.; < e implies not onlyR < ¢,
but alsoR; < ¢, Vi < d, and the joint probability distribution function afll the
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risksRy,...,Rgqt1,- .., Ry including the firstd can be bounded as follows:
PX{R1 < e1,...,Ray1 < €ar1, Rayo < €ago, ..., Ry < en}
> [lete := min{eq, ea...,€441}]
2 PX{Rl Sga"'aRd-i-l SgaRd-i-Q S Ed—l—Q,"'aRN S GN}
=PX{Rat1 < € Ray2 < €ay2,-.., By < en}
= [by using [33)
= CDFy(€, €449, .-, €N). (3.10)

This conclusion is formally stated in the following coraita

Corollary 1. Under Assumption] 1 arid 2, the joint probability distribution func-

tion of the risksR;, ..., Ry is lower bounded b¢'DF (¢, €412, ..., €n), i.€.
PX{Ry < é1,...,Ras1 < €441, Raso < €ay2,..., Ry < en}
2 CDFd(g, €d+27---75N)7 (311)

wheree := min{ej, ..., €401}
*

Clearly, bound[(3.11) is tight (i.e. cannot be improved withintroducing addi-
tional assumptions) since it holds with equality for probsesatisfying also As-
sumptior 2.

3.2.1 Relaxing the non-degeneracy assumption

The non-degeneracy Assumptidriids strictly required for the equalities in The-
oremd b andl7 to hold true. Indeed, if for example the prolmbiieasureP is
concentrated on a unique scenafjdhe costs, c3, . .., ch collapse to the same
valuec* = ¢ = ¢4 = --- = ¢} having zero risk an®a{Rj+1 < €gq41, Rar2 <
€d+2,---, RNy < enx} = 1. In this case, though (3.7) and_(B.9) are violated, the
distribution of the risksR;11, R4+, ..., Ry is still trivially dominated by the or-
dered Dirichlet distribution. Actually, it is a general fabat if the non-degeneracy
assumption is dropped, then the cumulative probabilitirifligion function of the
risks remains lower bounded by the ordered Dirichlet cutivdalistribution func-
tion, as formally stated in the next theorem.

Theorem 8. Under Assumptiohl1 only, the joint probability distributiéunction
of Ryi1,..., Ry is lower bounded b DF (€411, ..., €en), i.€.

Pg{RdJrl S €d+1, Rd+2 S €d+2y - - - ,RN S GN} 2 CDFd(6d+17 €d+2, - - - ,GN).
(3.12)

*
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Proof. See Sectioh 3.4.3.
Mimicking (3.10), the following corollary is easily obtagd.

Corollary 2. Under Assumptiohl1 only, the joint probability distributiéunction
of Ry,..., Ry is lower bounded as follows

N
PA{Rl S €1,... 7Rd+1 S 6d+1,...,RN S EN} Z CDFd(g, 6d+2,... ,EN),

wheree := min{ej, ..., €401}

3.2.2 Practical use of the theoretical results

The theory developed above can be applied in various wayssfdllowing two are
especially useful in contexts where the uncertainty irctan™), 5 .. . §(N)
come as observations obtained from a data acquisition iexget.

Post-experiment analysis

The decision-maker has collectéd scenarioss(!), ..., 5(¥) and has solved the
min-max problem[(3]1) obtaining* and the corresponding cosis £ =1,..., N.

He fixes a confidence parameter (0, 1) to a very small value, e.gi = 1075 or

B = 1077, and determinesy 1, ..., ey such thatCDF j(es.1,. .., exn) iS bigger
than or equal td — 3. By appealing to Corollary]2, the decision-maker can claim
with high confidencd — S that, simultaneously fok = 1,..., N, the risk Ry of
each cost; is no larger than the respectivg (takinge;, = €441 whenk < d+1).

Experiment design

The decision-maker fixes a very smallc (0,1), e.g. 3 = 10 or g = 1077,
Then he fixes the desired upper bounds on the risks of thenfigbsts, that is a
vector ofm increasing element, < e¢; < e < --- < ¢, < 1. Bylettinge, =1
for h > m, he computes the minimum numbat of scenarios guaranteeing that
CDFy(e1, €442, ---,€n) is no less tha — 5. If N instances ob are indeed ob-
served and the min-max problem is solved, then, in the ligi€arollary[2, the
obtainedz* and the corresponding costs are such Rat< e, k = 1,..., N,
simultaneously with high confidende— (.

In both cases, the decision-maker can link the solutibrand the costs;’s ob-
tained through the optimization procedure to the vakés that limit the corre-
sponding risksRy’s.

Now, let us consider the cumulative distribution functidnttee cost/(x*, §) in-
curred at the optimal solution*, defined agy(c) := Pa{d € A : ¢(z*,0) < c}.
Interestingly enough, the risks give us a lot of informatidroutF; (c) because, by
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the definition of risk, we have

Ry, <e <= 1—Rp>1—¢
= Pa{l(z",9) < ¢} = Fu(ci) > 1 — e,

so that, with confidenceé — 3, we have also that
Fy(ci) >1—¢, forallk=1,...,N. (3.13)
Moreover, by observing thdf,(c) is monotonic,[(3.13) implies that

1—¢ ifec>c
Fc)>q 1—€ ifcg<c<c_1, k=2,...
0 if c<cy

N

)

i.e., we have found a step function that, with confidehce 3, lower bounds the
cumulative distribution function of the coétz*, ). This provides strong knowl-
edge on the performance of the decision variaBilevithout any further sampling
effort.

This result can be further refined in many situations, thatisen the assump-
tions of Theoreni]7 are known to be satisfied. Theofém 7, indeexvides the
exact distribution of the risk&,, 1, ..., Ry, thus allowing the decision-maker to
computetwo-sidedconfidence intervals foR, . .., Ry, i.e. it is possible to com-
puteé;, és, ..., éx (With €y = €& = ... = €5 = €411) andeg, €9, ..., e (With
€ =€ = ... =¢; = 0)sothatR; € [¢, €] simultaneously fok = 1,..., N
with confidencel — 5. This is equivalent to building the “probability box”

1—6 ife>c

Fyc)> 1—¢ ifcg<c<c_, k=2,...,N
0 if c<cy

and
1 if ¢ > ¢}

Fie)<q 1—¢ ife <c<¢, k=1,...,N-1
l—ey ifc<cy
(3.14)

enveloping the cumulative distribution function@f:*, §) with confidence at least
1 — 3, see Fig.[32. Seé [V1] for a discussion of “probability tsixand their
usefulness in risk-evaluation problems.

3.2.3 Some useful properties

In this section, we highlight some properties of the prolitgdlistribution func-
tion of the risksRy, 1, ..., Ry as given by equation (3.9) of Theoré&in 7 that may
be useful in practice.
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]

0 T I I I I

* *
CN CN_1 vee Ck Cl—1 “ee cd+l ees cy C

Figure3.2. A “probability box” for the cumulative distribution funahn of the cost,
Fi(c) = Pal{l(z*,6) < c}. The graph ofFy(c) is within the white area with confi-
dencel — . The box is built based on the empirical cosfsand the valuesy, ¢;, that
limit the corresponding risk®, = 1 — Fy(c;). The probability box in this figure is a
stylized representation, for a real instance see[Fig. 33atior 3.B.

Comments on Dirichlet distributions

Equation[(3.D) states that the random vedtgr 1, Ry 2, . .., Ry is distributed ac-

cording to the IV — d)-variate ordered Dirichlet distribution functio@ DF4(eg 1,
.,en ). By applying the following transformation to the randomightes R’s

Dy =1- Ry
Dy_1=RNn—Rn-1

D1 = Ray2 — Rat

the vectorDg1, Dy, 0, ..., Dy is obtained, which is distributed according to the
so-calledDirichlet distribution, [51,(72]. Hence, the evaluation of an ordered
Dirichlet distribution function can be converted to the gen of evaluating a
Dirichlet distribution function. The reader is referredi8,[74, 75| 76] and refer-
ences therein for studies on computational issues aboighiit distributions.
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Beta distributions as marginals

We have already observed that the marginal probabilityidigion function ofRy,
is a Beta with parametefg, N — k + 1), for eachk = d + 1,..., N, seel[(3.B).
Notably, the right-hand side di(3.8) can be easily evalliliemeans of common
tools, like thebetainc function inMATLAB, [77], or pbetain R, [78]. Such Beta
distributions have known expected values, precisely:

k

Ea[R] = Ni1

k=d+1,...,N,

hence,c; is a distribution free®-7%-mean coverage statistic, satisfying (by the
same reasoning as in(1.2))

N+1-k
N * *
PA+1{€($,5)SC]€}:N7—H, k:d+1,,N
As is clear, a lower bound for the joint distribution funetiof R, 1,..., Ry IS
given by the sum of the marginals, i.e.
PR{Rat1 < e€ar1,---, By < en}
N
>1-— Z ]P’X{Rk > €r}
k=d+1
N k-1 N
_1_ i1 _ . \N—i _
> 3 () (315
k=d+1 i=0

and [3.15) may indeed be an acceptable approximati@Ddf ;(e411,. .., €ex) IN
some practical cases (see also Sedtioh 3.3).
Based on[(3.15), we show in the following that for a giver (0,1), if

N> max N®, (3.16)
k=d+1,...N

N®) = F <k+1nl> +im (3 <k+1nl>>J +1
€k B €k €k B
(-] denotes integer part), thét{ {Ryi1 < €gi1,..., By < en} > 1 -3, i.e.
conditionsRy, < e, k =d+1,..., N, hold simultaneously with high confidence
1 — . Although [3.16) may be loose, it reveals the logarithmipetelence ofV
on S5 by which it is possible to enforceery high confidence without affecting too
much the sampling effort.

where

Proof. The fact that[(3.16) entail@X{RdH <e€gi1,---sBRN <en}>1-pis
now proved by following almost verbatim the proof in Appenéi of [79], which
is in a context different from our own but involves the sametramatical steps.
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Note that, by[(3.16) and the definition df*), for everyk =d+1,..., N we

have
2 1 4 2 1
N >— (k‘—!—ln—) 4+ —1In (— (kz—!—ln—))
€k B €k €k B
. 1
=[lettingay = k +In B]
2 2 2
€k €k €k
. af
>(since2 >
_[ Toagp — 1]
2 2 2
€k € ap — 1 €L
2
—=_ Gk <ak— 1+1In <ﬂ>>
erap — 1 €L
1 2
)]
7k - Qak Ek‘
€k
so that

€k 2ay 1
5.N2<ak—1+ln<z>>+E.N

. 2
>[sincel — 0k < 0]
€k

2 1 2
Zak—1+1n<%>+m'<N+1—ﬂ>
k —n

€k
€k
. 1 .
>[sincelnx + E(y — z) > Iny (by the concavity ofin )]
>ap —1+In(N+1)

1
=k—1+In—-+In(N+1).

B
Hence,
EkN N +1
——(k—1)>In——
2 ( ) 5 )

and, by observing tha{%w > %N (k- 1), we have

 (exgN—(k-1))? B
e 26N < .
“N+1
SinceN > % by the Chernoff's bound (see e.d. [43], Chapter 2, Sectjoriit 3
holds that

k—1 2
N\ . _ (e N=(k—1)"
Z ( ' >62(1 —e)V i <e RN

7
1=0
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and, by recalling that

F=1 A '
]P’X{Rk > ek} = Z (Z >62(1 — Ek)Nfz7
=0

we conclude that

N < B P :
PalBe>ert = 57 = ¥4
From [3.I5) it follows thaPX { Ry 1 < €441,..., Ry < en} >1— 8. O

Connection with order statistics
Consider the sampling oV random variables, uniformly and independently dis-
tributed in[0, 1], and sort them in order of magnitude,

Xy < Xpy) < < Xy,

X being thei—th smallest value, i.e. thie-th order statistic. It is well known,
[51,/52], that order statistics have joint ordered Dirit¢hdestribution with unitary
parameters, that BA{X(l) < €y, X(Q) < e€g,... aX(d—i—l) < €441, - aX(N) <
en} can be expressed as

€1 pe2 N
N'/ / / ]I{nglS---SI‘Ngl}d.%’N---dwgdwl. (3.17)
0 0 0

If e, = €2 = --- = €441, then, by integrating with respect to the fist- 1
components[(3.17) becomes
N!

€d+1 d €d+2 €N
ﬁ/o $d+1/0 /0 1{0 < zg4q < - <y <1}y - - drgrodrgs,

which is exactlyCDF 4(eg1, - .., en). In short, the computation &8DF ;(eg41,
...,€x) can be reduced to the well known problem of computing the @mimula-
tive distribution function of order statistics, see e.@,75]. The freely distributed
packageutoss forR, [80,[81,[78], contains the functigointCDF.orderedUnif,
which computes[(3.17), though, because of numerical isstiés reliable for
N <100 only.

Computability through Monte-Carlo methods

By virtue of the analogy with the distribution of order ssditts, even Monte-Carlo
methods can be employed to evalu@ieF ;(eq1, - - ., €x). INndeed, one can repeat
a large number of times, say times, the following steps{ is a counter initially
set to0):

e draw a sequence d¥ independent samples from a uniform distribution in
[0, 1];

e sortthe sequence, i.e. compute all the order statistios @) (the smallest
value) toX ) (the largest);
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e evaluate the conditiod((l-) <¢gfori =d+1,...,N, and increment the
counterC by 1 if it is satisfied for every value of the index

Then,P := % is an estimate of the sought probabil®y:= CDF;(egy1, ..., €n).

P andP are related by the Hoeffding’s inequality (s&el[82, 83])ishiguarantees
that P > P — ~ holds with confidencd — 5 (e.g. n = 107%) as long as the
number of experiments is large enough (precisely, as long as # In %). This
method becomes increasingly impracticalhagets smaller, and more advanced
randomized schemes must be considered if loweyingder10— is needed.

3.3 An application to audio equalization

In this section, we shall employ the main results of Sedfighr3the characteriza-
tion of the solution to aequalizer desigiproblem, [84].

3.3.1 Problem formulation

In a digital communication system, [85,/86], a signét), t = 0,+1,+2,...,is
sent from aransmitterto areceiverthrough a communicatiochannelC', see Fig.
[3.3(@). In general, the signal at the receiver end, &ay, is different from the
transmitted signal owing to the distortion introduced bg thannel. This latter,
indeed, acts approximately as a linear frequency filter artbimpletely charac-
terized by its frequency respong&w), which is a complex-valued function of
w € [—m, x| linking the Fourier transform of(t), sayU (w), to the Fourier trans-
form of u(t), sayU(w), according to the equatioll (w) = C(w)U(w). If the
distortion introduced by the channel is unacceptably higieviceFE calledequal-
izercan be added at the receiver end to improve the quality ofémsmission, see
Fig.[3.3(b).

The equalize is a frequency filter too, whose frequency response is ddnote
by E(w). In particular, we consider a so-calleldtap FIR (Finite Impulse Re-
sponse) equalizer:

d—1
E(w) = Z:ﬂke_ik‘”, (3.18)
k=0

wherei is the imaginary unit and, x1,...,z4_1 are real parameters through
which the frequency response can be shaped. Here, we réstifie casel = 10.
Overall, the frequency response of the equalized channglgn[3.3(b) linking

U(w) and U(w) turns out to be the product(w)E(w), and the aim is to de-
sign the equalizeF’ by choosing the vector of the parametersg, z1,...,x41

so as to make&’ (w) E(w) as similar as possible todesired frequency response
Clearly, this can be cast as an optimization problem whegedthsimilarity be-
tweenC(w)E(w) and the desired frequency response is measured by a suitable
cost function to be minimized. In the line of [84], we regard”+ as the desired
frequency response (P« is the frequency response of a pure delaybfime
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Figure 3.3. Channel equalization

steps), while, as cost function, we choose the sum aftiiemunmand theaverage
absolute deviatiometweenC'(w) E(w) ande~ P, formally

. 1 n ‘
—iDw —iDw
k:—g}-%,...,n ’C(Wk)E(Wk) — ’ * )\271 +1 kz_: ‘C(wk)E(wk) - € ‘7
(3.19)
where\ is a normalizing coefficient and;, = %7?, k=0,+1,...,+n,is a grid-

ding of [—m, w]. Throughout,n is set t0100, while A = 1 andD = 8. In the
MAAD cost function, the average absolute deviation takee cd the global be-
havior, over the whole range of frequencies, of the equal®annel, while the
maximum absolute deviation explicitly penalizes the pneseof resonant peaks,
which are undesirable because they generate annoyinglindgpisbise in audio
communications.

The problem with[(3.19) is that, in real-world applicatiptise frequency re-
sponse of the channel is not exactly known because of imgianfes in the estima-
tion procedure used to retrievé(w) or to an intrinsic variability of the environ-
ment, as, for example, in mobile communication.

Hence,C'(w) = C(w,d) whered is an uncertain parameter and the cost function
should be more properly written 88A AD(z, §) so as to highlight the dependence
on the uncertainty besetting the channel. We are thus fazinmcertain optimiza-
tion problem and we resort to the scenario approach to delalitwi
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3.3.2 Scenario Approach

Problem solution

The only requirement is the availability of independent scenarias(w, 5™),
C(w,8@),...,C(w,0™N)) of the uncertain frequency response to rely on. No-
tably, the scenario approach can be employed without a fdWwkedge of the
probabilistic description of the uncertainty, and, in pijple, the collected sce-
narios may be the results of field experiments performed liowa environmental
conditions (data-based optimization). If instead the phility distributionPa of

¢ is known, then the scenarios can be artificially generatadhis example, we
suppose to be in this second case and &at, 0) is a second-order frequency
response of the type:

1
€2 4 §1e + by

C(w,d) =

where the uncertain parametes= (01, d2) is uniformly distributed ovef—0.4, 0.4] x
[0.5,0.8]. N = 3000 scenarios are thus obtained through a random number gener-
ator.

According to the scenario approach, the optimal equaliZeis the one whose
design parameter vecter solves the convex problem

min  max MAAD(z,§Y)). (3.20)
z€R10 j=1,...,3000

The solution in our simulation i8* = (7.08-1072,1.00-1073, —6.64-1072,1.42-
1073,4.71 - 1072,3.73 - 1074,8.37 - 107%,2 - 1073,5.09 - 1071, —3.46 - 1074).
The costsci, ..., ciyo are then computed according to Definition 6, i€, =
max {c € R : ¢ < MAAD(2*,6)) for a choice ofk indexesj among{1,...,
3000} } . This amounts to evaluating the codtsAAD (z*,6()), ..., MAAD(z*,
6(3000)) and sorting their values in decreasing order. The religtili the designed
equalizerE™ is next evaluated in light of the results of this chapter.

Upper bounding the risks

We choose the vector of risk thresholéls= (€11, . .., €3000) according to the fol-
lowing rule: a parametef’ € [0,1] is fixed and, for eaclt = 11,12,...,3000,
€ € ]0,1] is selected such that

k—1

N\ . ‘ /
2 ( i )62(1 —a)" = 2589'

=0

In words, the rule consists in choosi&igo that the marginal probabiliy} { ;. >
&} is equal togoss for all k = 11,12, ..., 3000,
According to [[(3.1D) and_(3.15), and by posiag= ¢ = --- = &1, the adopted
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choice fore entails that

N _ _ _
Pr{R1 <é€1,...,R11 <€1,...,R3000 < €000}
N _ _
> Pa{Ri1 < é€i1,..., Ra000 < €3000}

N

>1- > PY{R; > &)}

k=11

3000 k—1

3000 _; ;

—1_ —i (1 _ = \3000—i

> 3 (M)aa-a)

k=11 i=0

3000

=1-4, (3.21)

i.e. the risksRy's are simultaneously less than the correspondirig with con-
fidence at least — 3’. For example, we have confiden@g0.9, 0.99 for 3/ =
1,107%,10~2 respectively. A more refined evaluation®f {?; < €,..., Ry <
€11, ..., R3000 < E3000} is obtained throughCDFlo(En, R ,E3000) as stated by
TheorenlY. Indeed, by computitgDF (€11, .. ., €3000) With the Monte-Carlo
algorithm in Section_3.213, it turns out that the conditidds < €1,..., R3go0 <
€3000 Simultaneously hold with confidence equal®8 (as opposed t6) when
B’ = 1, confidence).997 (as opposed t0.9) when /3’ = 10~!, and confidence
0.9997 (as opposed t6.99) when3’ = 10~2. Fig.[3.4 shows the values ef for
p'=1,10"1, and10~2. As it is apparent, the values af are quite insensitive to
the value of3’ so that enforcing a high confidence only marginally impactshe
€r'S.

We selects’ = 102, so that confidence 9997 and we can reasonably sup-
pose the risks of the empirical cosfs . . . , ¢}, are simultaneously upper bounded

by thresholds, €, ..., én.

Thus, by linkingct,c3, ..., ¢} t0 €, €,...,€en, as in Fig.[3.b, we can e.g.
claim that the risk that the equalizér* carries a cost greater thah, = 1.298 is
just at mostl.09%, i.e. costl.298 is guaranteed for about t199% of the random
instances of the channel frequency respdfige, ), while, at the same time, cost
chy = 1.252 is guaranteed for the5% of the channel frequency responses, cost
599 = 1.230 is guaranteed for the@0% of them, and so forth and so on.

Cost distribution

The evaluation of the reliability ofs* can be further refined according to the dis-
cussion in Section 3.2.2. In fact, in the same line as abowsyer bounding vector
€11, - - - » €3000 CAN bE chosen such that the marginal probabB{ R, < ¢} is
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Figure 3.4. Values ofe;,, k = 11,...,3000, for 3’ = 1 (solid line),3 = 10~! (dashed

line), andg’ = 10~2 (dash-dotted line).

equal togos for all k = 11,12, ..., 3000, i.e., by recalling[{318), such that

k—1
N\ . NP
1-— (1 — b= .
> (V)aa-ar - o

i=0
By takinge; = ¢, = - -+ = €19 = 0, we can compute

N _ _ _
Pa{e; < R <é€1,69 < Ro < é,...,€3000 < R3000 < €3000}

N — _ _
:PA {§11 < R < €11,€19 < Ri2 < €9, .. » €3000 < R3pp0 < 63000}

based ofCDF (1441, - - -, nn) given by Theoreril7, and it turns out tHl {e; <

R < €1,69 < Ry < 69,... 1 €3000 < Rsp00 < 63000} is 0.9993. In other words,
we have thag, < Rj < € simultaneously hold for every = 1,..., N with
confidence).9993, a quite high value, which permits us to be reasonably sate th
risks are indeed lower and upper bounded as indicated. Mereby recalling
the relation betweef(c) = PA{MAAD(z*,¢) < ¢} and the risks, according to
equation[(3.14), the probability box containifig(c) with high confidence).9993
can be computed, see Figs.]3.6 3.7. This result is a sharpaterization of
the probability distribution of the cost associated with ttesigned equalizer and
provides full information on the reliability of*.



3.4 Proofs 75

0.95 |-

09

0.85 |-

0.8 1 1 1 1 1 O
1 500 1.000 1.500 2.000 2.500 3.000

k
Figure 3.5. To eachk in the horizontal axis a paic}, ;) is associated. The cost valug
(red coloured) can be read on the left ordinate, while tHethisesholde;, (blue coloured)
can be read on the right ordinate.

3.4 Proofs

We first prove in next Sectidn 3.4.1 the fundamental Thedrday Gomputing

PN{Rgs1 < €a+1, Ravo < €42, Rats < €at3,---, By < en} (3.22)

under Assumptionsl1 arid:2 Based on this result, the proof of Theoréin 8 is
developed in Sectidn_3.4.3 by releasing Assumgiion Zheorenib immediately
follows from Theoreni]7 by noting that under the assumptioh¥teorem[6 it
holds thatR; = Ry = --- = Rgy1.

3.4.1 Proof of Theoreni¥

For any fixed(z,c,¢) € R¥2, let D(z,c,¢) :== Pa{d € A : ¢ < l(x,6) < &}
and, for any integek suchthad + 1 < k < N, let

Dk = D(.%'*,CZJrl,C;;) (323)

wherecy,  ; is defined to be equal tecc. Similarly to theRy's, Dy's are random
variables, since they depend on the sani@le, ..., ™)) throughaz*, i, 1, ..., ¢k,
and, indeed Dy, is the conditional probability with respect i, c; , ;, c;; that a
newly extracted uncertainty instanéecarries a cost betweetf andc;, ;. The
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Figure 3.6. The graph offy(c), the cumulative distribution function of the costat z*,
lays in the white strip with confidende9993. Thus, for each value of on the abscissa,
Fy(c) belongs to an interval bounded from above and below. For anedoview of the
probability box see Fid. 37.

variablesD,.’s and theR,'s are related by the following simple linear transforma-
tions

N
Rip1=1- Z Dy, Dgi1 = Rgy2 — Raqa
i=d+1
N
Rio=1- Z Dy, Dgi2 = Rgy3 — Rai2
i=d+2
N
Ry_1=1- Z Dy, Dy_1 =Ry — Ry
i=N—1
Ry =1- Dy, Dy =1— Ry. (3.24)

Thanks to[(3.24), the joint probability distribution furart of the R;.’s can be easily
derived from the joint probability distribution functiorf the D;'s and vice versa.
We, hence, proceed by computing the joint probability dhation function of the

Dy’s first. In order to do so, we considér, ~ [ijfll ... DkN, the multivariate
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Figure 3.7. A zoomed detail view of the probability box in Fig._B.6. Thepability box
for Fy(c) in [0.8415,0.8422] is here represented and some empirical cgst®gether with
the lower ;) and upperd;;) bounds to their risks, are put in evidence.

moment of Dy 1, ..., Dy, and evaluate it for each possible assignment of non-
negative integeré,. 1, ..., kx. The joint distribution function oD 4,..., Dy
can then be deduced from the resulting moment problem.

To ease the notation, defindl; = N, My.1 = N + kg1, Mgro = N + kg1 +
kayo, etc., untilMy = N+, | k;. By (3:23), the producb)i4! D242 ... phy
gives the conditional probability with respectid, cj;, ,, ..., cy, i.e. with respect
to the data sample®(), ... §(N)), that My — N new independently extracted
uncertainty instances from, says(N+t1 ... §(M~) are such that the firdt;,
(ie. 6N+ . 5(Ma1)) carry a cost betweed,, ; andc, ,, the nextkq. (i.e.
§Mantl) | 5(Ma+2)) carry a cost betweer;, , andc};, 5, and so forth and so
on till the lastky carrying a cost below), (recall thatcy,, ; = —o0). Therefore,

kat1 ykat2 kn
the productD ;' D15 ... DY can be expressed as

N
k;
II pi=
i=d+1
PAN"NLer <tz 0W) <, i=d+1,... N, j =M1 +1,..., M},
(3.25)

whereIP’]XN’N =Pa x --- x Pa denotes as usual the product probability measure
of SN+ . §My Expressing probability as the integral of an indicatorction
and using the compact notatid#, to indicate(s™, 5+ .. 5()) andA? =
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A x A x --- x A to indicate the domain fa¥?},, (3.28) can be rewritten as

N
[T Db =, et < 0 <t i=d 1,
i=d+1 ANt

j:Mi_l—l—l,...,Mi}]P’%N {d5N+1

As (60, ... 6™y is letvary inAN, TTY . | D takes on various values and we
are interested in computing its expected value, i.e.

N
11 Dfi] / H DFPY (a6}

1=d+1 1 1=d+1

/AN/MN Hejy < l(@*,69) <cf, i=d+1,... N,

Ay

j=Mi—1+1,..., MJPNN N {do NN JPR {doT ),

which, by Tonelli’s theorem, can be restated as
/AMN ety < (a*,09) < ¢ty i=d+1,...,N,
1
j — Mi*l + 1, . ,MZ}P%N{d(siWN},

that is the momenk  ~ [ijfll e DfVN] is nothing but thetotal probability with

respect to all variable&®), ..., 6(V) sWV+D - §(MN) thatg(V+D | §(Mat1)
carry a cost betweerf; ; andcj;, ,, 6(Mer1tD) - §(Ma+2) carry a cost between
¢}, andc};, 5, and so forth and so on. Now, I6t= {7, ..., jn} be a generic sub-

set of N indexes taken fror1,..., My} and letz
solution to problem

5= = (x ‘*S, ‘S) be the optimal

EPls : min ¢
cER,ze XCR4
subject to:/(z,6®) < ¢, ieS. (3.26)
Moreover, fork = 1,..., N, letc; g = max{c € R : ¢ < {(a];, 6@) for a choice
of k indexesi amongS} ie. theck| 5 are the costs associated wnt% and let
Chy41jg = —oo- Eventually, for eacti = d +1,..., N, letS; = {ji,...,ju, } be a

subset ofk; indexes from{1,..., My} \ S such thaiSm NS, = 0if m # n. Due
to the i.i.d. (independent and identically distributedjuna of the uncertainty in-

stancesqM, 5, ..., §(Mn)), the total probability that the instances with indexes
in Sy, carry a cost betweecgﬂ‘s andcd+2‘s, those with indexes 5, carry
a cost between® andc* and so forth and so on till those with indexes in

Od+2|S d+3|S"
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Sy carrying a cost betwea%s andc? does not depend in any way on the

choice ofS, Sy 1,...,Sy. Whence

N+1|5°

/M 1{c <l oY) <, i=d+1,...,N,
A N

1

j=Mi_1+1,..., M;YPXV{ds}'~}
= /AMN 1{6;+1|§ < E(ac‘*s—,,é(j)) < C;“g, 1=d+1,...,N,
1

j e SPAN{A8YNY (S, Syp1, ..., SN) €S,

wheresS is the set of all feasible choices 6f Sy, 1,...,Sy from {1,..., My}.
Indicating with|S| the cardinality ofS, we have

E[Dg;' - DY

:/% 1{ct, < (a*,09)) < ¢, i=d+1,...,N,
A N

1

j=M;1+1,..., M;}PX~ {6}y

1
= @( Z / H{CHI\S <Lz |S75( )) < |5
SSd_H, LSN)E
i=d+1,...,N, j € S;}PX¥{ds1"V}

‘5’ /MN 1{C§+1\§ < E(xl*—,é(j)) < CEF\S, i=d+1,...,N,
SSd+17 LSN)ES

j e S yPAN{ds) N}
For a fixed samplé!’~ the inner sum

Z 1{C§+1\§ < f(x‘*g’(S(j)) < C;‘g, i=d+1,...,N, je€S;}
(S,84+41,---»SN)ES

counts the number of partitions of uncertainty instangex . .., §(M~) into sets

S, Sqt1,- .., SN, such that the costs associated with the instancEg.ip, . .., Sy
fit into the costs computed based on the instanceésancording to the condition
Ghyg < e(x‘*g,(ﬂ N < ¢t g i=d+1,... N, jeS; (3.27)

It is a fact that such number is almost surely equal s formally stated in the
next proposition, whose proof is postponed to next Seétidt23n order to first
draw the conclusion.

Proposition 1. It holds with probabilityl that

Z H{C:Jrl'g <€(ac‘*5,,5( )) < C‘S, i=d+1,...,N, je S;} =1
(§,5d+1,...,SN)€S
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Thanks to Propositionl 1, we have

k 1 1
(M)
where the last equality follows from the evaluation|&f, through a multinomial

coefficient, see e.g. [87]:

5| = My _Nﬁ‘l My My!
W, kgqr, .. k) NI  Nlkgiq!-ky!

Note that [(3.2B) holds true for every valég, 1, ..., ky so that[3.2B) provides
the infinite multivariate moments dd,.1,..., Dy. The probability distribution
function of Dy 1,..., Dy then is uniquely determined, [88]. In particular, by
integration one can check that the density of the Dirichigtrithution,

N N d N
pD(wd+17xd+27"'7xN):d_"< - Z wl) ]1{ Z xiglv ngzgl}7

1=d+1 1=d+1

satisfies the moment problem posed by (B.28). By applyingtrdmesformation
(3.24), we obtain the joint densifyr of Ry 1,..., Ry:

PR(Td41,Td+2s - -+ TN)
=pp(Td42 — Td41,Td43 — Td42s-- - TN —TN-1,1 — TN)
N! 4
= ﬁrdJrl]l{O S Td+1 § Td+2 S s § N S 1}, (329)

and equation (3]9) follows by integratirig (3.29).

3.4.2 Proof of Propositior 1

Consider the optimization problem with all tiéy uncertainty instanceg?, ..., 60V,
SN+ 5(MN) in place:
EPlyy, - min c
cER,x€ XCR4
subject to:l(x,6) < ¢, i =1,..., My, (3.30)

and let(, ¢) be the optimal solution. Moreover, lgt = max{c € R : £(%,6®)) >
c for a choice ofk indexesi among{1,..., My}}, k= 1,..., My, be the costs
associated witht. Plainly, ¢, < ¢ whenk > k’. Assumptiori 27 implies that the
following strict ordering holds true almost surely:

Ed+1 > Ed+2 > > EMN- (331)
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Proof of [3.31). For every fixeds™), ..., 5(M~) at least one basis af + 1 in-
stances can always be found such that the solution to thenizgtion problem
when only those instances are considered is the same aslth®rsdo (3.30)
with all My instances in place, see e.d. [[89]. Consider now the subsbieof

(6™, ..., 6MN)y e AMN violating condition [3.31) and whose firgt+ 1 in-
stances form a basis, so thais determined once the values®?, . .., 6+ are
fixed. This subset has zero probability because, conditioras®) ... §d+D,

the probability that’(z, 6)) = ¢(z,5") for somek € {d +2,..., My} and
someh € {1,..., My}, h # k, is zero thanks to Assumpti@n:2 and, hence, the
probability that two costs among. 1, ..., ¢y are equal is zero as well. The same
reasoning permits one to conclude that all the subsei§'af. . ., §(M~) violating
(3:31) and whose instancé§?), . .., 5(+1) form a basis, for all possible choices
of i1,...,iq11 In {1,..., My}, have zero probability. The thesis follows by not-
ing that the instancesY), ..., §(M~) violating (3:31) are obtained as the union of
these subsets. O

In order for [3.2¥) to hold, observe th&tmust be such thdtr, ), the optimal
solution to [3.3D), is equal t(ml*g, c‘*g), the optimal solution computed with the

uncertainty instances i in place only. Indeed, if this were not the case, there

would be an instancé) in one of the set$, 1, ..., Sy violating (275 cig). e
Uas, 50)) > cfg- By definition ofc’ | ¢, this would entailé(xrg,d(j)) > g

which does not fif(3.27).

Moreover, in order for[{3.27) to holdS must contain the set = {i €
{1,..., My} : £(&,09D) > ¢}, i.e. the set of all indexes of uncertainty
instances corresponding to the uppermost costs in comdspeoe ofz. Indeed,
suppose that one or more instanceg{inlo not belong ta5, and thal(:cl*g, c|*§) =

(z,¢). Since by[(3.31) the cardinality 6{ is exactlyd + 1, then the costsjm'g

must take on a value strictly belo#;, ;. Hence, for aj € H \ S, we would
have((z';,09)) = 0(£,6W)) > ¢4 > ¢ again violating [(3.27). If in-

150 3 d+1)5
stead we imposé{ C S, we have tha(x‘*g,cl*g) = (Z,¢) because a simple in-

spection reveals th@{ contains all uncertainty instances corresponding to @ctiv
constraints in[(3.30). The other instances with indexesbeéinging toH carry
costs in correspondence #fwhich are equal to cos&;,», ..., ¢, and which
are strictly ordered by (3.31). By adding £, the k.1 indexes of uncertainty
instances having costg, 2, . . ., Cay21k,,, 1, then toS the next one having cost
Cd+2+kgy,» then t0Sq o the following k440, then toS the next one having cost
Cd42+kgpr+kasor @Nd so forth and so on till the lakty are put intoSy, one ob-
tains a partitionS, Sy4.1, . .., Sy satisfying [(3.2F7). Due to the ordering of costs of
instances not i, this partition is the sole possible one. O
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3.4.3 Proof of Theoreni8

When Assumptiofl2 is completely dropped, the assessmehegirbbability dis-
tribution function of R;.4,..., Ry can be obtained by mimicking the reasoning
used in[[56] to prove the general result recalled in Se¢ti@nequation[(3J5). The
idea of [56] was to infinitesimally perturb the constraintshee scenario optimiza-
tion problem (“heating”) so as to go back to a setting wheeentbeded assumption
is verified and then to infer the sought result via a limitinggess. Here, this
reasoning can be decidedly simplified by perturbing comgtaf (3.2) just along
the direction of component € R. The proof is now sketched, pointing out the
differences from[[56].

Heating

ConsiderH = [—p, p|, p > 0,andd’ = (6, h) € A’, with A" = A x H. We define,
for eachz € X andd’ = (4,h), the functiont/(z,¢") = 4(xz,d) + h. Finally,
indicating withU the uniform measure ofl, the probabilityP’y, = Pa x U is
defined overA’. Clearly,¢’ andP’, are such that Assumpti¢ni2 holds, since for
any (z, c) we havelP’\ {¢'(z,¢') = ¢} = 0. The problem obtained by extractidg
constraints from\’ is called the heated scenario problem and is as follows:

H-EPly : min c
cER,z€ XCR4

subject to:c > £(z,6") +h® i=1,... N.

(3.32)
The solution to[(3.32) is indicated by, ¢*). For this problem Theorem 7 is
valid. Hence, letting;, k = 1,..., N, be the costs of the heated scenario prob-

lem and lettingR,, k = 1,..., N, be the corresponding risks (i.&; = {¢' €
A"z 0(2*,8) > c}), the joint probability distribution functio’{'{R/,, ; <
€dit+1,- - - Ry < en} can be exactly computed and is given by(3.9).

Convergence of the heated solution to the original solution

Fix ad®, ..., 6N and compute the solution of ERJ (z*,¢*), as well as the
costscy_ 4,...,cy- Letp, be a sequence of heating parameters monotonically
decreasing to zero. For every pick any N numbershg),...,h%N) from the
interval H,, = [—pn, pn], and let(z"™, c*) andcj ,...,cy be the solution and

the costs of probleni{3:82), whefbl) = (5, a1, ... 5™ = (6™, ™).
By mimicking [5€], it is easy to show that the heated solutienwell as the heated
costs converge to the original solution and costs as thénggaarametep,, tends
to zero:voW, ..., 60 € AN,

nlgr(; sup (2™, " eq,s - ) = (@, ¢ s )| = 0.
e,

(3.33)
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In particular, the convergence of the cosfsto c;, k =d +1,..., N, comes as a
consequence of the continuity &fz, 9) in .

Derivation of (3.12)

Fix a data sampl®" = (61, ..., 6M)) that isbad, i.e. such that the condition
R; > ¢;istrue for atleastong € {d+1,...,N}. As above, consider a sequence
of heating parameters, | 0. In line with [56], it can be shown that, thanks to
(3.33), there exists a big enoughsuch that,vn > 7, and for every choice of

pY. Y, the heated data samele®, hY), ..., (60, ")) is such that
R} > ¢;,i.e. itis bad in the heated setting. To conclude the theprerte that

(Pa x U)N{Fj: R} > ¢;}
:/ / 1{3j: R} > ej}ﬂ PN {dolV}
AN JHN (2pn)N
Z/AN 1{3j5: R, >e]}/ 1{3j : R} > ¢} h{; PN {dé?V}.

The outer indicator function limits the integration domé&indata samples ih™v

that are bad. For every fixed data sample in this domain ther imtegral is equal

to 1 for a sufficiently large:. Thus, by the dominated convergence theorem, taking
the limit for n — oo it holds that

(Pa x U)M{3j: R} > ¢}
> [ 1G5 By > patast)
=PN{3j: Rj > ¢;} =1 —-PY{VjR; <¢;}.
Equation [[3.1IPR) follows since

1 _CDFd(6d+17...7€N)
=1—(PaxU)M{R; <¢Vje{d+1,...,N}}
= (Pa x U)N{3j : R > ¢}

3.5 Perspectives for future work and an open issue

The results presented in this chapter are full-fledged tefar the kind of decision
problems considered, and our analysis has shown that teayocarimprovable in
the absence of further assumptions and before any data ésvelds Moreover,
in our specific context, they throw a new light on already knowsults. The
theory presented is particularly useful in data-basednip#tion, where it can
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be employed to characterize in-depth a worst-case sces@tiion. We believe
that a significant application may be in the comparative wat&n of manifold
data-based decisions, where a theoretically sound ei@tuaitthe respective cost
distributions may be cruciél.

If some a-priori knowledge about the distribution of the entainty is at dis-
posal, it can be integrated in the present framework. Fomek@ bounds on the
possible values attained by the cost functidm, 5) can be integrated with the
probability boxes obtained in Sectibn 3]2.2 so as to allevabmputation of use-
ful confidence intervals foEa [¢(x*, §)].

Finally, the success in studying min-max convex decisiamblgms suggests to in-
vestigate whether a larger class of problems can be studibdhe same or similar
tools, to achieve similarly strong results.

3.5.1 Shortage of samples

The numberN of scenarios required to guarantee thathas a desired “high-
coverage property” is usually callesshmple complexity In large-scale problems
with very larged, the sample complexity may become too high, especiallydf th
scenarios come from real, expensive experiments. Indeedawe seen that the
risk of ¢* is tightly bounded by the risk;, 1 of ¢, ;, which is large ifd is compa-
rable with NV, see((3.B). This problem can be tackled in different waysid®a is
to try to introduce a mathematical machinery similar to tsed in Chaptdr]2. In
fact, the theory in Chaptér 2, though at present limited tammverages, leads to
results that do not depend directly on the dimensipas discussed in Remdrk 4.
However, it is an open problem to what extent similar restdis be obtained with-
out restricting a-priori the class of the possible cost fioms, i.e. without aban-
doning the general convex context studied in the presemtehan the following
Chaptef #, we will work under the same assumptions as in #mept chapter and
we will focus on the coverage of the worst-case cost. We \itvg how to com-
pute a data-based decision similar to the worst-case dacigiaccompanied by
a cost threshold similar tg* but with the desired coverage properties even when
a relatively small number of scenarios is at our disposak dlgorithm presented
in the following chapter is an instance of a more general,is@dch consists in
suitably exploiting some structure that can be revealedatg.dndeed, as a mat-
ter of fact, very often reality is redundant: this means thatn a few randomly
observed scenarios may be sufficient to betray the struofutige whole unseen
reality. If suitable mechanisms are introduced to revedl exploit such a struc-
ture, cost thresholds with good coverage properties candaded even ifN is
small.

1A viable approach is that of combining the characterizatibthe cost distribution here offered
with results in the line of Theorefn 4. Indeed, Theoferh 14sisduin [79] to compare various
possible decisions based on cost-risk pairs. It is viablextend such an idea in the light of the
theory here presented so as to characterize each possilid@ddrased not only on a cost-risk pair
but on the full distribution of the costs.



Chapter 4

Data-based min-max decisions
with reduced sample complexity

In this chapter, we focus on the sample-complexity of dasedd convex min-max
problems. For a fixed (usually smaH)and a fixed (usually very smalfj, the
sample-complexitis the numberV of scenarios needed in order for the coverage
of the empirical worst-case castto be no smaller thah— e with confidence — 5.

The sample complexity of the data-based min-max optimimatapidly increases
with the dimensiond of the decision variable, and this may pose a hurdle to its
applicability to medium and large scale problems. We heareduce FAST (Fast
Algorithm for the Scenario Technique), a variant of the miax decision-making
algorithm with reduced sample complexity.

4.1 Introduction and problem position

We will work in the same framework of Chapf&@rWe recall briefly the fundamen-
tal facts. Given a cost functiof(x, d), convex in the decision variable for any
value of the uncertainty variablge we have studied the properties of the decision
x*, solution to the min-max problem

i 0z, 60 4.1
I e )

whereX is a convex and closed set, afid. ..., ") are instances of the uncer-
tainty variabled independently generated according to a probability medBur
We have seen that the worst-empirical cdsti.e. the optimal value of(411), al-
lows for a probabilistic characterization of in a distribution-free manner. In
particular, if N is suitably chosen, relatiof(z*,0) < ¢* holds with probability
1 — e with respect to) (with very high confidencd — ). That is,c* is a cost
guaranteed with probability — ¢ when decisionz* is made. It turns out that this
“suitable N is inversely proportional t@ and is proportional ta, the number of
components in the optimization variabtei.e. N scales aée -d, see[(3.B) on page

85
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[B8. However, as noted also in 90, 91], this dependence ardd may result in
too many scenarios for large scale problems with lafgius posing a difficulty
in practice. In fact, we may not have enough scenarios atisposals. Moreover,
even if we can sample an arbitrary number of scenarios, ibedmard in practice
to solve the min-max problem with so many scenarios for cdatmnal reasons,
since it involves solving a convex problem with so many caists. In both cases,
we would like to make a decision with an associated guardntest based on a
smaller amount of scenarios than that required by the “‘ida8secision-making
algorithm.

In the present chapter a modified version of the worst-casisida-making
algorithm, called FAST (Fast Algorithm for the Scenario Aeigue), is introduced
in order to get around this difficulty. FAST associates to a-miax decisionc}, a
costcj, still having coverage no less than- ¢, i.e such that(z7,, §) < ¢}, holds
with probability 1 — e, with a sample complexityv that exhibits a dependence en
andd of the form% + d. This significantly reduces the sample complexity in large
scale optimization problems.

4.1.1 Theideabehind FAST

FAST operates in two steps. First, a moderate nunibenf scenariosf”) are
considered and probleri (4.1) with = N is solved so generating a solution
x‘*Nl and an optimal value‘*Nl, refer to Figurd 4.1(3). Th.is fi_rst step is carried
out at a low effort due to the moderate numBér of scenarios involved. On the
other hand[(x‘*Nl,(S) < c"‘N1 is not guaranteed with the desired probability level
1 — e since Ny is too low for this to happen. Then, detuningstep is started
where N, additional scenarios are considered and the smallest valsech that
E(mer,W)) < ¢h, i = 1,...,N; + Ny, is computed, see Figufe 4.(b). The
algorithm returns the solution}, = x7,, and the valuej,. The theory in Section
[4.2 shows that(z},,d) < cj. holds with the desired probability — €. In this
construction N7 and N, scale asl and% respectively, leading to an overall number
of scenariogV = Nj + N, that is typically much smaller than that required by the
classical worst-case approach. Moreover, choosing a snoées not affectVy
and only results in a larg&’, value, which corresponds to having many scenarios
in the detuning step, a step that is a simple detuning proeetiat can be solved

efficiently even for large values dY,.

The remainder of the chapter is organized as follows. In S®dtion[4.R,
the FAST algorithm is presented in detail. In Secfion 4.Beotetical results are
presented, and a discussion about the practical use of FARIE in Section
[4.2.2. The proofs are in Sectign ¥.3. In the Apperidix B, aermsibn of FAST
to the more general set-up presented in Appehdix A is pravid&é simulation
example, in the general case, is also given in Appendik B.4.
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1
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(a) first stégl (b) detuning step

Figure 4.1. lllustration of FAST. Each line represents a functitgm, §(9)).

4.2 The FAST algorithm

We maintain here for simplicity the assumption that any fabof the form

min  max £(z,0")
zC€XCR4 i=1,...m

has a unique solution for any. and any choice 0§V, ..., (™). Moreover, the
following notation is in force to express shortly the fundartal Beta distribution
function:

4 /N
BNAd .— i(1—e)N . 4.2
E Z; < . ) (1-¢) (4.2)
The FAST algorithm follows
The FAST algorithm
e INPUT:
- € €]0, 1], risk parameter;
- B €]0, 1], confidence parameter;
- N1, an integer such tha{; > d + 1.

1. Compute the smallest integdh such that

In g3 — In BN
Ny> —n —— 4.3
ST Y S (4.3)
whereB? s as in equatior {412).

2. SampleV; +N, independent constraings!), . .., (V1) g+ o §(Ni+N2)
according tdPa.
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3. Solve problem{4]1) witltv = Ny; Ietgc"‘N1 be the solution.

4. (Detuning step) Compute

* * Z'
Cp = max Uz 5@).
B i N+ N, (@[5, 0%)

e OUTPUT:
- (2, ) = (mer,c}).

4.2.1 Theoretical results
Consider the risk of the cost. defined as
Rp = ]P’A{(S e A: @(1‘},5) > C}}

Clearly, R is a random variable that depends on the samgles. .., §(M1+N2),
The following theorem bounds the probability tHat > e.

Theorem 9. The following relation holds
PN U RE > €} < (1 —e)N2. BN, (4.4)
*

The proof of Theorem]9 is given in Sectibn 4.3. It is a fact ttet bound
on the right-hand side of(4.4) is not improvable. Indeed, ftllowing Theorem
[13 holds for the class of problems satisfying the specidlizdly-supportedness
assumption. We recall that a min-max problém](3.1) satisfiesully supported
assumption (Assumptidn 2) if for alV > d + 1, and with probability one with
respect to the possible scenarios,

i) it has exactlyd + 1 support scenarios;
i) for everyy € R, Pa{l(z*,0) =~} =0.
For a discussion see pdgé€ 60.

Theorem 10. We have that relation
PN YR > €} = (1 —¢)2 - BN (4.5)
holds under Assumptidn 2. *

For a proof see Secti¢n 4.3.
Thus, Theorern 10 states thét is a distribution-free statistic, and, implicitly, that
the bound in Theorem 9 is tight, i.e. it cannot be improvedauit further infor-
mation onPA or the structure of the problem considered.
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To prove the following main TheoremI11 from Theordms 9[addeitys con-
sider the waylV;, is selected in point 1 of the FAST algorithm of Section 4.2. An
easy computation shows that equationl(4.3) is equivalent to

(1- M. BN < g,
Thus, an application of Theordm 9 shows that
PNV Ry > €} < 8.

On the other hand, sind¥, is the smallest integer such that (4.3) holds, Afy<
N, gives
(1 - E)NQ, ' Bé\h’d > 5,

and, in light of Theorern 10, this implies that
IP’ZI+N5{RF >e} > f
when Assumptiofi]2 is satisfied. We have proved the followiregptem.

Theorem 11(main theorem on the FAST algorithmin the current set-up, it holds
that

PNV Ry > €} < B. (4.6)

Moreover, N, given in point 1 of the FAST algorithm cannot be improved m th
sense that there are problems for which/Ng smaller than that given in point 1 of
the FAST algorithm maked.6)true. *

4.2.2 Discussion

In the FAST algorithm, the user solves problém|4.1) withscenarios, and com-
putes N, through [4.B). NV, is decided by the user, whil®&; depends onVy, e,

andg. In this section, guidelines on how to seléét, and a handier formula for
Ns, are provided. Moreover, the pros and cons with using FA8 R0 discussed.

Selection of Ny

Computational reasons suggest thatshould be chosen as small as possible, but
other requirements also apply. M is too large, solving[{4]1) for*N1 becomes
expensive so losing the advantages of using FAST. On the bémel, if V; is too
small,:cl*N1 is poorly selected, and this in turn leads to a large costevgjuafter

the detuning phase in FAST is carried out. As a rule of thumibobempirical
experience, we suggest to taki = 20d. Notice that the theoretical result in The-
orem[11 remains valid for any choice &f.
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A handier formula for Na
To a first approximation, in point 1 of the FAST algorithm, atjan [4.3) can be
substituted by the handier formula

1, 1
No > —In—. 4.7
e p
In fact,
B Ni,d
In 8 — In Be < Inp <llnl

Inl—¢) ~“In(l—¢ ~ € B’

showing that anV, satisfying [(4.7) also satisfiels (4.3). (4.7) is easier tdyafhyan
(@3) sincel[dB) also involves computing the teBfi*“.

Advantages with using FAST

Reduced sample size requirements

The FAST algorithm provides a cheaper way to find solutionsnedium and
large scale problems than the classical scenario appré=aded, one can choose
N1 = Kd, whereK is a user-selected number normally se®@p while, using
@.7), N, can be taken as the first integer bigger than or equéllm%. Hence, a
handy formula to estimate the overall number of scenariesiee with FAST is

1.1
Kd+ —-In—.
+€nﬁ

A comparison with the evaluation of the sample complexitthimclassic approach
(seel(3.B) in Chaptéld 3), i.e.

e 1 1
N > —(d+In-=
_e—le<+nﬁ>’

shows the key point that, with FAST, the critical multipliv@ dependence oig d
is replaced by an additive dependenceimndd.

Possibility to reducee to small values

The detuning step 4 of FAST is a simple maximization probldrherefore, run-
ning step 4 with a largéV, can be done at low computational effort so thaan
be reduced to values much smaller than with the classicabsiceapproach.

Suboptimality of FAST

Figure[4.2 represents the solution obtained using FAST.is the cost value for
the problem withV; scenarios, and;, is the cost value after the introduction %
extra scenarios in the detuning step. In white is the regimvea all cost functions
{(z,6¥), i = 1,...,N; + No. To achieve the same level of risk as in FAST,
with the classical scenario approach additional scendrée® to be introduced,
so reducing the white region in whidlx*, ¢*), the cost-decision pair computed
according to classical approach, will have to lie. From apéttion of Figure
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Y

Figure 4.2. Comparison between FAST and the classical worst-case agipro

[4.2 it appears that the classical approach may outperfor@TFAat is, it may
happen that* < cj. If so, however, it certainly holds that, — c¢* < ¢}, —
c|*N1. Consequently, the decision-maker has a simple way to &eathe potential
suboptimality of FAST by computingj. — CTNl' Empirical evidence shows theit
andc* are often close to each other, and suboptimality is nedéigib

4.3 Proofs

Theorem$§19 and 10 are proved together in the following Sedid.] .

4.3.1 Proof of Theorem$® and 10

Recall thatA is the uncertainty domain where the random variablakes value,
and define, for brevityy”, := (6™, 60m+D . §(), so thatd?, € Am—™+1,
We want to compute the probability of set

H = {5]1V1+N2 : Rp > e}.

Now, consider, for any given pait, ¢), = € R% andc € R, the violation probabil-
ity function
V(z,c) :=Pa{d € A: l(z,0) > c}.

With this notation,Rr = V (z7, ¢},). For a givency,, consider the set

L:={ceR: V(zp,c) > ¢€}.
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L is a random set, depending 6@“ throughz}, = x‘*Nl. Oncegc"‘N1 is fixed,
1-— V(:::TNl,c), as a function ot, is clearly the cumulative distribution function
of the random variablé(xTNl,é). Hence,V (z}, , c) is right-continuous and non-
increasing inR, entailing thatZ can be written ag. =] — oo, ¢[. The following
property provides a useful characterization of Het

Property 1. "2 ¢ H if and only iV (27y,, cin,) > € and@(xTNl,d(i)) €L,
Vi € {N1+1,...,N1 +N2} *

Proof. At the detuning step 4, the FAST algorithm computes

E3 * i
ch = max Uz 5@
B 1, N1+ Ny (@], 0),

ie. ¢y = max{cTNl,maxi:NlJrl,___,NlJrNQ E(ac‘*Nl,(S(i))}_ If V(ac‘*Nl,c‘*Nl) > €,
we havecty < ¢ If E(xTNl,(?(")) € L,Vi € {N; +1,....N; + N}, we have
Maxi=Ny+1,.., NNz L@y, . 60) < e Thus, we havej, < ¢ ie. ¢ € L,
when both conditions hold true simultaneously, yieldﬁ'i@”LN2 € H. Vice versa,

if V(z[y,:c[y,) < €we havecfy > ¢ sothatcy, > cfy, > ¢ le cp ¢ L
and 822 is not in H; on the other hand, if(xTNl,é@) ¢ L for somei e
{N1 + 1,..., Ni + No} we havel(z}y, , %)) > ¢, so thatey, > €(zfy,,60) > ¢,
i.e.ch ¢ LanddY ™2 isnotinH. O

Based on Propertyl 1 we proceed now to evaluate the prolyatiilit/ :

P 1)
= [1{-} = indicator function

_ /A oo, UV (@l i) > cand(ay, 00) € L,
Vi € {N1 + 1, o 7N1 + NQ}}]P:XH-Nz{d(si\h-i-Ng}
= N : AP0
_ /A o, MV @y i,) > € 1t 0) € L,
= [using Fubini’s theorein
N /AN1 ]l{v(erl’Cer) > e}
|:/ 1{€($TN175(2)) S L,VZ € {Nl + 1, A 7N1 + NQ}}PXQ{d(S%iiiVQ}
AN2

P {do ). (4.8)
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As we show below in this proof, the inner integral in the sgularackets is
upper-bounded byl — ¢)™2 for any#2"*, and it is exactly equal tol — ¢)V2 when
Assumptiori 2 is satisfied. Therefoie' V2 { i/} is upper-bounded as follows

]Pnger{H} <(1- 6)N2/

- {V 2]y, cln,) > JPA{dS ). (4.9)

The integral in[(4.D) i@XI{V(x}‘VI,c}‘VI) > ¢}, that is, the complementary distri-
bution function, evaluated af of the risk ofc},, when the min-max decisiony,
is made based ol; scenarios. According t@ (3.4), this quantity is upper-tu®a

by BN while it is exactly equal tazN? whenever Assumptiolnl 2 is satisfied,

see((3.b). Thus, froni_(4.9) we conclude that
PEH) < (1 B
which is the statement of Theorémh 9, while, if Assumpfibn gatisfied, we have
equality, i.e.
PAUNHY = (1 o)™ - BN,
and Theorerm 10 is proved.

To complete the proof we have to evaluate the inner integr@d.B).
In what follows, we take a fixed'" - so thatz?, is fixed - and the result is

proved by working conditionally with respect &é\] L
By the independence of the samples,

/N 1{l(xfy,,0") € L, Vi €{Ny +1,..., Ny + No} JPR*{do N1 T2} (4.10)
AN2

Na
< / 1{t(w7y,.0) € L}PA{d5}>
A
_ (IPA{Z(:UTNl,5) € L})Nz

= (Pa{tlaiy, 0) < 5})N2 . (4.11)

By Assumption 2, IPA{E(:cer,é) =c}=0s0 thatV(:nTNl,c) = IPA{E(:cer,é) >
c} is a continuous function of. Sincec is the extreme point of the set where
V(xTNl’C) > ¢, by continuity it follows thaﬁ/(mer, ¢) =e. HencelP’A{E(erl,é)
<c}= PA{E(x‘*Nl,(S) <ct=1 —PA{E(x‘*Nl,(S) >ch=1— V(:rz'*Nl,E) =1—c¢
and the right-hand side of (4]10) equdls— ¢)2. If Assumption2 does not
hold, we prove thaPA{E(xTNl,é) < ¢} < 1— e To this end, define the sets

L, :=]—o0,é— 1] forn > 1. Clearly,L,, C L, andPa{l(afy,.0) € Ly} =
1-V <m|*N1,E — %) < 1 — e. Applying theos-additivity of Pa, we conclude that

Pa{l(aty,,0) € L} =Pa{l(xly,,6) € U L}

) P |
:7}1—{20 |:1—V<CE|N1,C—E>:| <1-—c€
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and the right-hand of(4.10) is upper-bounded(by- ¢)"2. O

4.4 Conclusion and perspectives for future work

In this chapter we have presented a decision-making afgoribat is a modifica-
tion of the classical data-based min-max algorithm, waykinith reduced sample
complexity. Indeed, the obtained cost threshdidfor the FAST solutionz* has

a risk that concentrates on smaller values than does theicdhsvorst-case cost
c* for the classical worst-case decisioh. Moreover, we have proved tha}. is

a distribution-free coverage statistic for a whole (nothpbbgical) class of prob-
lems. The main idea behind FAST is that of exploiting redumogtain the data.

In particular, in FAST this is done by solving two problemsdascade: at the
first stage a classical min-max decision problem is solvethgnobtained; at the
second stage a simple one-dimensional optimization iopadd, leading to the
guaranteed cost,. From a theoretical point of view, the most interesting fact
about FAST is the possibility afxactlycomputing the distribution of the risk of
the two-step solutior{z,, ¢3.), thus suggesting that ideas similar to that behind
FAST can be used to design decision-making algorithms tigtit guarantees on
risks.

A possible difficulty with FAST arises when the decision-makcurs an unac-
ceptable suboptimality. We recall that suboptimality carebsily detected during
the decision process by evaluating how large the differep%c"‘N1 is. If c}—cTNl

is too high, the decision-maker may want to improve its deois’., e.g. by iter-
ating the FAST algorithm with a large¥;. FAST can then be used as the building
block for an iterative procedure where a limited number efations can be per-
formed, thus allowing the user to trade the sample complexith the quality of
the decision. Clearly, the confidence in the risk being ndndérighan a givere
should be accordingly computed (or, at least, bounded bynplsiapplication of
the union bound).

In Appendix[B the FAST algorithm is presented for more gehevavexand
constrainedoptimization problem, and an example is given in that cantex



Conclusions and future
developments

We have studied the theoretical properties of decisionseraadording to two dif-
ferent data-based approaches: a least-squares apprahaanst-case approach
with convex cost function. In particular, we have shown tha possible to eval-
uate in a distribution-free manner, tightly and before aayads observed, the
coverage probabilities of meaningful cost thresholdscivlsire associated with a
data-based decision according to suitably defined rulethdneast-squares con-
text, we have provided an algorithm to compute cost threlshalith guaranteed
mean coverage, and we have shown that these thresholdesedalthe empirical
costs. In the worst-case approach, we have extended toeafirtipirical costs a
known result about the exact probability distribution of #overage of the worst
empirical cost. We have introduced a version of the worseapproach that al-
lows for reliable decision-making even when data are few.

All our results hold under the hypothesis that data are iaddent and iden-
tically distributed (i.i.d.). Since we do not assume that pobability according
to which data are generated is known to the decision-makerbsalieve that, in
the situations considered, we have provided useful thieatebols to put data-
based decision-making on a solid theoretical ground. Alsetheory presented
can be applied to wider contexts than decision-making. f&iance, the author of
this thesis is particularly interested in theodel selection problemvhich is now
briefly outlined.

The model selection problem

In Chaptei 2, Examplel 4, we have mentioned an applicatiouofi®ory to a re-
gression problem, that is, toraodel fittingproblem. In a model fitting problem,
the decision variable: ¢ R? represents a model, characterizeddogarameters,
of the dataD™ = 6, ..., §N) observed, and the cost functié(e, §) measures
how badly a data point fits the model:. The best modet* can be chosen accord-
ing to the average approach or the worst-case approachedtindthis work. Our
theory allows us to associate with the modéla certificate about the reliability
of the model:*, i.e. a valuec(D?) such that, for a new data poifit it holds that
{(z,0) < c(DV) with a guaranteed probability. Different models can be ob-
tained by selecting the best model from various (gayodel classes of increasing
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complexity, e.g MDD € M@ C ... € M® thus obtaining: best-fitting mod-
els,zM" ... zM” To each model a cost can be associated in the light of our
theory, i.e.c(M(DV),...,c) (DY), so that each of these costs is guaranteed at
the same level of probability. The comparison among® (DV),...,c*)(DV)
provides a first criterion to select a good model among variasses of models.

For a basic introduction to the model selection problemgsge[13], Chapter 7

Our work can be continued along several directions. Therthpresented in
Chaptei 2, dealing with mean coverages, waits to be conapleith theoretically
sound results about other properties of the coveragesyat@nces. Algorithms
alternative to FAST, presented in Chajter 4, can be studiéate the problem of
the dependence on the problem dimension in the theory oft€hap
More sophisticated decision-making schemes can also bstigated. For exam-
ple, a sliding window approach to the observed data can baluséeeping under
control contingent changes @ with time, as well as allowing an interesting
frequentist interpretation of the coverage propertieshénline of results for trans-
ductive predictors studied in [53].

The properties of decisions made according to iterativerses are at present sub-
ject of research: an iterative scheme allows to updatéinea decision when new
observations suggest that the decision can be improvedllithe study of more
general cost functions (non-quadratic in the average agprand non-convex in
the worst-case approach) and, from a more radical pointesf,vielaxations of the
i.i.d. assumption constitute open and stimulating researeas. In this regard,
the introduction of weak dependence assumptions, gikeixing (see e.qg.[[43],
Chapter 2, Section 5), is certainly worth being considered.



Appendix A

The scenario approach to
constrained convex optimization
problems

While, in our work, we have only considered convex min-matrojation prob-
lems, the theory of the scenario approach studied i [2%&002] 67|, 44, 93, 57]
is set-up for general convex constrained optimization lgrols. In this appendix, a
brief overview of the main results of this theory is given AppendixXB the FAST
algorithm presented in Chaptéer 4 is extended to this gecerdéxt.

A.1 General problem statement

Given a constant vectere Rt a convex and closed s&tC R4*+! and a family
of convex and closed sef%;, parameterized in the uncertainty variabjeonsider
the following constrained convex scenario program

min 'z
z€ZCRd+1
subjecttoz € [ Zsm, (A.1)
i=1,..,.N
wheres™ ... (V) are instances af independently sampled according to proba-

bility measurePa . In a convex setting, linearity of the objective functiomishout
loss of generality, since every convex program can be r@nmrivith linear objec-
tive, see e.g/]62]. Also, note that (A.1) generalizes the-max problem:
min  max_{(z,5%). (A.2)
r€EXCRA i=1,...,.N
In fact, (A.2) can be rewritten in epigraphic form as follows

min c
X CRY, c€R

subject to:/(z,6@) <¢, i=1 N.

gee ey
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98 The scenario approach to constrained convex optimizatioproblems

Hence, [(A.2) is a particular case ¢f (A.1) with= (z,¢), Z = X x R,
Zs = {(z,¢) : L(z,9) < ¢}, andr” = (0,0,...,0,1). In other words, a con-
vex problem like[(A.l) is an extension of the min-max probdediscussed in our
work, and it arises in modeling uncertain optimization véhtre feasible set’
depends o, too. Note that[{All)s more general thar_(Al.2hecausethe cost
function ¢(z, §) is real-valued. If the cost function were defined as an exténd
real-valued function, i.el : X x A — (R U {£o0}), then [A.1l) and{A.R) would
be equivalent. Indeed, (A.1) can be formulated as a min-makl@m by posing
r=2z2X=Z{(z,0) = +ocforanyz ¢ Zs, and/(z, ) = r’z otherwise.

We are interested in quantifying the probability théf the solution to[(AlL),
is violated by an unseen uncertainty instaacéhat is, we want to studa{J €
A z ¢ Zs5}. We give the following formal definition.

Definition 9 (violation probability) Theviolation probability or justviolation, of
a given pointz € Z is defined as

V(Z) = ]P’A{(S eA: 2z §é Z(g}.

Throughout, we will assume implicitly that, for any. and any choice of
oM ..., 60 any problem of the form
min 7’z
2€ZCR4+1
subjecttoz € [ Zs0 (A.3)
i=1,....m

is feasible and its feasibility domain has non-empty imterand that the solution
of (A.3) exists and is unique. This assumption is commonudyhg constrained
convex problems. Relaxations of it are possible, in the $inggested in Section
2.1 of [56], but we will not consider them for simplicity. Nothat in the min-max
context, the condition of feasibility and non-empty inberis always satisfied.

A.2 Review of main results

We need a preliminary definition and a proposition.

Definition 10 (support scenario)For given scenarios™) 52 ... (V) the sce-
nario 6, r € {1,..., N}, is called a support scenario for the optimization prob-
lem (A.J) if its removal changes the solution @.T]).

*

Proposition 2. For every value o6, 6@ ... ) the number of support sce-
narios for (A1) is at mostd + 1, i.e. the number of optimization variables.

For a proof, see [94, 29].
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A.2.1 Fundamental theorem

Following [5€], we focus provisionally on situations whete following fully-
supportedness assumption is satisfied.

Assumption 3 (fully-supportedness)Let considerfA. 1) for all N > d + 1. With

probability one with respect to the extractions of samples, 52, ... 6@V it

holds that the optimization proble@.1I) hasexactlyd + 1 support scenarios.
*

As shown in Chaptdr]3, the class of problems satisfying Aggiam[3 is not
empty, nor pathological. For this class, the following famkntal theorem holds
true.

Theorem 12([56]). Under Assumptiohl 3, it holds that:

d
PR{V(z") > e} =) (7) e(1—e)N T, (A.4)
1=0

independently aPa. *

The equation[(A}4) reads that for fully-supported probleims probability
of seeing a “bad” sampl®™ = 5 ... §(N) such thatV (z*) > e is exactly
S (M)ei(1 — )Nt The right-hand side of {Al4) is the so-called incomplete
Beta function ratio, see e.d. [70], that is, the violatid(z*) is a random variable
having aBeta distribution whateverPx is. When Assumptiofil3 is dropped, the
distribution of VV(2*) is still dominated by a Beta distribution, that is, the faling

theorem holds true.

Theorem 13([56]). It holds that:

d

PR{V(z") > e} <) <

1=0

N) (1 —e)N T, (A.5)

7

independently dPx. *

The bound in[(A.b) is a bound valid irrespectivelRf, so that an application
of Theorem_IB does not require knowledge of probability. Moreover, result
(A.5) is not improvable since the inequality in (A.5) becomes an equality for
the class of the fully-supported problems.

When using[(A.b), one can fix a valueand an arbitrarily small confidence
parametep, and find the smallest intege¥ such thaty" ¢ (V)e'(1 — e)N =i <
3. Due to [AB), thisN entails thatPX {V(z*) > €} < 3, so that solving the
optimization problemi{Al1), based dvi observed scenarias), ..., 5V), returns
a solution such thalt'(z*) < e holds with (high) confidenceé — 3.
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A.2.2 Explicit formulas
In [93], it is shown that everyV satisfying

1 1 1
N>-(d+In=+ 2dln—>
(a g+

is such thay "¢, (V)ei(1 — )N~ < 8, so thatPN {V (2*) > ¢} < B. We here
prefer to use the slightly less refined but more compact ¢omd{also proved in
[93])

e 1 1
> — — .
N_€_1€<d+lnﬁ>, (A.6)

which still shows the fundamental fact thisithas a logarithmic dependence on the
confidence parametét, and goes Iiké}.

A.2.3 Expected value

Observe that for a problem witN scenarios and + 1 decision variables, the dis-
tribution of V' (z*) has expected value equalfé}, for fully-supported problems,
while in general it holds that

<4+l
T~ N+1
This result was first proved i [29] but can be derived fromdreen [A.B) as well.

Ean [V(27)]

A.2.4 Scenarios removal

Assume that, for any scenarios)!), ..., §(N), we have a rule to removesce-
narios, say"), ..., 6(+). Given N scenarios, we consider the solutief, , to
the problem obtained by ignoringscenarios, sa§'t), ..., () j.e. the solution
to
min 7’z
2€ZCRA+1
subject to:z € N Zse). (A7)

i€{1,.., NI\ {i1,....ix }
The rule to remové: scenarios is arbitrary, the only constraint we impose isitha
must lead to a solution}, , that with probability1 is violated bys(), .., k),
i.e. it must hold true tha;tjv\k ¢ Z,,J = 1,..., k. Under this condition, the
following theorem, proved in [57], holds true.

Theorem 14([57]]). The violation probability ofzjv\k can be bounded as follows:

NUCHED R lif (7)ea-ar

independently dPa .
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This result allows the user for trading-off the probabilibat the solution is
satisfied by the unseen uncertainty instances and the taisteat by the solution.
Of no less importance is the fact that this result can be useabke the solutions
more stable. Indeed, scenario solutions can be very diffevben different sets of
scenarios are considered: removing “worst” scenariosceslthis variability.

A.3 Applications

The most important applications of the general theory heesgmted are in ro-
bust optimization (i.e. as probabilistic relaxations dfust problems) and chance-
constrained optimization. See e.d. [[29] 68, [79, 95] for igppbns of the the-
ory here presented to robust control or input design, ahddi7hn application
to chance-constrained problems in finance. However, eehelte presented have
found applications also in models for interval predictisee [65], and a general-
ization of the mathematical machinery underlying Theoréhinds been exploited
in machine learning, to bound the probability of error of assification algorithm
presented in [96].






Appendix B

Generalized FAST algorithm

A generalized FAST algorithm can be applied to find a decigidhe presence of
uncertainty in the general constrained contex{Cof(A.1¢, AppendiX’A. We will
see that the generalized FAST algorithm produces, in twasste final decision
z3 such that the distribution of the violation probabiliy(z}.) can be kept under
control, for relatively smallV.

Before presenting the algorithm, a further assumption exled: we have to
assume that the user knows a “robustly feasible” point.

Assumption 4. A pointz € ((sca Z5) N Z is known to the user. *

It is perhaps worth stating explicitly that there are no ieguents org other
than it is robustly feasible, in particular there are no meuents on its perfor-
mance value-’z. Assumption 4 is satisfied in many situations of interest. In
particular, it is usually easy to check the feasibility ofrev“action” solution: an
example is robust feedback controller synthesis with bednaboise, as in_[68],
where one can take corresponding to the zero controller set-up. Similarly, a
suitablez can be found in applications as IPMs (Interval Predictor bley see
[65]. One way to search for a robustly feasilslén more general contexts is by
sequential randomized algorithms, see €.g.[[9]7, 98, 91].

In the following, the generalized FAST algorithm is giverhelmain theoreti-
cal result for the generalized FAST algorithm is presente8action B.R, followed
by a brief discussion in Section B.3. In Section|B.4 a nunaégxample is given.

B.1 Generalized FAST algorithm

e INPUT:

- € €]0, 1], violation parameter;

- B €]0,1], confidence parameter;

- Ni, an integer such that, > d + 1;

- 2 € (Nsen Z5) N Z, arobustly feasible point.
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104 Generalized FAST algorithm

1. Compute the smallest integdh such that

In g3 — In BN

>_r e .
Ny 2 In(1—¢) (B.1)
whereBN? = 24 (V) el(1 — )N
2. SampleV;+N; independent constraings!), . .., sV s+ - 5(N1+N2)

according tdPa.
3. Solve problem{All) withV = Nq; let 2, be the solution.

4. (Detuning step) Let[a] := (1 —a)zy, +az, a € [0,1], i.e. Z[a] describes the
line segment
connectingzl*N1 with z. Compute the solution* to the problem

min 77 2]

a€l0,1]
N1+N2

subjecttozfo] € () Zs0- (B.2)
i=N1+1

e OUTPUT:

- 2f = Z[at].

B.2 Theoretical results

The violation of the solutionr}, obtained with the generalized FAST algorithm is
characterized by the following theorem.

Theorem 15(main theorem on the generalized FAST algorithrim) the current
set-up, it holds that

PRV () > €} < 8. (B.3)

Moreover, N> given in point 1 of the generalized FAST algorithm cannotrbe i
proved in the sense that there are problems for which\Bosmaller than that
given in point 1 of the generalized FAST algorithm maf&8) true.

A proof is given in Section BI5.
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B.3 Discussion

The essential difference between the FAST algorithm ofiGed2 and the gener-
alized FAST algorithm of this section is the detuning stéy itlea of raising:"‘N1

in the FAST algorithm is replaced in the generalized FASaigm by the idea

of moving Z\*Nl towardsz. This operation can be performed at low computational
effort since [(B.2) is an optimization problem with a scalacidion variablex, so
that [B.2) can be solved e.g. by means of bisection. Morealenbservations in
the discussion Sectidn 4.2.2 can be carried owetatis mutandiso the context of

the present section.

Remark 5 (interpretation) Though mathematically analogue to the FAST algo-
rithm of Chaptel#, the usage and interpretation of the galieed FAST algorithm
here presented may differ substantially. Indeed, in thegmegeneral constrained
context, we cannot always interpret a candidate soluti@s a decision-cost pair:

in general, a pointz € R¥*! represents a decision, with an associated adst
that may depend on all thé+ 1 components of. Being the vector deterministic,
the question is not the uncertainty of the cost correspantti;,, but the fact that
z3. may be unfeasible for a new instancespto that, ifz}. ¢ Zs, the costrTz}
looses its significance. Hene€, 2} is still a guaranteed cost, but only because

is guaranteed to be-feasible.

B.4 Numerical example

In this section, the classical scenario approach to convellgms is compared
with FAST on an example.

B.4.1 Constrained convex scenario program

The following constrained convex problem wiB00 optimization variables and
uncertain LMI (Linear Matrix Inequality) constraints has specific interpretation
but resembles problems arising in robust control, see [99].

200
min g Zj
2E€R200
j=1

200
subjectto:» " R;(6")B(W)R; (672 <1, i=1,...,N,
j=1

where

10 _ 5(i) 5(i)
I = - B sy = |71 2.
{0 J o) [55” Y
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J-1 ) g
R, (60 = €08 (%T(é“))) S <27TT(5<')>> j=1,...,200,

sin <27TT(5(1))) coS <27T T(5(l))

with T(5(')) = 200 + 200%%”, ands® = (51", 5 6 58)) are sampled from

[0, 1]* with uniform probability. B(5) is a stochastic matrix ani;(5®)) is a
rotation matrix whose period (5(*)) is also stochastic.

B.4.2 Classical approach vs FAST

Takee = 0.01 and3 = 1077, i.e. we are interested in a scenario solution with a
violation probability no more than 1%, with confidente- 10~°.
In the classical approach, using (A.5) in Apperldix A, we ®rit

199

> (7)ea-orr <0

1=0

which yields N = 29631. Solving [B.4) with N = 29631 yielded a cost value
>3 2F = —1.052. Turning to FAST, we tookV; = 4000, and, according to
(B.1), we obtainedV, = 2062. Running [(B]ﬂf) withNV = N; = 4000 we obtained
a solutionz7y, with cost value} "7 27 . = —1.076. Next, we selected = 0,

so thatz[a] = (1 — a)z; 2y and solved the detuning step wity, scenarios:

200
. .
min (1-) ; v
200 ' ' 4
subject to:(1 — a) > R;(6V)B(6")R; (6 2y, 5 X1,
j=1
i=N1+1,...., N1 + Ns. (B.5)

The optimal detuning value was' = 0.048, yielding the final solutiore;, =
(1— oz*)z|*N1 = 0.952zy, with cost value0.952 - (—1.076) = —1.024. Solving
the problems by using cvx, [100], the total execution timéWAAST was20 times
faster than with the classical scenario approach. With lemahlues ofe, the
comparison between the execution times is further unbathircfavour of FAST,
and FAST continues to offer a viable approach even for vatifesas small as
0.001 while the classical scenario approach becomes rapidlydatisal as is let
decrease.

B.5 Proof of Theorem 15

The proof of Theorern 15 follows the same line of reasonindhasdf Theoremis]9
andI0 in Chaptérl4, see Section 4.3.1. For bredity,= (6™ 5+ 500),
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so thatd??, € An—m+L,
We want to compute the probability of set

H := {éf[ﬁNQ : Vizp) > e}. (B.6)

Given Z\*Nl’ the solutionz}, obtained by the generalized FAST algorithm lies
on the half-line defined a§a| := (I_O‘)Zer +az, a €]—00, 1]: this half-line ex-
tends the line segment at point 4 of the generalized FASTigtgo in Sectiorl B.1L
beyond pointz‘*Nl. The setZ of points on this half-line with a violation probability
bigger thare is formally defined as:

Z :={z[a] : a €] —o0,1] andV (Z[a]) > €}.

Since set<; are convex and cloself,(£[«a]) is right-continuous and nonincreasing
in o €] — o0, 1]. Hence,Z is an open half-line. In formulas, by defining

a:= sup {a:V(a]) > €}, (B.7)

a€]—o0,1]
Z can then be rewritten as
Z ={%[a] : a €] —o0,al}.
The following property provides a useful characterizatifiset 4 .

Property 2. 62> ¢ H if and only ifV(zy,) > candZ N Zy # 0Vi €
{Nl +1,..., N+ NQ}

*

This Property(2 can be proved similarly to Propdrty 1 in Sed#.3.1, by
observing thatZ has here the same role Asn Sectioi 4.31. Refer to Figure B.1
for a geometrical visualization of the various objects lved.
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direction

J optimization zZ= 2[1]

Figure B.1. Optimization domain for probleni {B.2) in step 4 of the gefieeal FAST al-
gorithm. The algorithm returns the poitit closest tozy, and such that}. € Z5),Vi €

{N1 +1,..., N1 + No}. In this figure, setZ;. is the region above the shaded area, and
ZN Zsey £ 0.

Based on Properfyl 2 and mimickirig (4.8), the probabilityotan be written
as

]P’XIJFNQ {H}
:/ H{V(ZDVI) >E} |:/ ]l{ZﬂZ(w) #@,\V/Z'G {N1+1,...,N1—|—N2}}
AN AN2
PHAON | P ao ).

By the independence of the samples, the inner integral slditier equation can
be written as

/ 1{Z N Z50) #0,Vi € {N1 +1,..., Ny + No}}PR2{do N 717}

AN2

= (Pa{zZnzZs #0 )™,

which, as we shall show below in this proof, is upper-bountgd1 — ¢)™2 for
everyéiv1 (it can also be proved that it is exactly — ¢)V2 whenever the setg;
satisfy a non-degeneracy condition). Thus, we conclude tha

PXI‘FNQ {H}
<1 /A 1{V(2,) > PV {d6)1}
Ny

< (1—e)N2BNid, (B.8)
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where the last inequality follows from Theordm] 13 in Appendi (for fully-
supported problems it is an equality in light of Theofdem T)eoreni 1b follows
by substituting in[(B.B) the expression fdk given in [(B.1).

The fact that(Pa{Z N Zs # 0 })V < (1 — )2 is now proved by working
conditionally on a fixeds!", so thatz[a], a €] — oo, 1] has to be thought of as a
fixed half-line. Define the sets

Zy={2[a]: a €]—00,a—1]},
forn > 1. Clearly, {0 € A: Z,N 25 # 0} = {0 € A: 2[a — L] € Z;}, that
is for Z,, N Z5 to be non empty, the extreme poitjtx — %] of Z,, must be inZ;.
Now, by the Definitiori D of violation probabilitypa {6 € A : Z[a — 1] € Z;} =
1 - V(zla — 1), and by ther-additivity of P, we have that

Pa{Znzs # 0}

ZPA{U{ZMWZ&#@}}

n=1

— Jim [1-V (:[a— 1])]

n—o0

SI—E,

where the last inequality follows from the fact tHatz[a — %]) > €, Vn, seel(B.Y).
Thus,(Pa {Z N Zs # 0})™2 < (1 — €)™2, and the theorem is proved. O
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