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Overview

In this work we provide new theoretical results fit for use by decision-makers called
to cope with uncertainty. We will focus on single-objectivedecision problems
where a cost function beset by uncertainty has to be minimized. In these contexts,
which are common in control systems engineering, operations research, finance,
etc., a widespread heuristic is that of making a decision based on a set of collected
data calledscenarios. We will focus on two important approaches to data-based
decision-making: theaverage approachwith quadratic cost function (least-squares
decision rule) and theworst-case approachwith convex cost function (min-max de-
cision rule).
Once the optimal decision has been computed according to theselected data-based
approach, we are interested in the probability that a new situation, i.e. a new un-
certainty instance, carries a cost no higher than some empirically meaningful cost
thresholds. The probability that a cost threshold is not exceeded is calledcoverage.
By describing the coverage properties of meaningful cost thresholds, we gain quan-
titative information about the reliability of our decision. Some recent theoretical
developments have shown that, under the hypothesis that thescenarios are drawn
independently according to a fixed probability distribution, coverage properties can
- in situations of great interest - be effectively studied ina distribution-free context,
that is, without any knowledge of the probability distribution according to which
data are generated. In this work, we will follow this same line. We will determine
meaningful cost thresholds (that are, in statistical terms, meaningful statistics of
the data) apt to characterize least-squares and min-max decisions, and provide the
decision-maker with analytical tools to evaluate the distribution of the costs, with-
out knowing the probability distribution of the data.
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ii Overview

Description by chapters, and notes on original contributions

Chapter 1 - Decision-making in the presence of uncertainty
The mathematical framework is introduced, a common background for the con-
cepts used throughout this work is provided. Motivations for our studies are given,
and the results in the following chapters are surveyed. Someworks related - by
affinity or by opposition - to our approach are briefly discussed at the end of this
chapter.

Chapter 2 - The coverage probabilities of the least squares residuals
This chapter deals with data-based least-squares decisions. An algorithm to com-
pute characterizing statistics, having interesting distribution-free coverage proper-
ties, is provided. Results presented in this chapter are still unpublished.

Chapter 3 - On the reliability of data-based min-max decisions
This chapter deals with data-based min-max decisions with convex cost functions.
The most important known result in this context is given by the theory of the
scenario approach to constrained convex optimization (which is recalled for com-
pleteness’ sake in the Appendix A), stating that the empirical worst-case cost has
distribution-free coverage for a whole class of problems. This result is here ex-
tended to all the others empirical costs: the joint probability distribution of the
coverages of all the empirical costs turns out to be an ordered Dirichlet distribu-
tion, independently of the distribution of the data. The material in this chapter has
been partially published by the author of this thesis together with Simone Garatti
and Marco C.Campi, [1].

Chapter 4 - Data-based min-max decisions with reduced sample complexity
In this chapter, we propose an algorithm that allows the decision-maker to charac-
terize, by means of a statistic having guaranteed high coverage, a min-max decision
even when the number of observed scenarios is smaller than that required by the
standard approach. The idea presented in this chapter has been published, together
with Simone Garatti and Marco C.Campi, in [2].

Appendix A - The scenario approach to constrained convex optimization problems
We summarize for easy reference the most important known results in the theory
of the scenario approach for constrained convex optimization.

Appendix B - Generalized FAST algorithm
A more general version of the algorithm of Chapter 4 is presented.



Compendio

In questo lavoro si forniscono risultati utili al decisore chiamato ad affrontare situa-
zioni di incertezza. Ci concentreremo su problemi decisionali a singolo obiettivo,
nei quali si richiede di minimizzare una funzione di costo affetta da incertezza. In
tali contesti, che accomunano decisori negli ambiti dell’ingegneria del controllo,
della ricerca operativa, della finanza, etc., un procedimento euristico diffuso sug-
gerisce di prendere una decisione basandosi su una raccoltadi dati, dettiscenari.
Prenderemo in considerazione due filosofie comunemente adottate nel prendere
decisioni sulla base degli scenari: l’approccio ai “minimiquadrati”, che prescrive
di scegliere la decisione che minimizza il costo medio rispetto agli scenari, e l’ap-
proccio del “caso peggiore”, che prescrive di minimizzare il costo più alto tra quelli
dei diversi scenari. Una volta calcolata la decisione secondo uno dei due approcci
considerati, siamo interessati alla probabilità che una nuova situazione porti con
sé un costo non più alto di certe soglie empiricamente significative. La probabilità
che una soglia di costo non sia superata è dettacopertura. Attraverso la descrizione
delle proprietà di copertura di opportune soglie di costo, si acquista dunque un’in-
formazione quantitativa circa l’affidabilità della decisione adottata. Alcuni recenti
sviluppi teorici dimostrano che, sotto l’ipotesi che gli scenari siano osservati indi-
pendentemente e in accordo con una stessa distribuzione di probabilità, importanti
proprietà della copertura possono, in contesti di grande interesse, essere studiate
prescindendo dalla conoscenza della distribuzione di probabilità dei dati. Questo
lavoro si colloca in tale prospettiva. Individueremo dellesoglie di costo signifi-
cative (le quali altro non sono, in termini statistici, che statistiche significative dei
dati), fornendo al decisore uno strumento per valutare la distribuzione dei costi in
corrispondenza della decisione presa, a prescindere dalladistribuzione dei dati.
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Chapter 1

Decision-making in the presence
of uncertainty

In this chapter we introduce the main concepts used throughout this work, and pro-
vide a common framework for the results proved in the remaining chapters. In
the following Section 1.1 the problem of making decisions inthe presence of un-
certainty is formalized. This is done step-by-step, with the purpose of providing
motivations for the theoretical set-up used. In Section 1.3the formal position of
our problem is summarized and specialized to the cases covered in this work. A
brief review of existing results related to our research concludes the chapter.

1.1 Theoretical set-up

The problem of making a decision can be abstracted as the problem of choosing a
valuex from within a decision setX . We are interested in decision problems where
the decision-maker wants to choosex so as to minimize acost. The dependence of
the cost on the decisionx can, in principle, be modeled through a real-valued func-
tion ℓ(x), so that the best solution is but the solution to the following minimization
problem:

min
x∈X

ℓ(x).

However, such a formalization turns out to be naive in many situations, due to that
the cost incurred by the decision-maker is commonly beset byuncertainty. Uncer-
tainty can enter the problem at various levels, but there aremainly two sources of
uncertainty that are worth mentioning:

• unpredictability of phenomena;

• modeling errors.

Indeed, circumstances that are not directly under the decision-maker control and
are not completely predictable may influence the cost of a decision.

1



2 Decision-making in the presence of uncertainty

Example 1 (unpredictability of phenomena). River banks should be built up to
reduce the costs incurred in case of floods. The higher the banks, the higher is the
building cost. For a given water level, we can compute the banks height required
to prevent severe floods. But water levels changes in the course of time depending
on weather conditions, which are variable and unpredictable.

⋆

Also, it is rare to have a perfect model of the reality underlying the decision
problem:modeling errorsnormally occur when physical systems are involved.

Example 2 (modeling errors). x represents the tunable parameters of an electric
controller andℓ(x) the maximum output voltage overshoot. Since some physical
aspects of the real system may elude the model underlying thecost function (e.g.
a resistance differs from its nominal value by5%; there may be small unmodeled
nonlinearities, etc.), the cost incurred is normally affected by uncertainty.

⋆

In real life, both sources of uncertainty combine1 and we need a way to face
uncertainty in a general manner. We model the effect of the uncertainty by intro-
ducing in the cost function an uncertainty variableδ taking values in the uncertainty
set∆. Thus, the cost function is redefined as a bivariate functionℓ(x, δ), where
the presence ofδ shows that to a fixed decisionx a variety of possible costs is
associated, depending on the value assumed byδ.

Example 3. In the case of Example 1,∆ is the set of possible water levels. In
the case of Example 2,∆ may represent the space of all the possible models of
the system, more concretely, an interval of the possible values for an uncertain
resistance.

⋆

The uncertaintyδ can be faced according to different approaches, as will be dis-
cussed in Section 1.4. In this work, we focus on thescenario approach, introduced
in the following section.

1.1.1 Scenario Approach

Thescenario approachis an intuitive heuristic used at large in optimization prob-
lems affected by uncertainty. It prescribes to face uncertain decision problems
based on a finite numberN of instances of the uncertain parameterδ. These in-
stances ofδ, δ(1), δ(2), . . . , δ(N), are calledscenarios, and sometimes we will de-
note them more compactly withDN . In order to produce the final decisionx∗,

1Though clear in words, the line of demarcation between modeling errors and unpre-
dictable phenomena sometimes seems to blur. Indeed, effects of modeling errors are often
modeled themselves as exogenous “noises”.



1.1 Theoretical set-up 3

the cost functions associated with the scenarios are altogether taken into account.
Concretely, the decisionx∗ is obtained as follows:

x∗ := argmin
x∈X

L
(

ℓ(x, δ(1)), ℓ(x, δ(2)), . . . , ℓ(x, δ(N))
)

,

whereL(·) is a suitable cost-aggregating function, summarizing the behavior of
the N scenario-dependent cost functions. As principal examples, L can be the
averaging function 1

N

∑N
i=1 ℓ(x, δ

(i)), discussed in Section 1.3.1, or theworst-
casefunctionmaxi=1,...,N ℓ(x, δ(i)), discussed in Section 1.3.2. Throughout, the
decisionx∗ will be also called thescenario solution.

Although, in principle, theN scenarios required may be constructed by the
decision-maker according to some ad-hoc criterion, we are interested in the case
where theN scenarios are collected observations, i.e.data. In this case, we can
interpret the decisionx∗ as a decision based on past experience, and the main
concern withx∗ is that of assessing its reliability with respect to the whole set∆ of
possible uncertainty instances. Note that, while the number of past observations is
finite and equal toN , usually∆ is an infinite set. For example, a possible indicator
of the reliability ofx∗ with respect to the unseenδ’s is

c∗ := max
i=1,...,N

ℓ(x∗, δ(i)),

i.e. the maximum cost associated to the decisionx∗ among the seen scenarios. The
so definedc∗, however, is just an empirical quantity depending onδ(1), . . . , δ(N),
and it is clear that it is meaningful only if an assessment of the risk that a new
uncertainty instance carries a cost higher thanc∗ is provided. Such a risk, clearly,
depends on “how large” the set

{δ ∈ ∆ : ℓ(x∗, δ) ≤ c∗}
is, which we callcoverage setassociated toc∗. Ourc∗ is a significant but particular
case of a data-dependent cost threshold that can be used to characterize a data-
based decisionx∗. Below, we formally define the concept ofcoverage setfor
general data-dependent cost thresholds.

Definition 1 (coverage set). Let c be a real function defined over∆N . For every
dataDN ∈ ∆N , thecoverage setof c(DN ) is defined as

{δ ∈ ∆ : ℓ(x∗, δ) ≤ c(DN )},
wherex∗ is the decision made based onDN , according to some fixed decision-
making algorithm (to be more explicit, we could have writtenx∗ asx∗(DN ), but
such a dependence is left implicit throughout). ⋆

In conclusion, to characterize a solutionx∗ based on a cost thresholdc(DN ),
we need a way to measure the coverage set ofc(DN ).

Our next step is to introduce a probabilistic framework thatallows us, at the
same time,
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1. to interpret a data elementDN ∈ ∆N as the result of real observations,

2. to measure the coverage set of a data dependent thresholdc(DN ).

We will see that this can be done in a distribution-free context, that is, without
assuming the knowledge of the distribution according to which data are observed.

1.1.2 Probabilistic framework

We will assume that the set∆ is endowed with aσ-algebra and a probability mea-
sureP∆, and that scenariosδ(1), . . . , δ(N) are independently chosen by Reality
according toP∆, that is,DN can be thought of as a sample from∆N according
to the product measurePN

∆ . The reader interested in a broader discussion of this
assumption and its practical meaning is referred to Section1.2. For basic concepts
of probability, we refer the reader e.g. to [3]. Finally, we will not discuss explic-
itly measurability issues in this work: we limit ourselves to assuming that all sets
considered are measurable.
Usually, the probabilityP∆ underlying the data-generation mechanism is unknown
to the decision-maker. Consequently, we assume thatP∆ exists, but that it remains
hiddento the decision-maker. In view of these positions, it seems natural to con-
sider the unknown quantity

P∆{δ ∈ ∆ : ℓ(x∗, δ) ≤ c(DN )}

as a suitable measure of the coverage set ofc(DN ). We denote this quantity as the
“coverage probability ofc(DN )”, or just as the “coverage ofc(DN )”. SinceDN is
random, the functionc of the dataDN is, according to the statistical nomenclature,
astatistic.

Definition 2 (coverage). Given a statisticc of the dataDN , the coverage ofc(DN )
is

P∆{δ ∈ ∆ : ℓ(x∗, δ) ≤ c(DN )},
and it is denoted byC(c(DN )). ⋆

Clearly, given a statisticc, its coverageC(c(DN )) is a random variable taking
values in[0, 1] with a distribution that, in general, depends on the specificproblem
at hand, in particular on the specific probability measureP∆. Nonetheless, the
object of this work is to show that there are many cases of interest where statistics
having an intuitive empirical interpretation, like for examplec(DN ) = c∗, are such
that much is known about their coverages, though nothing is known aboutP∆. In
other words, we will focus on coverage properties that areindependent ofP∆.

1.1.3 Distribution-free coverage properties

We here define classes of statistics whose coverages have meaningful properties
that hold true for every possibleP∆, i.e. in a distribution-free manner.
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A first, important quantity characterizing the distribution of C(c(DN ) is the
mean coverageE∆N [C(c(DN ))], i.e. the expected value ofC(c(DN ) computed
over all possibleDN . We introduce the following definition.

Definition 3 (distribution-freeα-mean coverage statistic). Let α ∈ (0, 1). For a
fixed number of scenariosN , a statisticc has a distribution-freeα-mean coverage
if, for every probability measureP∆, it holds that

E∆N [C(c(DN ))] ≥ α. (1.1)

⋆

Thus, on average, anα-mean coverage statistic is expected to “cover” at least
a proportionα of the possible costs, no matter whatP∆ is. We are particularly
interested in (empirically meaningful) statistics that can be characterizedtightly as
distribution-freeα-mean statistics, i.e. whose mean coverages are exactly equal
to α for some probability measureP∆. Also, it is reasonable to look for statistics
whose mean coverages are equal toα for large classesof probability measures of
practical significance, and this is what we aim to do in the chapters that follow.2

If we know thatc is a distribution-freeα-mean coverage statistic, we can im-
mediately answer to the following question:

“What is the total probability of observingN scenariosδ(1), . . . , δ(N),
consequently obtainingx∗ andc(DN ) based on them, and that a new
observationδ carries a costℓ(x∗, δ) not higher thanc(DN )?”

In fact, we have that

E∆N

[

C(c(DN ))
]

= E∆N

[

P∆{δ ∈ ∆ : ℓ(x∗, δ) ≤ c(DN )}
]

= [denoting with1{·} the indicator function]

= E∆N

[

E∆

[1{δ ∈ ∆ : ℓ(x∗, δ) ≤ c(DN )}
]]

= E∆N+1

[1{(DN , δ) ∈ ∆N ×∆ : ℓ(x∗, δ) ≤ c(DN )}
]

= PN+1
∆ {(DN , δ) ∈ ∆N ×∆ : ℓ(x∗, δ) ≤ c(DN )}, (1.2)

which is the sought probability. Therefore

PN+1
∆ {(DN , δ) ∈ ∆N ×∆ : ℓ(x∗, δ) ≤ c(DN )} ≥ α,

2Clearly, the requirement thatE∆N [C(c(DN ))] be exactly equal toα for everyP∆ is
too strong and cannot be achieved. In fact, for a givenα ∈ (0, 1), the class of statistics
satisfying the property “E∆N [C(c(DN ))] = α for everyP∆” is empty. To see this, takeP∆

as a probability measure concentrated on a unique scenarioδ̄. In this case, any statisticc
takes a constant value, sayc̄, and has a deterministic coverage equal to1, if c̄ ≥ f(x∗, δ̄),
or to0, if c̄ < f(x∗, δ̄).
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and the answer to the above question is (independently ofP∆): “certainly no less
thanα.”

In spite of the usefulness of distribution-free results about mean coverages,
more refined distribution-free characterizations ofC(c(DN )) can be obtained. We
give the following definition.

Definition 4 (distribution-free(ǫ, β)-coverage statistic). Let ǫ, β ∈ (0, 1). For a
fixed number of scenariosN , a statisticc has a distribution-free(ǫ, β)-coverage if
relation

PN
∆

{

D
N ∈ ∆N : C(c(DN )) ≥ 1− ǫ

}

≥ 1− β

holds for all probability measuresP∆. ⋆

So, if c is a distribution-free(ǫ, β)-coverage statistic, we can claim that the
coverage ofc(DN ) is at least1 − ǫ with confidence1 − β. Of major inter-
est is the case whereǫ is “small”, say0.01, while β is “very small”, say10−7,
so that, no matter whatP∆ is, the coverage ofc(DN ) is at least1 − ǫ “with
a reasonable degree of certainty”. For fixedǫ and β, the so-defined statistics
are tightly characterized if there exists some probabilitymeasureP∆ such that
PN
∆

{

D
N ∈ ∆N : C(c(DN )) ≥ 1− ǫ

}

= 1− β. We will show that, for many im-
portant decision-making problems, it is possible to find tight statistics such that
the conditionPN

∆

{

D
N ∈ ∆N : C(c(DN )) ≥ 1− ǫ

}

= 1− β holds true for large
classes of probability measures that are of practical significance. Moreover, the
whole probability distribution ofC(c(DN )) may turn out to be the same for large
classes of probability measures. We give the following definition.

Definition 5 (distribution-free coverage statistic). If the probability distribution of
C(c(DN )) is the same for a whole class of probability measuresP∆, we will say
that the statisticc is a distribution-free coverage statisticfor the class of problems
characterized by those probability measures. ⋆

Before proceeding, some terminological remarks are worthwhile.

Remark 1 (coverage). The term “coverage of the statisticc(DN )” is quite intuitive
and allows us to emphasize our interest in making statements, based on the finite
set of observationsDN , that “covers” the unseen instances ofδ. Nonetheless,
it is a direct application of a term borrowed from statistical literature, since the
coverage set ofc(DN ) in Definition 1 can be interpreted as a “tolerance region”
in the space∆, having indeed “coverage probability” equal toC(c(DN )), see e.g.
[4, 5]. ⋆

Remark 2 (risk). In some contexts, the focus is on the complementary of the cov-
erage set, that is, on the “bad” set of thoseδ’s exceeding the cost thresholdc(DN ).
The probability of this set is calledrisk. With this terminology, a distribution free
(ǫ, β)-coverage statistic has a risk less than or equal toǫ with confidence1 − β.
We will prefer to deal with therisk instead of with thecoveragein the min-max
context, i.e. from Chapter 3 onward. ⋆
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Admittedly, the notation used up to now to indicate events isquite pedantic,
since the sample space over which the probability measure isdefined can usually
be understood without ambiguity. Hence, throughout we wille.g. write more
compactly

PN+1
∆ {ℓ(x∗, δ) ≤ c(DN )}

in place of
PN+1
∆ {(DN , δ) ∈ ∆N ×∆ : ℓ(x∗, δ) ≤ c(DN )},

and similarly in similar cases.

We are now ready to overview the results achieved in this work. This is done
in Section 1.3. The following Section 1.2 goes into the interpretations and motiva-
tions of the probability framework introduced in this chapter, and can be skipped
without loss of continuity.

1.2 Interpretation of the probabilistic framework

We recall the two main sources of uncertainty entering a decision problem:

• unpredictability of phenomena;

• modeling errors.

The first kind of uncertainty is commonly involved when the collected scenarios
δ(1), . . . , δ(N) are the results of field experiments performed in various environ-
mental conditions, or are retrieved from historical series, see e.g. [6, 7]. Although
the link between probability and physical world is subject to philosophical contro-
versies3, most engineers seem willing to admit that, in many situations of interest,
the data that Reality provides us can be conveniently thought of as the outcomes of
a random variableδ, sampled according to some arcane, but in some senseexist-
ing, probability distributionP∆. Arguing in favor of the existence of a certainP∆

underlying the generation ofδ(1), . . . , δ(N) commonly requires using application-
domain knowledge and arguments. Once the existence ofP∆ is accepted, we think
that measuring the coverage sets introduced above based onP∆ is the most natural
option. Moreover, since we donot assume that the decision-maker knows the ar-
caneP∆, the only assumption requiring further justification is theassumption that
δ(1), . . . , δ(N) are independent. Still, the decision-maker can argue in favor of this
assumption based on a-priori knowledge about reality and onhis data-acquisition
procedure. For example, when microscopic phenomena with very rapid dynamics
(e.g. thermal agitation) are at the origin of noises, noisesusually turn out to be
independent processes when sampled on a macroscopic time scale: this argument
has been used to justify the commonly accepted noise model insystems and control

3For a recent debate in the systems and control community, see[8] and the discussion
paper [9], in particular the contribution of Jan C. Willems.
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engineering, see e.g. the seminal paper [10]. In finance, according to the classical
Black-Scholes model, logarithmic return increments at equispaced time intervals
are independent, see [11]. Remarkably, independence can beinduced by a suitable
data-acquisition procedure, as, for example, in opinion polls, where the decision-
maker canrandomly selectpeople to be interviewed. Generalization to contexts
where scenarios are not independent or are not generated according the sameP∆

is an open and stimulating research area, beyond the scope ofthe present work.
As for uncertainty due to modeling errors, we offer here a similar interpretation as
that above. The space∆ can be thought of in the abstract as the set of all the models
that are candidate to represent the physical reality determining the cost function, as
in Example 2. More concretely,δ can be a vector of uncertain parameters, whose
correct values can be estimated through identifications procedures, see e.g. [12].
The scenariosδ(1), . . . , δ(N) are then collected as the outputs ofN independent
identification procedures. Indeed, the output of an identification procedure is sub-
ject to some variability, since it depends on the kind of experiment performed,
on environmental conditions, and so forth and so on. If we accept a probabilistic
description for this lack of determinism,P∆ can be naturally defined as the (un-
known) probability according to which the identification outputs are generated.

The interpretation of the probability framework advocatedabove is not the sole
possible. ProbabilityP∆ may be introduced by the user without any reference to
a supposed state of the world, but just as a technical tool aimed at quantifying
the relative importance of the possible occurrences ofδ. According to this point
of view, scenarios are artificially generated fromP∆ in an independent way, so
that more important values ofδ are more likely to be considered in making the
decision. A thresholdc(DN ) with guaranteed large coverage is thus associated
with the obtained decisionx∗, so that we can conclude that the most important
instances ofδ are likely to carry a cost no higher thanc(DN ). Indeed, even though
ourP∆-independent quantifications of the coverages are of particular interest when
P∆ is unknown, they can still be useful when the probability is known, e.g. for
computational reasons.

1.3 Introduction to the problems studied in this work

We recall for easy reference the main symbols introduced above.

X : decision set;

x ∈ X : decision variable;

∆ : uncertainty set;

δ ∈ ∆ : uncertainty parameter;

(∆,D,P∆) : probability space, where

D : σ-algebra over∆,
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P∆ : probability measure over(∆,D);

D
N ∈ ∆N : a sample ofN scenarios, independent and identically distributed

according toP∆, i.e.,DN is short notation forδ(1), . . . , δ(N);

ℓ : X ×∆ → R : cost function - the cost depends onx and the uncertainδ;

L :
(

RX )N → RX : cost-aggregating function - it aggregatesℓ(x, δ(1)), . . . , ℓ(x, δ(N)).

We concentrate on the scenario solution, defined as

x∗ := argmin
x∈X

L
(

ℓ(x, δ(1)), . . . , ℓ(x, δ(N))
)

,

and study its coverage properties, in the light of Definitions 2, 4, 5 and 3, for two
instantiations of the cost-aggregating function that are ubiquitous in applications.

1.3.1 Average setting

When anaveragecost-aggregating function is used, the decisionx∗ is chosen as
the one that performs beston averagefor theN scenarios, that is

x∗ = argmin
x∈X

1

N

N
∑

i=1

ℓ(x, δ(i))

= argmin
x∈X

N
∑

i=1

ℓ(x, δ(i)). (1.3)

Although many variations on the theme are possible and stimulating, in the next
Chapter 2 we will study the case where the cost functionℓ(x, δ) is a (convex)
quadratic function inx for eachδ. Moreover we will assumeX = Rd. In opti-
mization terminology, the problem (1.3) withℓ(x∗, δ) quadratic inx ∈ Rd is anun-
constrained quadratic optimizationproblem, more commonly called a (classical)
least squaresproblem. We will discuss the coverage properties of statistics defined
to be as similar as possible to the empirical costsℓ(x∗, δ(1)), . . . , ℓ(x∗, δ(N)). In
particular, we will focus on distribution-free i

N+1 -mean coverage statistics, where
i = 1, . . . , N . It will be shown that empirical costsdo not havethe desired cover-
age properties, while i

N+1 -mean coverage statistics can be obtained by considering

suitable approximations ofℓ(x∗, δ(1)), . . . , ℓ(x∗, δ(N)).

The focus on the particular case of least squares problems isjustified because,
since Gauss and Legendre proposed to solve regression problems through the least
squares method at about the beginning of the XIX century, seee.g. [21], the least
squares method has been used in countless applications. SeeTable 1.1 for just a
few examples.
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Table 1.1. A few examples of least squares problems.
Interpretation ofδ Interpretation ofx Interpretation ofℓ(x, δ) References

Linear regression
theory

Data point Coefficients weighting
regressor functions

Regression error Chapter 3 of [13], see
also Section 2.1 of this
work

Facility location Position and weight of the
demand points

Location for a new facility Cost of the state of the
world

[14, 15, 16, 17, 18], see
also Sections 2.1 and
2.3 of this work

LQ regulator Noises, uncertain model
matrices

Control action Quadratic performance
index

Chapter 2 Section 4 of
[19], see also Section
2.1 of this work

Receding-horizon
estimation

Uncertain model matrices Estimated state Deviation of estimated
outputs from measured
outputs

[20]

1.3.2 Worst-case setting

When theworst-casecost-aggregating function is used, the decisionx∗ is the one
minimizing the worst-case cost among those carried by the seen scenarios, i.e.

x∗ = argmin
x∈X

max
i=1,...,N

ℓ(x, δ(i)). (1.4)

Clearly, the worst-case function leads to more cautionary results with respect to
the average one. We will show that, in this context, strongerresults than those of
Chapter 2 can be obtained, under more general assumptions. Assumptions are re-
laxed by allowing forℓ(x, δ) to be a general convex function inx for eachδ, and
for x to be chosen in a constrained way, that is,x ∈ X ⊆ Rd, with convex and
closedX .
An immediate application of an already known result, borrowed by the theory re-
called in Appendix A, establishes that, ifℓ(x, δ) is convex, the statistic given by
the highest empirical cost associated tox∗, that is

c∗ = max
i=1,...,N

ℓ(x∗, δ(i)),

is a distribution-free coverage statistic for a whole subset of problems. In general, it
is a distribution-freeN−d

N+1 -mean coverage statistic, and can be tightly characterized
as an(ǫ, β)-coverage statistic for very interesting values of(ǫ, β). In fact, for fixed
d andǫ, the confidence parameterβ can be heavily reduced (i.e. the confidence can
be heavily increased) by a small increase ofN . The decision-maker can use this
result about the coverage ofc∗ by associating with the decisionx∗ a performance
c∗ guaranteed at a certain level of probabilityǫ. In Chapter 3, this result is extended
to all the others empirical costsℓ(x∗, δ(1)), . . . , ℓ(x∗, δ(N)). In particular, for the
same set of problems for whichc∗ is a distribution-free coverage statistic, we have
that thejoint probability distributionof the coverages of all the empirical costs
ℓ(x∗, δ(1)), . . . , ℓ(x∗, δ(N)) can be computed exactly and doesnot depend onP∆.
Moreover, by denoting withc∗1, . . . , c

∗
N all the empirical costs from the largest to

the smallest, we have thatc∗d+1, . . . , c
∗
N arein general, that is under very mild as-

sumptions, distribution-free coverage statistics, and the classic result, which char-
acterizesc∗ in full generality as a distribution-free(ǫ, β)-coverage statistic, turns
out to be an immediate consequence of the trivial fact thatc∗ ≥ c∗d+1. In short, we
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provide an extension and a reinterpretation of the classic result about the coverage
of c∗, thus providing the decision-maker with an instrument to characterize in a
distribution-free manner the coverages of all the costs associated withx∗.
A possible issue with this approach is that the number of scenariosN required to
guarantee that the coverage ofc∗ is no smaller than1 − ǫ with a good confidence
depends on the problem dimensiond as d

ǫ
: if d is large, it may become difficult

to guarantee a high coverage. In Chapter 4, a way to face this problem is offered,
by introducing a slightly modified decision-making algorithm and a statistic - a
modified version ofc∗ - whose coverage is far less sensitive to an increasing ofd
than its counterpartc∗. This allows the decision-maker to characterize a worst-case
decision by means of a high coverage statistic, using a relatively small number of
scenariosN .

1.4 Review of the literature

Our work has a two-layered nature.

Layer of the decision-making approaches: a decision in the presence of
uncertainty has to be made, and we propose to make the decision according
to an intuitive and common sense data-based algorithm (in particular, by
minimizing the value of theaverageor of theworst-caseaggregating-cost
function);

Layer of the probabilistic guarantees: our theoretical analysis, based on
distribution-free coverage properties of empirically significant statistics, al-
lows to characterize the decisionx∗, which is made based on a finite data
sample, with respect to the infinitely manyunseensituations.

First, we consider some classic approaches to decision-making in the presence of
uncertainty, and then we discuss studies about the probabilistic characterization of
a solution obtained based on a finite data sample. At the end ofthis section we
will give some more specific references related to the two settings (average setting
with quadratic cost function and worst-case with convex cost function) considered
in this work.

Decision-making approaches

Standard approaches to face uncertainty in optimization problems can be grouped
into three classes:

• Robust optimization;

• Stochastic optimization;
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• Chance-constrained optimization.

We aim not at providing a complete survey of them, but just at pointing out how
the main ideas of these approaches reflect in our framework.

Robust optimization
In robust optimization, studied in [22, 23, 24, 25, 26, 27, 28], the main idea is that
the decision-maker wants to be “robust” with respect to all the possible uncertainty
instancesδ ∈ ∆, so that the decision should be made by choosing

x∗ := argmin
x∈X

(

max
δ∈∆

ℓ(x, δ)

)

. (1.5)

If the set∆ grasps the real range of uncertainty, the decision is certainly robust
with respect to the worst case. However, taking into accountall the (believed to
be) possible realizations ofδ can turn out to be too conservative an approach, some-
times nearly paralyzing the decision-making process. Moresophisticated schemes
has been proposed to increase the degrees of freedom of the decision-maker in
trading robustness and conservatism, also with the supportof probabilistic models
for the uncertain parameters. For example, [27] assumes that uncertain param-
eters take values on intervals according to symmetric distributions. In all cases,
the decision-maker is called to model suitably the uncertainty set∆, and this is
a delicate task prone to arbitrariness (e.g. in [6, 28], methods to build reasonable
uncertainty sets according to a data-based criterion are suggested). The idea of
the data-based worst-case approach, according to whichx∗ is chosen as in (1.4),
is to simply replace the uncertainty set∆ in (1.5) with the data themselves, that is
with {δ(1), . . . , δ(N)}. An important point is also that to solve (1.5) is in general
computationally difficult, see e.g. [23, 24]: this was one ofthe motivations for the
theoretical study of (1.4), see [29, 30] and references therein.

Stochastic and chance-constrained optimization
In stochastic optimization and chance-constrained optimization, the probabilistic
framework is adopted, and the probabilityP∆ is assumed to beknown. Stochastic
optimization has been introduced in [31]. The basic idea, using our notation, is to
choose

x∗ := argmin
x∈X

E∆ [ℓ(x, δ)] . (1.6)

Clearly, the expected value of the cost has to be computed in order to be minimized
and in general this involves the difficult computation of a multi-variable integral.
This is why the expected value is sometimes replaced by an empirical mean over
N scenarios, thus recovering a problem like (1.3) with average cost-aggregating
function. In other words, the stochastic problem (1.6) can be solved through a
Monte-Carlo method, where each Monte-Carlo sampleδ(i) can be interpreted as a
scenario, see e.g. [32, 33]. However, a word of caution aboutterminology is neces-
sary, because the term “scenario approach” in stochastic programming has usually
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a slightly different meaning than that used in our work. In stochastic programming,
the term “scenarios” is usually employed to indicate instancesδ(1), . . . , δ(N) that
are selected by the decision-maker, who assigns to each of them a probability, not
necessarily equal to1

N
. The probability is indeed assigned according to some (sub-

jective or objective) criterion, and the decisionx∗ is commonly made by averaging
over the cost functionsweightedby the corresponding probability. However, if the
scenarios are randomly sampled and the uniform sample distribution is assigned
to them, the “scenario approach” in stochastic programmingboils down to solving
our average problem (1.3).
More in general, in stochastic optimization any other operator depending onP∆

could be placed instead of the expected value. A special caseof stochastic opti-
mization is chance-constrained optimization, see e.g. [34, 35, 36, 37, 38, 39]. The
idea is to choosex∗ by optimizing over the set∆ minus anǫ-probability set of un-
certainty instances ofδ carrying the highest costs. Formally, for a fixedǫ ∈ (0, 1),
the chance-constrained problem writes as:

min
x∈X⊆Rd,γ∈R

γ

subject to:P∆{ℓ(x, δ) ≤ γ} ≥ 1− ǫ, (1.7)

whose solution(x∗cc, γ
∗
cc) is the pair consisting of the optimal chance-constrained

decisionx∗cc and the corresponding costγ∗cc that can be exceeded with probability
no greater thanǫ. Chance-constrained optimization is notoriously hard to solve
in general, even though there are notable exceptions where the solution can actu-
ally be computed, see [36, 37, 40]. In Chapter 3, we show how tocomputeN
so that, for a fixedǫ and very smallβ, the worst-case costc∗ associated to the
worst-case decisionx∗, computed according to (1.4), is a distribution-free(ǫ, β)-
coverage statistic. This allows us to interpret the scenario approach as a method
to find a pair(x∗, c∗) being afeasiblesolution for the chance-constrained problem
(1.7) with very high confidence1− β, independently ofP∆.

Probabilistic guarantees for sample-based solutions

In the following, we focus on main contributions aiming at a theoretical analysis
of a decisionx∗ computed based on a finite data sample. In particular, we mention
three kinds of theoretical studies:

• studies of asymptotic properties,

• studies in statistical learning theory,

• studies about a posteriori evaluations,

and show briefly in what they differ from ours.
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Asymptotic properties and statistical learning theory
The study of asymptotic properties is the study of the properties of the decision
x∗ when it is made based on a number of dataN that goes to infinity, while our
work aims at providing results for finite, and possibly smallN . In some cases, the
decision of the problem with “an infinite number of scenarios” is considered as the
ideal decision. For example, consider the solutionx̄ to the following stochastic
optimization problem

min
x∈X

E∆[ℓ(x, δ)].

Sometimes, becauseP∆ is unknown or for computational reasons, one tries to
approximate the ideal̄x by means of the minimizer of the empirical mean, that is,
one decides forx∗, computed as in (1.3), instead of for the idealx̄ (unattained or
unattainable). In this case, convergence results guaranteeing thatx∗ → x̄ are in
order, see e.g. Chapter 5 in [39]. Also, the decision-maker may be interested in
knowing what the difference is between1

N

∑

i=1,...,N ℓ(x∗, δ(i)), i.e. the mean of

the empirical costs corresponding to the finite set of dataD
N , and the true expected

costE∆[ℓ(x
∗, δ)], or even the true expected cost associated to the ideal decision x̄,

i.e. E∆[ℓ(x̄, δ)]. Statistical-learning theory faces this and other similarproblems,
and studies the conditions under which it is possible to generalize fromN finite
data to a quantity depending on all the infinite possibile data, see the fundamental
book [41], and [42, 43]. The basic assumptions of statistical-learning theory are
the same as ours:

• P∆ exists but it is unknown;

• the samplesδ(1), . . . , δ(N) are independent and identically distributed.

For example, for a given sample-based decision-making algorithm producingx∗,
for a fixedη and a very smallβ one can find the suitableN such that

PN
∆

{∣

∣

∣

∣

∣

E∆[ℓ(x
∗, δ)] − 1

N

N
∑

i=1

ℓ(x∗, δ(i))

∣

∣

∣

∣

∣

≤ η

}

≥ 1− β, (1.8)

thus guaranteeing (with very high confidence1 − β) that the empirical mean and
the real expected value differ at most by a small amountη. The magnitude (or even
the finiteness) ofN depends on boundedness properties of the cost functionℓ(x, δ)
and on its possible “variability” with respect to the randomδ. A formula like (1.8),
which represents a typical result that can be obtained through statistical learning
theory, is out of the scope of our work, because it focuses on an expected value,
that is an average quantity depending on all the unseenδ’s, while we focus on the
property ofa singleunseen uncertainty instanceδ of being or not being covered
by a given cost thresholdc(DN ). Statistical learning theory, however,canbe used
to study coverage properties, too. In fact, given a data-based decisionx∗ and a
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cost thresholdc(DN ), we may define the indicator function of the coverage set of
c(DN ) as: 1C(δ) := 1{δ ∈ ∆ : ℓ(x∗, δ) ≤ c(DN )}, (1.9)

where1{·} denotes the indicator function of the set{·}. Mathematically, the cover-
age ofc(DN ) is anything but the expected value of the binary function1C(δ) with
respect to the uncertainδ, that isC(c(DN )) = E∆[1C(δ)]. The difference between
the empirical version ofC(c(DN )), that is 1

N

∑N
i=1 1C(δ(i)), and its true value, that

is E∆[1C(δ)], can indeed be studied by resorting to the statistical learning theory.
However, in the contexts studied in our work, statistical learning theory is more
conservative, and requires a large number of scenariosN (e.g. whenℓ(x, δ) is a
convex function the sought finiteN may not even exist). Indeed, the usual approach
to this kind of problems is based on uniform convergence results aiming at guaran-
teeing the convergence of the empirical to the true value notonly for 1C(δ), which
is the indicator function defined forthedecisionx∗ andthecostc(DN ) of interest,
but also andat the same timefor all the otherpossible decision-cost pairs (or, at
least, for a large subset of them, as in [44]). We will formally show that results
in statistical learning approach cannot improve the results presented in Chapters
3 and 4, by showing that our results are tight, i.e. not improvable at all. As for
results in the average setting of Chapter 2, here we limit ourself to the observation
that they do not depend directly on the sized of x, which enters instead the bounds
that, to our knowledge, can be obtained according to the statistical learning theory.
Nonetheless, situations that we have not considered in the present study (e.g. non-
convex cost functionsℓ(x, δ), unusual selection of the cost-aggregating function,
etc.) can at least in principle be faced with the support of the statistical learning
theory. For recent results on this topic, see e.g. [44]. Studies on data-dependent
penalties may allow to reduce the gap between conservative uniform convergence
results and approaches that guarantees one particular decision: see e.g. [45] and
references therein.

A-posteriori assessments
Assume thatx∗ and c(DN ) have been computed according to some rule, and
that we have at our disposal an arbitrarily high number of additional scenarios
(this is a rare situation if scenarios come from real experiments). Assume also
that computingℓ(x∗, δ) for many δ’s is easy (this is not always the case, see
the example considered in [46]). Then, a posteriori assessments can be easily
made. A Monte-Carlo evaluation can be run onM new independent uncertainty
instances, e.g.δ(N+1), . . . , δ(N+M), and the coverage estimated by the quantity
1
M

∑M
i=1 1C(δ(N+i)), with 1C(δ) defined as in (1.9). In fact, an application of the

classic Hoeffding’s inequality (see e.g. [47] for results on concentrations inequali-
ties) yields

PM
∆

{∣

∣

∣

∣

∣

C(c(DN ))− 1

M

M
∑

i=1

1C(δ(N+i))

∣

∣

∣

∣

∣

≤ η

}

≥ 1− 2e−
2η2

M .
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In the following, we give some more specific references aboutthe two distinct
settings (average setting with quadratic cost function andworst-case with convex
cost function) considered in this work.

1.4.1 Quadratic cost function

We mention here a pair of works about decision-making with uncertain quadratic
cost function. Results for the robust problem (1.5) with quadratic ℓ(x, δ) are pre-
sented in [48, 49], under some conditions about the structure of the uncertainty.
In [48] it is also shown that the robust problem is in general NP-complete. In
[50], the guaranteed residual-at-risk minimization of thequadraticℓ(x, δ) is in-
troduced: similarly to chance-constrained optimization,one obtains the best pair
(x∗rr, γ

∗
rr) such thatP∆{ℓ(x∗rr, δ) ≤ γ∗rr} ≥ 1− ǫ, but, differently from the chance-

constrained case, the conditionP∆{ℓ(x∗rr, δ) ≤ γ∗rr} ≥ 1 − ǫ has to hold not only
for oneknownP∆, but for asetof distributionsP∆, i.e. those satisfying the condi-
tion that the uncertain parameterδ has a certain known expected value and a certain
known variance. Moreover, the uncertainty is there assumedto be constrained ac-
cording to a precise structure.

1.4.2 Average setting with quadratic cost function

About our work
Results presented in Chapter 2 have been inspired by investigations about order
statistics and tolerance regions, see e.g. [4, 51, 5, 52], and conformal predictors,
[53]. Indeed, the result presented in Chapter 2 can be thought of as a generalization
of a classic result, there recalled, about order statisticsto a context where the dis-
tribution of the cost is influenced by an optimization procedure. Also, as noted in
Remark 1, coverage sets can be interpreted as tolerance regions. Nonetheless, such
an interpretation fails to grasp the specificity of our approach: we are not interested
in predicting future realizations ofδ, but rather in the event that a cost threshold is
not exceeded. The event of a cost not being exceeded is studied theoreticallyas if
it werea tolerance region suitably tailored in the space∆.

Some references to related results forx∗ chosen as in (1.3) with quadratic cost
function follows.

Known results in a very restricted context
In a very restricted context, whenx ∈ R,∆ = R andℓ(x, δ) = (x−δ)2, the classi-
cal theory of tolerance regions can be easily applied to find statistics similar to those
obtained in Chapter 2 that have distribution-freek

N+1 -mean coverages, too. For ex-

ample, the tolerance regions defined asT (DN ) := [mini=1,...,N δ(i),maxi=1,...,N δ(i)]
is known to have mean coverage no less thanN−1

N+1 . It is not difficult to see that
the setT (DN ) is a subset of the coverage set of the empirical worst-case cost
c∗ = maxi=1,...,N ℓ(x∗, δ(i)). Hence, this proves that, in this restricted context,c∗
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has distribution-freeN−1
N+1 -mean coverage, too. A result presented in [54] could also

be applied in this same restricted scalar context to obtain statistics with distribution-
free mean coverage: these statistics are by construction a scaled version of the esti-
mated variance of the samplesδ(1), . . . , δ(N). For a comparison between prediction
intervals obtained in [54] and ordinary tolerance regions see [55]. We limit our-
selves to observing that the distribution-freeN−1

N+1 -mean coverage statistic obtained
in Chapter 2, as well asc∗, remains bounded at the increasing ofN wheneverδ has
bounded support, while theN−1

N+1 -mean coverage statistic obtainable by using the
results in [54] necessarily goes to infinity.

A related result in the general context
The general contexts withℓ(x, δ) = ‖A(δ)x−b(δ)‖2 , whereA ∈ Rn×d is ann×d
matrix andb ∈ Rn a column vector, is studied in [20], wherex∗ is computed ac-
cording to (1.3) and known results in statistical learning theory are applied, under
some a-priori conditions, e.g. boundedness of the uncertainty set and ofℓ(x, δ), in
order to study how nearE∆[ℓ(x

∗, δ)] is tominx E∆[ℓ(x, δ)].

1.4.3 Worst-case setting with convex cost function

The results from Chapter 3 onward are in the vein of the so-called theory of the
scenario approachfor convex optimization, [29, 30, 56, 57], which, under the
assumption thatℓ(x, δ) is convex inx, provides the sharpest possible characteriza-
tion of the coverage set of the worst-case cost statistic. The main results and other
references to the scenario approach for general constrained convex problems are
recalled in Appendix A.





Chapter 2

The coverage probabilities of the
least squares residuals

In this chapter, we study a data-basedaverageapproach known as the least squares
method, and show how the least squares solution can be characterized through
suitably constructed distribution-free mean coverage statistics. In the following
Section 2.1 the data-based least squares problem is formally stated, with examples,
and our result is introduced. In Section 2.2 the main theoremis provided followed
by a discussion, while proofs are postponed to Section 2.4. Anumerical example
is given in Section 2.3. Some pointers to possible future developments are briefly
discussed in Section 2.5.

2.1 Introduction and problem position

We consider an uncertain optimization problems where a decision, modeled as
the selection of a variablex ∈ Rd, has to be made so as to minimize a (convex)
quadratic cost functionℓ(x, δ) that also depends on the uncertain random element
δ. Whenever the uncertain cost functionℓ(x, δ) is a non-negative function1, we
can, according to a standard notation, identify the uncertainty instanceδ with a
pair (A, b), whereA ∈ Rn×d, i.e A is ann × d matrix, andb ∈ Rn, i.e. b is a
column vector, and rewriteℓ(x, δ) as asquared residual:

ℓ(x, δ) = ‖Ax− b‖2,

that is, as the squared Euclidean norm of the difference betweenAx andb. Hence,
given a certain, deterministicδ = (A, b), the best decision would be the minimizer
of thesquared residualof (A, b).
On the other hand, in the presence of uncertainty, the decision is made by consid-

1The assumption thatℓ(x, δ) ≥ 0 will be maintained throughout, but it is immaterial for
the validity of the theoretical results presented in this chapter.

19
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eringN scenarios, i.e.N uncertainty instances

D
N = δ(1), δ(2), . . . , δ(N) = (A1, b1), (A2, b2), . . . , (AN , bN ),

independently generated according to a probabilityP∆ over the uncertainty set
∆ = Rn×d × Rn. The data-based method ofleast squaresprescribes to minimize
theaverage of the squared residualsassociated with theN scenariosDN , so that

x∗ =argmin
x

1

N

N
∑

i=1

‖Aix− bi‖2

=argmin
x

N
∑

i=1

‖Aix− bi‖2. (2.1)

The minimizer of (2.1) is2 the scenario solutionx∗.
A standard application of this approach is in linear regression.

Example 4 (linear regression). Let θ andy be two random variables. We want to
regressy against a polynomial of orderd− 1 in θ. During a campaign of data ac-
quisition,N independent observations(θ(1), y(1)), . . . , (θ(N), y(N)) are collected.
By letting

Ai =

(

1, θ(i),
(

θ(i)
)2

, . . . ,
(

θ(i)
)d−1

)

∈ R1×d, for i = 1, . . . , N, and

bi = y(i),

we can find the coefficients of the best fitting polynomial by solving

min
x

N
∑

i=1

‖Aix− bi‖2.

So, writing the minimizerx∗ explicitly as a vectorx∗ = (α0, α1, . . . , αd−1), we
have that

P (θ) = α0 + θα1 + θ2α2 + . . .+ θd−1αd−1

is the sought polynomial modeling3 the relationship betweenθ andy.
⋆

The following example is a well-known facility location problem and will be
further developed in Section 2.3.

2If the minimizer is not unique, an arbitrary solution determined through a tie-break
rule is taken and denoted byx∗ throughout the paper.

3Indeed, the regression problem is a so-calledmodel fitting problemwhere, strictly
speaking, the scenario solutionx∗ represents a model more than a “decision”, and the
“cost” functionℓ(x, δ) represents how badly a modelx fits a data pointδ.
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Example 5 (Weber problem with squared Euclidean norm). There arem clients,
located at pointsp1, . . . , pm in the spaceR2, to be served by a facility whose
locationx ∈ R2 has to be decided. If there is no uncertainty, the bestx is chosen
by minimizing

ℓ(x) =

m
∑

i=1

ωi‖x− pi‖2,

whereωi is a positive weight reflecting the relative importance of serving the client
located atpi. However, both the clients’ locations and their relative importance
can alter during the course of time, and are subject to uncertainty. Past locations
and the associated weights are then obtained from historical data, so thatN sce-
narios

p
(i)
1 , . . . , p

(i)
m

ω
(i)
1 , . . . , ω

(i)
m

, for i = 1, . . . , N,

can be used to compute the scenario solution:

x∗ = argmin
x

N
∑

i=1





m
∑

j=1

ω
(i)
j ‖x− p

(i)
j ‖2





= argmin
x

N
∑

i=1

‖Aix− bi‖2,

where we have posed

AT
i =





√

ω
(i)
1 0

√

ω
(i)
2 0 . . .

√

ω
(i)
n 0

0

√

ω
(i)
1 0

√

ω
(i)
2 . . . 0

√

ω
(i)
n



 ,

bTi =
[
√

ω
(i)
1 pT1

(i)
√

ω
(i)
2 pT2

(i)
. . .

√

ω
(i)
n pTn

(i)
]

,

(AT
i and bTi indicate the transposes ofAi and bi). Note that we only require that

scenariosare independent one from the others, while e.g. them clients’ locations
can be correlated as well as weights are allowed to be location-dependent in a very
complicated way. ⋆

Finally, we mention a well-known problem in systems and control theory that
involves the least squares method.

Example 6 (finite-horizon linear quadratic regulator). Consider the following lin-
ear system

zt+1 = Fzt +Bxt + wt, where

F ∈ Rm×m, B ∈ Rm×n,

zt ∈ Rm, wt ∈ Rm t = 0, 1, . . . , Tf .
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We look for a control actionx = (xT0 , x
T
1 , . . . , x

T
Tf−1)

T , xt ∈ Rn, for t =
0, 1, . . . , Tf − 1, that keepszt close to0 with a moderate control effort. Quan-
titatively, the best control action is defined as the one minimizing the following
cost function

ℓ(x) =

Tf−1
∑

t=0

(

zTt Qzt + xTt Rxt
)

+ zTTf
QTf

zTf
, (2.2)

whereQt ∈ Rm×m, t = 0, . . . , Tf , are fixed positive definite matrices penalizing
deviations of the state variableszt from 0 at each timet, andRt ∈ Rn×n, t =
0, . . . , Tf − 1, are fixed positive definite matrices penalizing the controleffort.
Denote withIm×n them × n rectangular identity matrix and byIm the squared
m ×m identity matrix, and, similarly, with0m×n ∈ Rm×n and0m ∈ Rm×m the
matrices of zeros. In view of the system equations we have that











z1
z2
...

zTf
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B 0m×n · · · 0m×n
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...
.. . 0m×n
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x0
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xTf−1
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F
F 2

...
F Tf
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Im 0m · · · 0m

Im Im
. . .

...
...

...
. . . 0m

Im Im · · · Im





















w0

w1

· · ·
wTf





















,

which, by denoting withξ the term in parentheses, withG the matrix multiplyingx,
and by definingz := (zT1 , . . . , z

T
Tf
)T , writes

z = Gx+ ξ.

LettingQ andR be the followingmTf ×mTf andnTf × nTf matrices

Q :=













Q1 0m · · · 0m

0m Q2
. ..

...
...

. .. . .. 0m
0m · · · 0m QTf













1
2

R :=













R0 0n · · · 0n

0n R1
.. .

...
...

. . . .. . 0n
0n · · · 0n RTf−1













1
2

,

the cost functionℓ(x) can be written as

ℓ(x) =zT0 Q0z0 + ‖Q(Gx+ ξ)‖2 + ‖Rx‖2

=

∥

∥

∥

∥

∥

∥

∥







01×nTf

QG
R






x−







−Q
1
2
0 z0

−Qξ
0nTf×1







∥

∥

∥

∥

∥

∥

∥

2

,
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which is clearly in the form‖Ax−b‖2, withA ∈ R(m+n+1)Tf×nTf , b ∈ R(m+n+1)Tf

andx ∈ RnTf . If the initial statez0 or the matricesF ,B or the vector(wT
0 , . . . , w

T
Tf
)

are affected by uncertainty, the control action (decision)x∗ can be chosen as
the one that behaves best on average with respect to the observed realizations of
z0, F,B and(wT

0 , . . . , w
T
Tf
). This is done by minimizing

∑N
i=1 ‖Aix− bi‖2, where

(A1, b1), . . . , (AN , bN ) are built as above for every observed uncertainty instance.
⋆

Some references about the examples above can be found in Table 1.1 in Chapter 1.
Now, let us denote withqi the squared residual of(Ai, bi) evaluated atx∗, i.e.

qi := ‖Aix
∗ − bi‖2, i = 1, . . . , N

and consider a new instance of(A, b) sampled fromP∆ independently ofDN . The
squared residualof (A, b) evaluated atx∗ is

q := ‖Ax∗ − b‖2.

q1, . . . ,qN are statistics of(A1, b1), . . . , (AN , bN ). Overall, q1, . . . ,qN ,q are
(univariate) random variables that depend on(A1, b1), . . . , (AN , bN ), (A, b). In
particular, each of them depends on all the dataD

N through the decisionx∗. In
analogy with a classic result about order statistics, we would ask if the probability
thatq exceedsqi can be studied independently ofP∆. First, let us recall this classic
result. Given a univariate sampler1, r2, . . . , rN , we denote withr(1), r(2), . . . , r(N)

the order statistics of theri’s, that is,r(1) ≤ r(2) ≤ · · · ≤ r(N). A similar notation
is in force throughout for all univariate samples. The following theorem holds true.

Theorem 1. Let r1, r2, . . . , rN be a random sample from a distributionF on R.
For a newr sampled fromF independently ofr1, r2 . . . , rN it holds that

PN+1
F {r ≤ r(i)} ≥ i

N + 1
, i = 1, . . . , N, (2.3)

wherePN+1
F {r ≤ r(i)} is the total probability of seeingr1, . . . , rN andr such that

r ≤ r(i). ⋆

Equality in (2.3) holds wheneverF is continuous, see e.g. [52], Chapter 3.
However, this result does not apply to our problem. Indeed, our decisionx∗

is chosen to minimize the average of the squared residuals, so that, in general, the
squared residuals cannot but be biased toward small values when evaluated at that
samex∗, andPN+1

∆ {q ≤ q(i)} is normally less than i
N+1 . The following is a

simple example illustrating this fact.

Example 7. Consider having two data,DN = (A1, b1), (A2, b2), i.e. N = 2.
We assume that, with probability1, A1 = A2 = 1 and b1 6= b2. Based onDN ,
the least squares solutionx∗ and the squared residualsq1,q2 are computed. We
will evaluate the probability that a new instance(1, b) is such thatq ≤ q(2) and
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show that it is strictly less than23 . First, notice that conditionally to any set of
three instances, let’s sayS = {(1, b′), (1, b′′), (1, b′′′)}, the probability of each
permutation of the elements inS is the same, that is, the role of thenew instance
(1, b) is played by each element ofS with probability 1

3 . As a consequence, for
any set of three instances, the three situations represented in Fig. 2.1 are equally
likely and, sinceq ≤ q(2) holds in one out of the three cases, integrating over all
possible set of three instances∆3 yieldsP3

∆{q ≤ q(2)} = 1
3 . ⋆

x∗

x∗

x∗ R

R

R

q

q

q

q(2)

q(2)

q(2)

q > q(2) q > q(2)

q ≤ q(2)

Figure 2.1. Given three uncertainty instances, the figure shows the possible relations be-
tween the statisticq(2) of two of them (which play as the dataDN = (1, b1), (1, b2)) and
the squared residualq of the remaining instance (which plays as the new instance(1, b)).
Squared residuals, as functions ofx, are parabolae: the dashed parabola is(x − b)2, asso-
ciated with the new instance(1, b), while the other two correspond to the dataD

N .

In this chapter we provide statistics̄q(i), i = 1, . . . , N , such that

PN+1
∆ {q ≤ q̄(i)} ≥ i

N + 1
,

for every possibleP∆. These statistics are obtained by adding amargin to the
q(i)’s, according to a rule that does not depend onP∆. We will see that the margin
is small in many situations, so that a good characterizationof x∗ through a finite
and even small number of scenariosN is possible.

As already remarked in Chapter 1, the new instance(A, b) can be interpreted as
the datum(AN+1, bN+1) observed immediately after the decision has been made
based onDN = (A1, b1), . . . , (AN , bN ). For example, in the regression problem
considered in Example 4, the new instance corresponds to thenext observed data
point (θ(N+1), y(N+1)). In that context, our result guarantees being at leasti

N+1
the probability of the event that
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the data pointsDN are observed, the coefficientsx∗ of the polynomial
P (θ) and the statistic̄q(i) are computed depending onDN only, and
the next data point(θ(N+1), y(N+1)) is such that the squared difference
betweenP (θ(N+1)) andy(N+1) is greater than̄q(i).

According to the Definition 3 in Section 1.1.3, the statisticq̄(i) obtained in this
work is adistribution-free i

N+1 -mean coverage statistic. Indeed, the coverage of
q̄(i) is a function of the dataDN , defined asC(q̄(i)) = P∆{(A, b) ∈ ∆ : q ≤ q̄(i)}
- see Definition 2 in Chapter 1. In view of (1.2), we have thatE∆N [C(q̄(i))] =

PN+1
∆ {q ≤ q̄(i)}, and therefore the valuei

N+1 lower bounds the mean coverage of
q̄(i).

Distributions-free results are of great importance since prior assumptions about
P∆ are usually unrealistic. However, one may expect some conservatism, due to
the pretension of guaranteeing the mean coverage against all possibleP∆. Intu-
itively, we limit the conservatism by the fact of using statistics mimicking those of
Theorem 1. This point will be discussed in more detail later on in Section 2.2.3,
after the main theorem is stated.

2.2 Main result

First of all, we recall some frequently used notations.

2.2.1 Frequently used matrix notations

1. I denotes the identity matrix.

2. For a matrixM :

MT = transpose matrix ofM ;

M † = Moore Penrose generalized inverse ofM ;

‖M‖ = spectral norm= sup‖x‖=1 ‖Mx‖, where the norm in the right-
hand side is the Euclidean norm;

λmax(M) = maximum eigenvalue ofM (M square matrix).

3. For a symmetric matrixM , M ≻ 0 (M � 0) meansM positive definite
(positive semi-definite).P ≻ Q (P � Q) meansP − Q positive definite
(positive semi-definite).

For further information on matrix concepts see e.g. [58, 59].
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2.2.2 Main theorem

To ease the interpretation of the results here exposed,‖Aix − bi‖2 will be conve-
niently written as:‖Aix − bi‖2 = (x − vi)

TKi(x − vi) + hi, with Ki = AT
i Ai,

vi = A†
i bi, hi = ‖Aivi − bi‖2. Observe that, in general, we haveKi � 0 and not

Ki ≻ 0. For example, in the regression problem of Example 4,Ki is always a rank
1 matrix, so thatKi ⊁ 0 for everyd > 1.
Now, let us define the followingN statistics of the dataDN , for i = 1, . . . , N ,

q̄i :=















(x∗ − vi)
T K̄i(x

∗ − vi) + hi

with K̄i := Ki + 6Ki

(

∑N
ℓ=1
ℓ 6=i

Kℓ

)−1

Ki

if Ki ≺ 1
6

∑N
ℓ=1
ℓ 6=i

Kℓ

+∞ otherwise.

(2.4)

Theorem 2. For every probability measureP∆, with the notation above it holds
that

PN+1
∆ {q ≤ q̄(i)} ≥ i

N + 1
, i = 1, . . . , N. (2.5)

⋆

The proof is given in Section 2.4 where a slightly stronger (but more cumbersome)
result than that of Theorem 2 is also proved. Statisticsq̄1, . . . , q̄N , as well as
their ordered versions̄q(1), . . . , q̄(N), have a straight geometric interpretation. The
squared residualqi is the value of the paraboloid(x−vi)

TKi(x−vi)+hi atx = x∗.
According to the Theorem 2, the correspondingq̄i is obtained by evaluating at
x = x∗ asteepenedversion of the paraboloid, obtained by replacing the matrixKi

with K̄i, see Fig. 2.2. The modified̄Ki is given by the originalKi plus a term
whose magnitude depends on the comparison betweenKi and

∑N
ℓ=1
ℓ 6=i

Kℓ, that is,

between the steepness of thei-th paraboloid and the steepness of all the others as a
whole. Intuitively, ifKi is “small” with respect to

∑N
ℓ=1
ℓ 6=i

Kℓ, thenK̄i ≈ Ki, so that

q̄i ≈ qi (i.e. the margin is small), otherwise,q̄i may become large, or even infinite
if Ki ⊀

1
6

∑N
ℓ=1
ℓ 6=i

Kℓ. The so-obtained̄q1, . . . , q̄N are finally ordered and̄q(i) is a

distribution-free i
N+1 -mean coverage statistic. Some remarks are in order.

Remark 3 (characterization of the margin). Under very mild assumptions, at the
increasing ofN the sum

∑N
ℓ=1
ℓ 6=i

Kℓ becomes larger and larger with respect to a fixed

Ki, so that the termKi

(

∑N
ℓ=1
ℓ 6=i

Kℓ

)−1

Ki in the definition ofK̄i tends to zero and

K̄i → Ki, for everyi, yielding q̄(i) − q(i) → 0. Hence, our result mimics the
classic result of Theorem 1. In Section 2.4.3 we prove formally the convergence of
the margin between̄q(i) andq(i) to zero under the hypothesis that the distributions
of theKi’s and thevi’s have exponential tails. The rate of convergence of the
margin to zero is problem dependent, as illustrated by the comparison between
the two examples below: in Example 8, the margin goes to zero as 1/N , while in
Example 9, the margin is exactly zero for anyN ≥ 8. ⋆
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x∗ R

qi

q̄i

Figure 2.2. The parabola(x − vi)
TKi(x − vi) + hi associated with thei-th instance

(continuous line) is compared with its steepened version(x−vi)
T K̄i(x−vi)+hi (dashed

line). At x = x∗, their values are, respectively, the squared residualqi andq̄i as defined
in (2.4).

In the following two examples, the statistics guaranteed byTheorem 1 can
be very easily computed by hand, and they are representativeof many possible
situations whereKi ≈ I, i = 1, . . . , N .

Example 8(parabolae with coplanar vertexes and identityKi). Assume thatAi =
I, i = 1, . . . , N . Thus,Ki = I, vi = bi, hi = 0. See Fig. 2.3(a) for a visualization
of the associated cost functions‖Aix− bi‖2.
Observe thatKi ≺ 1

6

∑

ℓ 6=iKℓ ⇐⇒ N ≥ 8, hence, according to Theorem 2, we
have:

K̄i =
N + 5

N − 1
I,

q̄(i) =
N + 5

N − 1
q(i),

wheneverN ≥ 8. Clearly, the margin̄q(i) − q(i) goes to zero as1/N , e.g. the
margin is less than the10% of q(i) withN = 62, less than1% with N = 602, etc.

⋆

Example 9 (stack of parabolae). Assume that the scenariosDN are such that, for
i = 1, . . . , N , we have

Ai =

[

Id×d

01×d

]

and bi =

[

0d×1

ui

]

,

where the subscripts denote the matrix dimensions (e.g.01×d is a row vector of
zeros) andu1, . . . , uN are scalar values. Thus,Ki = Id×d, vi = 0, hi = u2i . See



28 The coverage probabilities of the least squares residuals

(a) (b)

Figure 2.3. In (a), three instances of the cost functions‖Aix − bi‖2, with Ai = I as in
Example 8, are shown. In (b), cost functions like those in Example 9 are shown.

Fig. 2.3(b) for a visualization of the corresponding cost functions. Observe that
1
6

∑N
ℓ=1
ℓ 6=i

Kℓ ≻ Ki ⇐⇒ N ≥ 8, from which, according to Theorem 2, we have:

K̄i =
N + 5

N − 1
Id×d,

q̄(i) = q(i),

wheneverN ≥ 8. Thus, forN ≥ 8, it holds that

PN+1
∆

{

q ≤ q(i)

}

≥ i

N + 1
,

i.e., there is no marginand, in this situation, the result of Theorem 1 is recovered.
⋆

Remark 4 (the role of dimensiond). By its definition(2.4), q̄i has a finite value if
∑N

ℓ=1
ℓ 6=i

Kℓ is “sufficiently large” with respect toKi. This is a technical fact with an

intuitive interpretation. Consider the regression problem of Example 4. We have
already observed thatKi has always rank 1: hence, the paraboloid associated
with thei-th scenario is flat with respect tod−1 orthogonal directions, and it does
not influence the solutionx∗ with respect to these directions. Thus, in this case, a
necessary condition for the matrix inequalityKi ≺ 1

6

∑N
ℓ=1
ℓ 6=i

Kℓ to be true, and for

q̄i to be significant, is that we have more thand observations, so that
∑N

ℓ=1
ℓ 6=i

Kℓ may

span all the directions. However, this isnot a general fact. Indeed, every time that
Ki is nonsingular, each scenario brings information on every direction at the same
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time: in Examples 8 and 9 above, we have seen that for everyN ≥ 8 the condition
Ki ≺ 1

6

∑N
ℓ=1
ℓ 6=i

Kℓ holds true independently ofd. Hence, in general, the minimum

N such that the considered statistics are significantdoes not depend directly ond,
but rather it depends on the problem structure and on the amount of information
brought by each scenario.

⋆

2.2.3 Distribution-free results and conservatism

The statistics̄q(1), . . . , q̄(N), defined in (2.4), can be computed without using any
knowledge aboutP∆. Hence, in the light of the distribution-free result of The-
orem 2, a decision-maker that is looking for a statistic whose mean coverage is
guaranteed against all possible probability measuresP∆ can always rely on̄q(i).
However, an expected drawback of distribution-free results is conservatism, that is
to say, given a problem anda fixedP∆, there may exist a statisticc “better” than
q̄(i). Formally,c is better than̄q(i) if c satisfies the conditions

PN+1
∆ {q ≤ c(DN )} ≥ i

N + 1
(2.6)

and

c(DN ) ≤ q̄(i) holds for every dataDN (2.7)

and

PN+1
∆ {c(DN ) < q̄(i)} > 0. (2.8)

Informally, we say that̄q(i) is significantlyconservative if we actually have

PN+1
∆ {c(DN ) ≪ q̄(i)} ≫ 0,

rather than simply (2.8) - the symbol≪ (≫) stands for “significantly less (more)
than". Otherwise, we can consider the conservatism to be practically negligible.
As a starting point in order to study to what extentq̄(i) may be conservative, let us
first consider the statisticq(i). The following Theorem 3, proved in Section 2.4.2,
holds under broad assumptions about the distribution of thedata. In particular, we
assume that the squared residuals do not accumulate at the same value, and this,
in view of Theorem 3, entails that the mean coverage ofq(i) is alwaysno greater
than i

N+1 , independently ofP∆.

Theorem 3. For anyP∆ such that

PN+1
∆ {q 6= qℓ andqℓ 6= qℓ′ for everyℓ, ℓ′ ∈ {1, . . . , N}, ℓ 6= ℓ′} = 1,

it holds that

PN+1
∆ {q ≤ q(i)} ≤ i

N + 1
, i = 1, . . . , N.

⋆
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The fact that the mean coverage ofq(i) cannotbe greater than i
N+1 entails that,

for anyspecificP∆, a statisticc that satisfiesc(DN ) ≤ q(i) for all DN cannot sat-

isfy the conditionPN+1
∆ {q ≤ c(DN )} ≥ i

N+1 and, at the same time, the condition

PN+1
∆ {c(DN ) < q(i)} > 0. Hence, ifq̄(i) is always close toq(i), q̄(i) cannot be

significantly conservative. On the other hand, note that thepresence of a (possibly
large) margin̄q(i)−q(i) > 0 is notby itself a symptom of conservatism. Indeed, the
intuition, corroborated by cases like Example 7, tells us that, even when a statisticc
is constructed based on the knowledge of the specificP∆, a strictly positive margin
c(DN ) − q(i) is usuallynecessaryto guaranteePN+1

∆ {q ≤ c(DN )} ≥ i
N+1 . The

conclusion is that the only source of conservatism forq̄(i) can be alarger-than-
necessarymargin with respect toq(i). However, we have shown that in many cases
the margin̄q(i)−q(i) is small and tends to zero at the increasing ofN , see Remark
3. Thus, the result of Theorem 2, though distribution-free,in many relevant cases
is notsignificantly conservative.

2.3 Numerical example

The problem here considered is an instance of the Weber problem presented in
Example 5. It is inspired by the problem example presented in[60].

2.3.1 An application to facility location

With reference to Example 5 above, we have8 demand points (clients) whose
weights and locations are uncertain.

We face the problem based onN = 15 scenarios, independently collected
during a data acquisition campaign. In Fig. 2.4 the locations of the8 clients in
each of the15 scenarios are showed. The corresponding weights are listedin Table
2.1. The least squares solution turns out to bex∗ = (0.6208, 0.5967). The values
of the statistics̄q(i), i = 1, . . . , N , having distribution-free i

N+1 -mean coverages,
are then computed. Fig. 2.5 compares the values ofq̄(1), . . . , q̄(N) with those of the
ordered empirical least squares residualsq(1), . . . ,q(N). The margins̄q(i) − q(i)

turn out to be small.

2.3.2 Monte-Carlo tests

Usually, in real applications the distribution of the uncertainty, P∆, is unknown.
However, the15 scenarios used above have been randomly generated by simu-
lation according to a known distribution, for illustrationpurpose. The nominal
values of the uncertain locations and weights are reported in Table 2.2. We know
that locations have been generated independently from eight Gaussian symmetric
distributions centered in the nominal values, with standard deviation0.11. Weights
in each scenario have been generated according to a multivariate Gaussian distri-
bution (truncated to positive values) such that each weighthas a standard deviation



2.3 Numerical example 31

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

−2 0 2
−0.5

0

0.5

1

1.5

#1  #2  #3  #4  #5

#6  #7  #8  #9  #10

#11  #12  #13  #14  #15

(1)

(2)
(3)
(4)
(5)

(6)

(7)

(8)

Figure 2.4.The clients’ locations inR2 are shown for each of the15 observed scenarios. In
the representation of the scenario#6, the identities of the8 clients are indicated explicitly.
Elsewhere they are omitted for ease of reading.

equal to half its nominal value, while the correlation coefficient between any two
weights isρ = 0.1.

Since Theorem 2 holds true for every possibleP∆, all the results and consider-
ations in Section 2.3.1 hold even in the absence of information about the real dis-
tribution. However, since we know the underlying data-generating mechanism, we
can study the coverage properties of the cost thresholdsq̄(1), . . . , q̄(N) in the light
of this knowledge. For example, a Monte-Carlo test based onM = 2 ·106 trials al-
lows us to estimate with an accuracy of0.002 the mean coverages ofq̄(1), . . . , q̄(N)

and ofq(1), . . . ,q(N) (with a confidence greater than1 − 10−5). We obtain that
the mean coverage of ant statisticq(i) exceeds i

N+1 , see Fig. 2.7, so that a margin
is necessaryto guarantee a mean coverage of at leasti

N+1 .

Moreover, we can estimate the whole coverage distribution of a given statistic
q̄(i). ForM = 1000 times, we generateN = 15 scenarios and compute the cov-
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client: 1 2 3 4 5 6 7 8
scen. #1: 14.57 1.58 1.72 1.15 2.10 8.08 15.66 35.24

#2: 10.99 0.56 0.80 1.63 0.29 5.32 17.17 29.39
#3: 15.73 2.42 1.87 0.85 1.17 15.85 11.62 26.37
#4: 10.04 0.98 1.25 1.21 0.79 10.12 9.06 27.67
#5: 4.47 0.70 1.10 1.56 1.57 3.09 13.67 24.59
#6: 5.03 0.72 0.92 0.72 1.90 6.00 12.16 25.30
#7: 10.92 1.25 0.59 0.14 0.88 9.60 9.74 26.61
#8: 7.35 0.71 1.56 0.88 1.30 12.94 23.61 37.20
#9: 6.77 1.17 1.79 1.06 0.37 5.86 14.66 6.45
#10: 7.35 1.07 0.97 1.51 1.36 11.46 9.48 13.09
#11: 6.73 1.10 1.26 0.66 0.03 7.35 6.97 27.58
#12: 6.99 0.55 1.29 0.69 1.01 9.60 6.82 22.25
#13: 11.66 1.46 0.96 1.42 0.86 4.82 14.14 6.03
#14: 13.48 1.08 1.32 1.39 0.23 8.56 6.27 34.01
#15: 8.97 0.69 1.42 1.67 1.34 8.39 11.00 1.44

Table 2.1. The table reports the weights associated with each of the8 clients, for each of
the15 observed scenarios.

client: 1 2 3 4 5 6 7 8

location: (0.0,0.0) (0.0,0.2) (0.0,0.4) (0.0,0.6) (0.0,0.8) (0.0,1.0) (1.0,0.0) (1.0,1.0)
weight: 10 1 1 1 1 10 10 20

Table 2.2.The table shows the nominal values of the locations and weights of the8 clients.
These numerical values are taken from [60] (however, note that in [60] only the weights
are stochastic, while the locations are considered to be deterministic).
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Figure 2.5. The figure shows a comparison between the values ofq̄(i) andq(i), for each
i = 1, . . . , N (i is in abscissa). We know that eachq̄(i) has mean coverage guaranteed to
be no less than i

N+1 . For example,̄q(14) has distribution-free1415 -mean coverage. With the
present data,̄q(14) is practically indistinguishable fromq(14) ≈ 40.

erage of̄q(14), i.e. of the7
8 -mean coverage statistic. The histogram obtained from

theM = 1000 trials is shown in Fig. 2.6(a). We perform the same Monte-Carlo
test withN = 31 and build the histogram of the coverage of the7

8 -mean coverage
statistic, which, in this case, is̄q(28), see Fig. 2.6(b). Finally, we compute the
histogram withN = 63 and the corresponding78 -mean coverage statistic, which
is q̄(56), see Fig. 2.6(c). We notice that the dispersion of the coverage distribution
decreases sensibly for increasingN .

2.4 Proofs

2.4.1 Proof of Theorem 2

We prove below a Theorem 4 which is slightly stronger than Theorem 2, and show
that Theorem 2 follows from Theorem 4. Throughout, we use thenotation

∑

Kℓ for
N
∑

ℓ=1

Kℓ

and
∑

ℓ 6=i

Kℓ for
N
∑

ℓ=1
ℓ 6=i

Kℓ.

We start with a Lemma.
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Figure 2.6.Histograms of the coverage ofq̄(14) whenN = 15, (a); ofq̄(28) whenN = 31,
(b); of q̄(56) whenN = 63, (c). In all the three cases, the statistics considered have
distribution-free78 -mean coverage.
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Figure 2.7.The mean coverages ofq̄(i) andq(i), i = 1, . . . , 15 are here compared.

Lemma 1. Assume that
∑

ℓ 6=iKℓ ≻ 0. For anyγ ≥ 0, the following equivalences
hold:

Ki

1
2





∑

ℓ 6=i

Kℓ





−1

Ki

1
2 ≺ γI ⇐⇒ Ki ≺ γ

∑

ℓ 6=i

Kℓ, (2.9)

and

Ki

1
2





∑

ℓ 6=i

Kℓ





−1

Ki

1
2 � γI ⇐⇒ Ki � γ

∑

ℓ 6=i

Kℓ. (2.10)

⋆

Proof. For γ = 0 the result is trivial. Supposeγ > 0. We prove (2.9); (2.10)
can be proved similarly. Suppose first thatKi ≻ 0. Multiplying the two sides of

the inequalityKi
1
2

(

∑

ℓ 6=iKℓ

)−1
Ki

1
2 ≺ γI on the left and on the right byKi

− 1
2 ,

the equivalent inequality
(

∑

ℓ 6=iKℓ

)−1
≺ γK−1

i follows. For positive definite

matricesA andB, A ≺ B is equivalent toB−1 ≺ A−1 (see e.g. [58], Section
7.7), so that the last inequality can be reversed toKi ≺ γ

∑

ℓ 6=iKℓ, which is the
inequality on the right-hand side of (2.9).

Suppose now thatKi � 0. FromKi
1
2

(

∑

ℓ 6=iKℓ

)−1
Ki

1
2 ≺ γI it follows that

(Ki + ǫI)
1
2

(

∑

ℓ 6=iKℓ

)−1
(Ki + ǫI)

1
2 ≺ γI for someǫ > 0 small enough. Since

Ki + ǫI ≻ 0, from the first part of the proof we obtainKi + ǫI ≺ γ
∑

ℓ 6=iKℓ,
which impliesKi ≺ γ

∑

ℓ 6=iKℓ. Conversely, start fromKi ≺ γ
∑

ℓ 6=iKℓ. Then,
Ki ≺ γ′

∑

ℓ 6=iKℓ for someγ′ < γ close enough toγ, and furtherKi + ǫI ≺
γ′
∑

ℓ 6=iKℓ for anyǫ > 0 small enough. SinceKi + ǫI ≻ 0, from the first part of
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the proof we obtain(Ki + ǫI)
1
2

(

∑

ℓ 6=iKℓ

)−1
(Ki + ǫI)

1
2 ≺ γ′I.4 Letting ǫ → 0

givesKi
1
2

(

∑

ℓ 6=iKℓ

)−1
Ki

1
2 � γ′I ≺ γI, that is the left-hand side of (2.9).

Whenever
∑

ℓ 6=iKℓ ≻ 0, let

γi := λmax



Ki

1
2





∑

ℓ 6=i

Kℓ





−1

Ki

1
2



,

Wi := Ki + (4 + 2γi)Ki





∑

ℓ 6=i

Kℓ





−1

Ki. (2.11)

Define

q̃i :=







(x∗ − vi)
T K̃i(x

∗ − vi) + hi
with K̃i := Wi +Wi(2

∑

Kℓ −Wi)
−1Wi

if
∑

ℓ 6=iKℓ ≻ 0 andγi < 1√
2

+∞ otherwise.
(2.12)

Note thatK̃i in (2.12) is well-defined, that is, the inverse in the definition ofK̃i ex-

ists. To show this, remember thatγi is the maximum eigenvalue ofKi
1
2

(

∑

ℓ 6=iKℓ

)−1
Ki

1
2 ,

so that

Ki

1
2





∑

ℓ 6=i

Kℓ





−1

Ki

1
2 � γiI, (2.13)

and hence

Wi = Ki + (4 + 2γi)Ki

1
2



Ki

1
2





∑

ℓ 6=i

Kℓ





−1

Ki

1
2



Ki

1
2

� Ki + (4 + 2γi)γiKi

= (1 + 4γi + 2γ2i )Ki. (2.14)

Applying Lemma 1 to (2.13) givesKi � γi
∑

ℓ 6=iKℓ, from whichKi � γi
1+γi

∑

Kℓ.
Substituting in the previous formula yields

Wi � (1 + 4γi + 2γ2i )
γi

1 + γi

∑

Kℓ ≺ [sinceγi <
1√
2
] ≺ 2

∑

Kℓ, (2.15)

and the matrix that is inverted in (2.12) is therefore positive definite.

4Note that(Ki + ǫI)
1
2

(

∑

ℓ 6=i
Kℓ

)−1

(Ki + ǫI)
1
2 ≺ γ′I for a givenǫ > 0 is not suffi-

cient to conclude thatK
1
2

i

(

∑

ℓ 6=i
Kℓ

)−1

K
1
2

i
� γ′I. Indeed,XAX , A ≻ 0, X � 0, is not

monotonic inX in general.



2.4 Proofs 37

Theorem 4. For every probability measureP∆, with the notation above it holds
that

PN+1
∆ {q ≤ q̃(i)} ≥ i

N + 1
, i = 1, . . . , N.

⋆

Before proving the theorem, we show that Theorem 2 follows from Theorem 4. To
prove this, it is enough to show thatq̃i ≤ q̄i. Whenq̄i = +∞, this is trivially true,
so we consider the case whenq̄i is finite, which holds ifKi ≺ 1

6

∑

ℓ 6=iKℓ. In view
of Lemma 1, conditionKi ≺ 1

6

∑

ℓ 6=iKℓ implies thatγi < 1
6 . We show that, for

γi <
1
6 , K̃i � K̄i from whichq̃i ≤ q̄i.

Due to thatγi < 1
6 , (2.14) givesWi � 2Ki, so that

2
∑

Kℓ −Wi � 2
∑

Kℓ − 2Ki = 2
∑

ℓ 6=i

Kℓ.

Thus,

K̃i = Wi +Wi

(

2
∑

Kℓ −Wi

)−1
Wi � Wi +Wi



2
∑

ℓ 6=i

Kℓ





−1

Wi

= [substitute (2.11) forWi and letΦ = Ki

1
2





∑

ℓ 6=i

Kℓ





−1

Ki

1
2 ]

= Ki +Ki

1
2

(

9 + 4γi
2

Φ + (4 + 2γi)Φ
2 + 2(2 + γi)

2Φ3

)

Ki

1
2

� [sinceΦ � γiI]

� 1 +Ki

1
2

(

9 + 4γi
2

Φ + (4 + 2γi)γiΦ+ 2(2 + γi)
2γ2i Φ

)

Ki

1
2

= Ki + (4.5 + 6γi + 10γ2i + 8γ3i + 2γ4i )Ki





∑

ℓ 6=i

Kℓ





−1

Ki

� [since4.5 + 6γi + 10γ2i + 8γ3i + 2γ4i < 6 for γi <
1

6
]

� K̄i.

Proof of Theorem 4
To ease the notation, let

Qi(x) :=(x− vi)
TKi(x− vi) + hi = ‖Aix− bi‖2, and

Q(x) :=(x− v)TK(x− v) + h = ‖Ax− b‖2.
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With these positions,

x∗ = argmin
x

N
∑

i=1

Qi(x), qi = Qi(x
∗), q = Q(x∗).

It is also convenient to introduce the minimizer of the leastsquares cost augmented
with Q(x), namely,

x̂ := argmin
x

{

N
∑

i=1

Qi(x) +Q(x)

}

.

Finally, denote

x̂[i] := argmin
x















N
∑

ℓ=1
ℓ 6=i

Qℓ(x) +Q(x)















, i = 1, . . . , N.

The following random variablesm andm1, . . . ,mN , allow us to establish a rank-
ing amongQ(x),Q1(x), . . . ,QN (x). Define:

m :=

{

Q(x∗) + [Q(x∗)−Q(x̂)] if
∑

Kℓ ≻ 0

∞ otherwise,
(2.16)

mi :=

{

Qi(x̂
[i]) +

[

Qi(x̂
[i])−Qi(x̂)

]

if
∑

ℓ 6=iKℓ +K ≻ 0

∞ otherwise,
(2.17)

for i = 1, . . . , N .

Lemma 2. For every probability measureP∆, with the notation above it holds that

PN+1
∆ {m ≤ m(i)} ≥ i

N + 1
, i = 1, . . . , N.

⋆

Proof. The random variablesm andmi, i = 1, . . . , N , are constructed fromQ(x)
andQi(x), i = 1, . . . , N , and each of them depends on all theQ(x) andQi(x),
i = 1, . . . , N , directly and througĥx, x̂[i], andx∗. To indicate this, more explic-
itly write m = M (Q(x),Q1(x), . . . ,QN (x)) andmi = Mi (Q(x),Q1(x), . . . ,
QN (x)), i = 1, . . . , N . On the other hand, an inspection of the definitions (2.16)
and (2.17) reveals that each of theMi (Q(x),Q1(x), . . . ,QN (x)), i = 1, . . . , N ,
is but the functionM applied to a permutation of theQ(x),Q1(x), . . . ,QN (x):

mi = M(πi(Q(x),Q1(x), . . . ,QN (x))), for suitable permutationsπi,

i = 1, . . . , N. Owing to thatQ(x),Q1(x), . . . ,QN (x) are independent and iden-
tically distributed, it follows that

PN+1
∆ {m ≤ m(i)} = PN+1

∆ {mℓ ≤ ord(i) [m,m1, . . . ,mℓ−1,mℓ+1, . . . ,mN ]},
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whereord(i) is thei-th order statistic of the listed elements. Hence,

PN+1
∆ {m ≤ m(i)}

=
1

N + 1

(

PN+1
∆ {m ≤ m(i)}

+
N
∑

ℓ=1

PN+1
∆ {mℓ ≤ ord(i) [m,m1, . . . ,mℓ−1,mℓ+1, . . . ,mN ]}

)

= [1 {·} = indicator function]

=
1

N + 1

(

E∆N+1

[1{m ≤ m(i)

}]

+

N
∑

ℓ=1

E∆N+1

[1{mℓ ≤ ord(i) [m,m1, . . . ,mℓ−1,mℓ+1, . . . ,mN ]
}]

)

=
1

N + 1
E∆N+1

[1{m ≤ m(i)

}

+
N
∑

ℓ=1

1{mℓ ≤ ord(i) [m,m1, . . . ,mℓ−1,mℓ+1, . . . ,mN ]
}

]

≥ i

N + 1
,

where the last inequality holds because at leasti among them and mℓ, ℓ =
1, . . . , N , are in one of the firsti positions (they can be more thani when some
assume the same value).

Now, for i = 1, . . . , N , define

νi := sup
K,v,h

Q(x∗)

subject to:m ≤ m(i).

(2.18)

Note that in the definition ofνi, sup is taken with respect to(K, v, h), so thatνi is
a function of(K1, v1, h1), . . . , (KN , vN , hN ). If we prove that

q̃(i) ≥ νi, (2.19)

then

PN+1
∆ {q ≤ q̃(i)} = PN+1

∆ {Q(x∗) ≤ q̃(i)}
≥ PN+1

∆ {Q(x∗) ≤ νi}
≥ PN+1

∆ {m ≤ m(i)}

≥ i

N + 1
,
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where the last inequality follows from Lemma 2, and hence Theorem 4 is proved.
Thus, in what follows, we concentrate on proving (2.19).

Let, for ℓ = 1, . . . , N ,

µℓ := sup
K,v,h

Q(x∗)

subject to:m ≤ mℓ.

(2.20)

We show thatµ(i) ≥ νi, i = 1 . . . , N .
Assume for simplicity thatsup in (2.18) is actually amax (if not, the proof follows
by a limiting argument), and let(K∗, v∗, h∗) be the maximizer. At(K, v, h) =
(K∗, v∗, h∗), we havem ≤ m(i), which entails that(K∗, v∗, h∗) is feasible for
at leastN − i + 1 values ofℓ in (2.20). Hence,µℓ ≥ Q∗(x∗) = νi for at least
N − i + 1 values ofℓ. Thus,µ(i) ≥ νi. Sinceµ(i) ≥ νi, it is enough, in order
to prove (2.19), to show that̃q(i) ≥ µ(i). The remainder of the proof amounts to
showing that̃qi ≥ µi, i = 1, . . . , N , which plainly entails̃q(i) ≥ µ(i) ≥ νi.

If
∑

ℓ 6=iKℓ ⊁ 0 or γi ≥ 1√
2
, thenq̃i = +∞ andq̃i ≥ µi is trivially verified

(see (2.12)). Hence, we work under the condition
∑

ℓ 6=i

Kℓ ≻ 0 andγi <
1√
2
.

By substituting in (2.20) the expressions (2.16) and (2.17)for m andmi, we have

µi = sup
K,v,h

Q(x∗)

subject to:Q(x∗) ≤ Q(x̂)−Q(x∗) + 2Qi(x̂
[i])−Qi(x̂),

i.e. µi is computed as the supremum ofQ(x∗) over the values ofK, v, h such that
Q(x∗) is less than or equal to the bounding function in the right-hand side of the
inequality. This entails that

µℓ ≤ sup
K,v,h

{

Q(x̂)−Q(x∗) + 2Qi(x̂
[i])−Qi(x̂)

}

, (2.21)

where the right-hand side is an unconstrained supremum problem, which can be
more easily handled than (2.20). We need now to write explicitly the dependence
of the right-hand side of (2.21) on the optimization variablesK, v, h. Note that:

x∗ =
(

∑

Kℓ

)−1∑

Kℓvℓ,

x̂ =
(

∑

Kℓ +K
)−1(∑

Kℓvℓ +Kv
)

,

x̂[i] =





∑

ℓ 6=i

Kℓ +K





−1



∑

ℓ 6=i

Kℓvℓ +Kv



,
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so that

Q(x∗) =

(

(

∑

Kℓ

)−1∑

Kℓvℓ − v

)T

K

(

(

∑

Kℓ

)−1∑

Kℓvℓ − v

)

+ h,

Qi(x̂
[i]) =









∑

ℓ 6=i

Kℓ +K





−1



∑

ℓ 6=i

Kℓvℓ +Kv



− vi





T

Ki

·









∑

ℓ 6=i

Kℓ +K





−1



∑

ℓ 6=i

Kℓvℓ +Kv



− vi



+ hi,

Q(x̂) =

(

(

∑

Kℓ +K
)−1(∑

Kℓvℓ +Kv
)

− v

)T

K

·
(

(

∑

Kℓ +K
)−1(∑

Kℓvℓ +Kv
)

− v

)

+ h,

Qi(x̂) =

(

(

∑

Kℓ +K
)−1(∑

Kℓvℓ +Kv
)

− vi

)T

Ki

·
(

(

∑

Kℓ +K
)−1(∑

Kℓvℓ +Kv
)

− vi

)

+ hi.

By letting

w := w(K, v) :=
(

∑

Kℓ +K
)−1(∑

Kℓvℓ +Kv
)

− v, (2.22)

wi := wi(K, v) :=
(

∑

Kℓ +K
)−1(∑

Kℓvℓ +Kv
)

− vi, (2.23)

and by noting that

(

∑

Kℓ

)−1∑

Kℓvℓ − v

=
(

∑

Kℓ

)−1(∑

Kℓvℓ −
∑

Kℓv
)

=
(

∑

Kℓ

)−1(∑

Kℓ +K
)(

∑

Kℓ +K
)−1 [∑

Kℓvℓ +Kv −
(

∑

Kℓ +K
)

v
]

=

(

I +
(

∑

Kℓ

)−1
K

)[

(

∑

Kℓ +K
)−1(∑

Kℓvℓ +Kv
)

− v

]

=

(

I +
(

∑

Kℓ

)−1
K

)

w,
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and that





∑

ℓ 6=i

Kℓ +K





−1



∑

ℓ 6=i

Kℓvℓ +Kv



− vi = [same calculations as before]

=



I +





∑

ℓ 6=i

Kℓ +K





−1

Ki



wi,

Q(x∗), Qi(x̂
[i]), Q(x̂) andQi(x̂) can be rewritten as:

Q(x∗) = wT

(

I +
(

∑

Kℓ

)−1
K

)T

K

(

I +
(

∑

Kℓ

)−1
K

)

w + h,

Qi(x̂
[i]) = wT

i



I +





∑

ℓ 6=i

Kℓ +K





−1

Ki





T

Ki



I +





∑

ℓ 6=i

Kℓ +K





−1

Ki



wi + hi,

Q(x̂) = wTKw + h, Qi(x̂) = wT
i Kiwi + hi.

Substituting in (2.21) and noting that by taking the difference betweenQ(x̂) and
Q(x∗) the dependence onh is lost, we have that

µi ≤ sup
K,v







wT

(

K −
(

I +
(

∑

Kℓ

)−1
K

)T

K

(

I +
(

∑

Kℓ

)−1
K

)

)

w

+ wT
i






2



I +





∑

ℓ 6=i

Kℓ +K





−1

Ki





T

Ki



I +





∑

ℓ 6=i

Kℓ +K





−1

Ki





−Ki






wi + hi











(2.24)

In taking thesup in (2.24), we need to recall thatw = w(K, v) andwi = wi(K, v),
see (2.22) and (2.23). On the other hand, (2.22) defines a bijection between the
pairs(K, v) and the pairs(K,w), since

w =
(

∑

Kℓ +K
)−1(∑

Kℓvℓ +Kv
)

− v

v =
(

∑

Kℓ

)−1∑

Kℓvℓ −
(

I +
(

∑

Kℓ

)−1
K

)

w.

Therefore, the supremum with respect to(K, v) in (2.24) can be replaced by the
supremum with respect to(K,w) as long aswi is written as a function of(K,w)
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by substituting in (2.23) the expression forv. We have

wi =
(

∑

Kℓ +K
)−1

(

∑

Kℓvℓ +K

·
[

(

∑

Kℓ

)−1∑

Kℓvℓ −
(

I +
(

∑

Kℓ

)−1
K

)

w

])

− vi

=
(

∑

Kℓ +K
)−1

(

I +K
(

∑

Kℓ

)−1
)

∑

Kℓvℓ

−
(

∑

Kℓ +K
)−1

(

K +K
(

∑

Kℓ

)−1
K

)

w − vi

=
(

∑

Kℓ +K
)−1(∑

Kℓ +K
)(

∑

Kℓ

)−1∑

Kℓvℓ

−
(

∑

Kℓ +K
)−1(∑

Kℓ +K
)(

∑

Kℓ

)−1
Kw − vi

=
(

∑

Kℓ

)−1∑

Kℓvℓ − vi −
(

∑

Kℓ

)−1
Kw

= x∗ − vi −
(

∑

Kℓ

)−1
Kw.

By letting

V (K) := 2



I +





∑

ℓ 6=i

Kℓ +K





−1

Ki





T

Ki



I +





∑

ℓ 6=i

Kℓ +K





−1

Ki



−Ki,

(2.25)
(2.24) can be rewritten as (recall thatK andKi are symmetric)

µi ≤ sup
K,w

{

wT

(

K −
(

K + 2K
(

∑

Kℓ

)−1
K +K

(

∑

Kℓ

)−1
K
(

∑

Kℓ

)−1
K

))

w

+

(

x∗ − vi −
(

∑

Kℓ

)−1
Kw

)T

V (K)

(

x∗ − vi −
(

∑

Kℓ

)−1
Kw

)

+ hi

}

=sup
K,w

{

wTK
(

∑

Kℓ

)−1(

V (K)− 2
∑

Kℓ −K
)(

∑

Kℓ

)−1
Kw

− 2(x∗ − vi)V (K)
(

∑

Kℓ

)−1
Kw + (x∗ − vi)

TV (K)(x∗ − vi) + hi

}

.

Finally, letting

A(K) :=V (K)− 2
∑

Kℓ −K, (2.26)

B(K) :=− 2(x∗ − vi)
TV (K), (2.27)

C(K) :=(x∗ − vi)
TV (K)(x∗ − vi)

T + hi, (2.28)
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we have that

µi ≤ sup
K,w

{

wTK
(

∑

Kℓ

)−1
A(K)

(

∑

Kℓ

)−1
Kw +B(K)

(

∑

Kℓ

)−1
Kw + C(K)

}

.

(2.29)
For everyK � 0, let

M(K) :=

{

y ∈ Rd : y =
(

∑

Kℓ

)−1
Kw,w ∈ Rd

}

,

that is,M(K) is the image set ofw through(
∑

Kℓ)
−1K. Clearly, for every fixed

K,

sup
w

{

wTK
(

∑

Kℓ

)−1
A(K)

(

∑

Kℓ

)−1
Kw +B(K)

(

∑

Kℓ

)−1
Kw + C(K)

}

= sup
y∈M(K)

{

yTA(K)y +B(K)y + C(K)
}

≤ sup
y

{

yTA(K)y +B(K)y + C(K)
}

,

where the last inequality is an equality whenK ≻ 0 since in this caseM(K) =
Rd. Hence, by continuity inK � 0 of thesup argument, we have

sup
K,w

{

wTK
(

∑

Kℓ

)−1
A(K)

(

∑

Kℓ

)−1
Kw +B(K)

(

∑

Kℓ

)−1
Kw + C(K)

}

= sup
K≻0,w

{

wTK
(

∑

Kℓ

)−1
A(K)

(

∑

Kℓ

)−1
Kw +B(K)

(

∑

Kℓ

)−1
Kw

+ C(K)

}

= sup
K≻0,y

{

yTA(K)y +B(K)y + C(K)
}

= sup
K,y

{

yTA(K)y +B(K)y + C(K)
}

. (2.30)

For every fixedK, yTA(K)y + B(K)y + C(K) admits a maximizer, sayymax,
becauseA(K) ≺ 0, as stated by the following Lemma 3.

Lemma 3. If
∑

ℓ 6=iKℓ ≻ 0 andγi < 1√
2
, thenA(K) ≺ 0, ∀K � 0.

⋆
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Proof. From (2.26) and (2.25) we have that

A(K) = 2



I +





∑

ℓ 6=i

Kℓ +K





−1

Ki





T

Ki



I +





∑

ℓ 6=i

Kℓ +K





−1

Ki



−Ki

− 2
∑

Kℓ −K

= 2Ki

1
2



I +Ki

1
2





∑

ℓ 6=i

Kℓ +K





−1

Ki

1
2





2

Ki

1
2 −Ki − 2

∑

Kℓ −K

� 2Ki

1
2



I +Ki

1
2





∑

ℓ 6=i

Kℓ +K





−1

Ki

1
2





2

Ki

1
2 −Ki − 2

∑

Kℓ.

(2.31)

Observe that

I +Ki

1
2





∑

ℓ 6=i

Kℓ +K





−1

Ki

1
2

� [since
∑

ℓ 6=i

Kℓ +K �
∑

ℓ 6=i

Kℓ ⇒





∑

ℓ 6=i

Kℓ +K





−1

�





∑

ℓ 6=i

Kℓ





−1

]

� I +Ki

1
2





∑

ℓ 6=i

Kℓ





−1

Ki

1
2

≺ [by (2.13) and using the assumption thatγi <
1√
2
]

≺
(

1 +
1√
2

)

I,

so that


I +Ki

1
2





∑

ℓ 6=i

Kℓ +K





−1

Ki

1
2





2

≺
(

1 +
1√
2

)2

I.

Substituting in (2.31), we obtain

A(K) � 2

(

1 +
1√
2

)2

Ki −Ki − 2
∑

Kℓ = 2
(

(
√
2 + 1)Ki −

∑

Kℓ

)

≺ 0,

where the last inequality follows sinceγi < 1√
2

impliesKi
1
2

(

∑

ℓ 6=iKℓ

)−1
Ki

1
2 ≺

1√
2
I, from which, in view of Lemma 1,Ki ≺ 1√

2

∑

ℓ 6=iKℓ, entailing in turn that

(
√
2 + 1)Ki ≺

∑

Kℓ.
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Clearly,

ymax = −1

2
A(K)−1B(K)T ,

yielding

sup
y

{

yTA(K)y +B(K)y + C(K)
}

= max
y

{

yTA(K)y +B(K)y + C(K)
}

= −1

4
B(K)A(K)−1B(K)T + C(K)

= [from (2.27)]

= −(x∗ − vi)
TV (K)A(K)−1V (K)(x∗ − vi) + C(K)

= [from (2.28)]

= (x∗ − vi)
T
(

V (K)− V (K)A(K)−1V (K)
)

(x∗ − vi) + hi. (2.32)

Finally, from (2.29) and (2.30) we conclude

µi ≤ sup
K

(x∗ − vi)
T
(

V (K)− V (K)A(K)−1V (K)
)

(x∗ − vi) + hi. (2.33)

The final step amounts to showing that∀K � 0

(x∗ − vi)
T
(

V (K)− V (K)A(K)−1V (K)
)

(x∗ − vi) + hi ≤ q̃i,

thus concluding the proof. This is done in view of the following lemma.

Lemma 4. Assume that
∑

ℓ 6=iKℓ ≻ 0 andγi < 1√
2
. LetW be a symmetric matrix,

W � 0, such that

1. W ≺ 2
∑

Kℓ,

2. V (K) � W , ∀K � 0.

It holds that

V (K)− V (K)A(K)−1V (K) � W −W
(

W − 2
∑

Kℓ

)−1
W, ∀K � 0.

⋆

Proof. Suppose firstKi ≻ 0. Then,V (K) ≻ 0 (see (2.25)), and, fromV (K) �
W , we get (see e.g. [58], Section 7.7)

V (K)−1 � W−1,
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from which it follows that

V (K)−1 −
(

2
∑

Kℓ +K
)−1

� W−1 −
(

2
∑

Kℓ +K
)−1

� [2
∑

Kℓ +K � 2
∑

Kℓ ≻ 0 ⇒
(

2
∑

Kℓ +K
)−1

�
(

2
∑

Kℓ

)−1
]

� W−1 −
(

2
∑

Kℓ

)−1
,

where the latter matrix is positive definite because0 ≺ W ≺ 2
∑

Kℓ. This entails
that

(

V (K)−1 −
(

2
∑

Kℓ +K
)−1

)−1

�
(

W−1 −
(

2
∑

Kℓ

)−1
)−1

,

which, by applying the Matrix Inversion Lemma (see [61]), gives

V (K)−V (K)
(

V (K)− 2
∑

Kℓ −K
)−1

V (K) � W−W
(

W − 2
∑

Kℓ

)−1
W,

which is the Lemma statement in view of (2.26).

WhenKi � 0, sinceV (K) � W ≺ 2
∑

Kℓ, it holds that

0 ≺ V (K) + ǫI � W + ǫI ≺ 2
∑

Kℓ,

for any ǫ > 0 small enough. Repeating the argument above withV (K) + ǫI and
W + ǫI in place ofV (K) andW yields

V (K) + ǫI − (V (K) + Iǫ)
(

V (K) + ǫI − 2
∑

Kℓ −K
)−1

(V (K) + ǫI)

� W + ǫI − (W + ǫI)
(

W + ǫI − 2
∑

Kℓ

)−1
(W + ǫI),

and the sought result is obtained lettingǫ → 0.

Consider now

Wi = Ki + (4 + 2γi)Ki





∑

ℓ 6=i

Kℓ





−1

Ki,

as defined in (2.11). By (2.15) it holds thatWi ≺ 2
∑

Kℓ. We now prove that

V (K) � Wi, ∀K � 0, (2.34)

so that, by Lemma 4, it follows that

V (K)− V (K)A(K)−1V (K) � Wi −Wi

(

Wi − 2
∑

Kℓ

)−1
Wi, ∀K � 0,
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which, together with (2.33), yields

µi ≤ (x∗ − vi)
T

(

Wi −Wi

(

Wi − 2
∑

Kℓ

)−1
Wi

)

(x∗ − vi)+hi = q̃i. (2.35)

To prove (2.34), rewriteV (K) defined in (2.25) as

V (K) = Ki + 4Ki





∑

ℓ 6=i

Kℓ +K





−1

Ki + 2K
1
2
i



K
1
2
i





∑

ℓ 6=i

Kℓ +K





−1

K
1
2
i





2

K
1
2
i .

Since

Ki





∑

ℓ 6=i

Kℓ +K





−1

Ki � Ki





∑

ℓ 6=i

Kℓ





−1

Ki,

and since



K
1
2
i





∑

ℓ 6=i

Kℓ +K





−1

K
1
2
i





2

� γiK
1
2
i





∑

ℓ 6=i

Kℓ





−1

K
1
2
i ,

because

K
1
2
i





∑

ℓ 6=i

Kℓ +K





−1

K
1
2
i � K

1
2
i





∑

ℓ 6=i

Kℓ





−1

K
1
2
i � [by (2.13)] � γiI,

it holds that

V (K) � Ki + 4Ki





∑

ℓ 6=i

Kℓ





−1

Ki + 2γiKi





∑

ℓ 6=i

Kℓ





−1

Ki

= Wi.

2.4.2 Proof of Theorem 3

To ease the notation, let

Qi(x) := (x− vi)
TKi(x− vi) + hi = ‖Aix− bi‖2, i = 1, . . . , N,

and, by symmetry reasons,

QN+1(x) := (x− v)TK(x− v) + h = ‖Ax− b‖2.
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Moreover, define

x̂[i] := argmin
x

N+1
∑

ℓ=1
ℓ 6=i

Qℓ(x), i = 1, . . . , N + 1. (2.36)

Observe that, with this notation,̂x[N+1] = x∗. Finally, for everyk = 1, . . . , N +1,
let

q[k] := Qk(x̂
[k])

and

q
[k]
i :=

{

Qi(x̂
[k]) if i ≤ k − 1

Qi+1(x̂
[k]) otherwise.

, i = 1, . . . , N.

Note thatq[N+1] = q andq
[N+1]
i = qi. As usual,q[k]

(i) denotes thei-th order

statistic ofq[k]
1 ,q

[k]
2 , . . . ,q

[k]
N .

Fix a value fori. We have that

PN+1
∆ {q ≤ q(i)}

= PN+1
∆ {q[N+1] ≤ q

[N+1]
(i) }

= [by exchangeability of(K1, v1, h1), . . . , (KN , vN , hN ), (K, v, h)]

= PN+1
∆ {q[k] ≤ q

[k]
(i)}, ∀k = 1, . . . , N + 1

=
1

N + 1

N+1
∑

k=1

PN+1
∆ {q[k] ≤ q

[k]
(i)}

= [1 {·} indicator function]

=
1

N + 1

N+1
∑

k=1

E∆N+1

[1{q[k] ≤ q
[k]
(i)

}]

=
1

N + 1
E∆N+1

[

N+1
∑

k=1

1{q[k] ≤ q
[k]
(i)

}

]

. (2.37)

It is a fact that
N+1
∑

k=1

1{q[k] ≤ q
[k]
(i)

}

≤ i almost surely, (2.38)

so that
∑N+1

k=1 1{q[k] ≤ q
[k]
(i)

}

≤ i. This latter, plugged in (2.37) gives the the-

orem statement. To conclude the proof, we now show that (2.38) holds. Fix
(K1, v1, h1), . . . , (KN , vN , hN ), (K, v, h) such that

q[k] 6= q
[k]
ℓ andq[k]

ℓ 6= q
[k]
ℓ′ , for everyℓ, ℓ′ ∈ {1, . . . , N}, ℓ 6= ℓ′, (2.39)
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for every k ∈ {1, . . . , N + 1}. Note that in view of the proposition assump-
tion, (2.39) holds true with probability1 by exchangeability of(K1, v1, h1), . . . ,

(KN , vN , hN ), (K, v, h). We show that
∑N+1

k=1 1{q[k] ≤ q
[k]
(i)

}

≤ i holds true

for the fixed(K1, v1, h1), . . . , (KN , vN , hN ), (K, v, h), by exhibiting indexesk1,
k2, . . . , kN+1−i such that

q[kj ] > q
[kj ]

(i) , j = 1, . . . , N + 1− i.

Define

Sk :=
N
∑

ℓ=1

q
[k]
ℓ , k = 1, . . . , N + 1,

and let thek1, . . . , kN+1−i be the indexes such that

Skj = S(j), j = 1, . . . , N + 1− i.

For the purpose of contradiction, assume that there exists akj , j = 1, . . . , N + 1− i,
such that

q[kj ] ≤ q
[kj ]

(i) .

Equality can be excluded in view of (2.39), that is, it must hold

q[kj ] < q
[kj ]

(i) .

Then, by definition of order statisticsq
[kj ]

(1) , . . . ,q
[kj ]

(N), we have

q[kj ] < q
[kj ]

(i) < q
[kj ]

(i+1) < · · · < q
[kj ]

(N). (2.40)

Hence, for anyτ ∈ {i, i + 1, . . . , N},

Skj = Skj − q
[kj ]

(τ) + q
[kj ]

(τ)

> [by (2.40)]

> Skj − q
[kj ]

(τ) + q[kj ]

= [letting ρτ ∈ {1, . . . , N + 1} \ {kj} be the index such thatQρτ (x̂
[kj ]) = q

[kj ]

(τ)
]

= Skj −Qρτ (x̂
[kj ]) +Qkj(x̂

[kj ])

= [sinceSkj =

N+1
∑

ℓ=1

Qℓ(x̂
[kj ])−Qkj(x̂

[kj ])]

=
N+1
∑

ℓ=1

Qℓ(x̂
[kj ])−Qρτ (x̂

[kj ])

≥ min
x

{

N+1
∑

ℓ=1

Qℓ(x)−Qρτ (x)

}
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= [by (2.36)]

=

N+1
∑

ℓ=1

Qℓ(x̂
[ρτ ])−Qρτ (x̂

[ρτ ])

= Sρτ ,

that is,Skj is greater thanN + 1 − i values amongS1, . . . , SN . This contradicts
the fact thatSkj = S(j), with j ≤ N + 1− i.

2.4.3 Asymptotic result

Here we show that̄q(i) −−−−→
N→∞

q(i), under suitable assumptions.

Theorem 5 (asymptotic convergence). Assume that(Ki, vi, hi), i = 1, 2, . . . , N ,
are random elements independently and identically distributed according toP∆,
such that

µK := E∆[K1] = · · · = E∆[KN ] ≻ 0, (2.41)

∃α, χ̄ > 0 such that∀χ > χ̄ P∆{‖Ki‖ > χ} ≤ e−αχ, i = 1, . . . , N, (2.42)

∃β, ν̄ > 0 such that∀ν > ν̄ P∆{‖vi‖ > ν} ≤ e−βν , i = 1, . . . , N. (2.43)

It holds thatq̄(i) −−−−→
N→∞

q(i) almost surely, fori = 1, . . . , N .
⋆

Proof. Condition (2.42) guarantees that the strong law of large numbers (see e.g.
Theorem 3, §3, Chapter IV in [3]) applies, so that

∑N
ℓ=1Kℓ

N
−−−−→
N→∞

µK almost surely. (2.44)

SinceµK ≻ 0, we have almost surely that
∑N

ℓ=1 Kℓ ≻ 0 as well as
∑N

ℓ=1
ℓ 6=i

Kℓ ≻ 0

for N large enough. Moreover, for any positive functionf(N) and forN large
enough, we have also that

PN
∆

{

1

f(N)
max

i=1,...,N
‖Ki‖ >

lnN3

αf(N)

}

= PN
∆

{

max
i=1,...,N

‖Ki‖ >
lnN3

α

}

≤ NP∆

{

‖Ki‖ >
lnN3

α

}

≤ Ne−α lnN3

α

=
1

N2
,
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and, since
∑∞

N=1
1
N2 < ∞, in view of the Borel-Cantelli Lemma (see e.g. Corol-

lary 2, §10, Chapter II in [3]), we can conclude that:

if
lnN3

αf(N)
→ 0, then

1

f(N)
max

i=1,...,N
‖Ki‖ → 0 almost surely. (2.45)

Similarly, using (2.43) in place of (2.42), it can be proved that

if
lnN3

βf(N)
→ 0, then

1

f(N)
max

i=1,...,N
‖vi‖ → 0 almost surely. (2.46)

Takingf(N) = N , by (2.44) and (2.45), it holds almost surely that

1

N
Ki ≺

1

7

∑N
ℓ=1 Kℓ

N
, i = 1, . . . , N,

for N large enough. Since

1

N
Ki ≺

1

7

∑N
ℓ=1 Kℓ

N
⇐⇒ Ki ≺

1

7

N
∑

ℓ=1

Kℓ ⇐⇒ Ki ≺
1

6

N
∑

ℓ=1
ℓ 6=i

Kℓ,

we have almost surely thatq̄i = (x∗− vi)
T K̄i(x

∗− vi)+hi, i = 1, . . . , N, for N
large enough, see (2.4). Hence, for eachi = 1, . . . , N , the following bound holds:

|q̄i − qi| = |(x∗ − vi)
T K̄i(x

∗ − vi) + hi −
(

(x∗ − vi)
TKi(x

∗ − vi) + hi
)

|
= |(x∗ − vi)

T (K̄i −Ki)(x
∗ − vi)|

≤ [sinceK̄i = Ki + 6Ki
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∥
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∥

∥
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∥
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,

where the last term tends to zero almost surely in view of (2.44), (2.45) and (2.46),

and becausex∗ =
(

∑N
ℓ=1 Kℓ

)−1(
∑N

ℓ=1Kℓvℓ

)

converges almost surely. This

proves that̄qi −−−−→
N→∞

qi almost surely and the theorem statement immediately

follows.



2.5 Perspectives for future works 53

2.5 Perspectives for future works

In this chapter we have studied the coverage properties of statistics, close to the
empirical costsℓ(x∗, δ(1)), . . . , ℓ(x∗, δ(N)), that can be used to characterize a least
squares solution. We have limited ourselves to provingmeancoverage properties,
while the distributions of the coverages has been studied only a posteriori, through
Monte-Carlo experiments. The theoretical characterization of the statistics pre-
sented in this chapter as distribution-free(ǫ, β)-coverage statistics is still object
of research. For example, an immediate but weak result can beobtained by a di-
rect application of the Markov’s inequality (see e.g. [47]), yielding the following
inequality

PN
∆{C(q̄(i)) ≥ 1− ǫ} ≥ 1− 1

ǫ

[

N + 1− i

N + 1

]

,

entailing e.g. that̄q(N) is a distribution-free(ǫ, β)-coverage statistic ifN ≥ 1
ǫβ
−1,

i.e.N scales linearly with1
ǫβ

. However, the dependence on1
β

is a particularly nox-
ious fact, since it makes high confidence statements very expensive in terms of
number of scenarios. Hopefully, an in-depth studying of thehigher moments of
the coverage distribution may lead to better results. Another possible way in the
quest for a better(ǫ, β)-characterization is more radical and consists in modifying
(as little as possible) the statistics themselves according to some suitable scheme:
technically, the key point for this purpose is the problem (2.18) at the core of the
proof in Section 2.4.

On the other hand, in the following Chapter 3, we will show that a complete
characterization of the coverages of the empirical costsℓ(x∗, δ(1)), . . . , ℓ(x∗, δ(N))
is possible when a worst-case approach is followed.





Chapter 3

On the reliability of data-based
min-max decisions

In this and the following chapter, the data-basedworst-caseapproach is studied for
general convex cost functions. The following Section 3.1 isintroductory. In Sec-
tion 3.2 we offer some background knowledge and state the main results, followed
by a discussion. Section 3.3 provides a numerical example, while Section 3.4 is
devoted to the proofs. Section 3.5 suggests possible applications and developments
of the results here offered and provides a bridge to the next chapter.

3.1 Introduction and problem position

We consider uncertain optimization problems where a decision, modeled as the
selection of a variablex belonging to a convex and closed setX ⊆ Rd, has to be
made so as to minimize a cost functionℓ(x, δ), convex inx, that also depends on
the uncertainty parameterδ. Precisely,ℓ(x, δ) is real, convex and continuous in
x, for each possibleδ. The uncertainδ is a random element that takes values in a
generic set∆ according to a probability measureP∆.
The decisionx∗ is made by consideringN scenarios, i.e.N instances ofδ, say
δ(1), δ(2), . . . , δ(N), independently generated according toP∆, and minimizing the
worst-case cost over these scenarios, that is, by solving:

min
x∈X⊆Rd

max
i=1,...,N

ℓ(x, δ(i)). (3.1)

The scenario solutionx∗ can be computed by rewriting (3.1) in epigraphic form as

EPIN : min
c∈R,x∈X⊆Rd

c

subject to:ℓ(x, δ(i)) ≤ c, i = 1, . . . , N, (3.2)

and then by resorting to standard numerical solvers, [62]. See Table 3.1 for some
examples of min-max problems arising in various applicative contexts.
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Table 3.1. A few examples of min-max problems.
Interpretation ofδ Interpretation ofx Interpretation ofℓ(x, δ) References

Linear regression theory Data point Coefficients of the regression
functions

Regression error [63, 64, 65]

Investment theory Asset return Proportion of the assets in a
portfolio

Investment loss [66, 67]

Control theory Disturbance realization Controller parameters Output variance [68, 30]

As already discussed in Chapter 1, a possible indicator of the quality of the decision
x∗ is c∗ := maxi=1,...,N ℓ(x∗, δ(i)), i.e. the worst cost among those carried by the
seen scenarios.c∗, however, is just anempirical quantity and an assessment of
the risk that a new uncertainty instanceδ carries a costℓ(x∗, δ) greater thanc∗ is
needed in order to gain information on the reliability ofx∗. Quantitatively, this
entails to study the coverage ofc∗, or, equivalently, the variableR := P∆{δ ∈ ∆ :
ℓ(x∗, δ) > c∗}, which is called therisk associated withc∗. We prefer to focus on
the risk ofc∗, instead of on its coverage, which is clearly equal to1 − R (see the
Remark 2 on page 6), because this is more in line with previousliterature, which the
theory presented in this and the following chapter builds on. We recall thatR is a
random variable since it depends onx∗ andc∗, which in turn depend on the random
sampleDN = δ(1), . . . , δ(N). A fundamental result in the theory of the scenario
approach to convex problems establishes that, irrespective of P∆, the probability
distribution function ofR is always equal to or bounded by a Beta probability
distribution with parametersd+ 1 andN − d (recall thatd is the dimension of the
decision variable). Thus, we have that the worst-case costc∗ is a distribution-free
coverage statistic in many cases, while in general we have that it is a distribution-
free(ǫ, β)-coverage statistic for anyN satisfying

N ≥ e

e− 1

1

ǫ

(

d+ ln
1

β

)

. (3.3)

Due to the logarithmic dependence ofN on β, the statisticc∗ is very useful in
characterizingx∗ with very high confidence, even for relatively smallN (clearly,
this is true on condition thatd is not too large: in Chapter 4 we will deal with this
question).

Despite the sharp theoretical result offered by the theory of the scenario ap-
proach above mentioned, it may be advisable to study other indicators besidesc∗.
In particular, we here consider the whole set of costsℓ(x∗, δ(1)), . . . , ℓ(x∗, δ(N))
associated with the various scenariosδ(1), δ(2), . . . , δ(N). In the following, these
costs,sorted from largest to smallest, will be indicated byc∗1, c

∗
2, . . . , c

∗
N , see

Fig. 3.1. With this notation, it always holds thatc∗1 = c∗.
As is clear from an intuitive point of view,c∗1, c

∗
2, . . . , c

∗
N all together provide a

more sensible characterization ofx∗ than by usingc∗ only, since they provide em-
pirical evidence on howℓ(x∗, δ) distributes with respect to the variability ofδ.
Assume for instance that the gap between the maximum costc∗ and the second
greatest cost and, similarly, other gaps between costs are large. Then, one expects
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optimization
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(b)

Figure 3.1.On the left, a pictorial representation of the optimizationproblem (3.2), where
each scenarioδ(i) corresponds to a constraint of the formℓ(x, δ(i)) ≤ c, here represented
with a shaded area. On the right, the costs ofx∗ are put in evidence.
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that a newδ carries a costℓ(x∗, δ) significantly smaller thanc∗ with a high proba-
bility. On the contrary, when the valuesℓ(x∗, δ(i)) concentrate all aroundc∗, it is
apparent thatℓ(x∗, δ) will be almost always close toc∗. A similar idea is followed
e.g. in [69], where empirical costs distribution are used for financial decision op-
timization. In order to put such kind of reasoning on a solid quantitative ground,
the riskRk associated with the costsc∗k, i.e. the probability to observe an uncer-
tainty instanceδ carrying a cost higher thanc∗k, must be evaluated simultaneously
for k = 1, . . . , N . However, the existing result applies to the solec∗ and does not
provide any characterization of the risks associated with other costs. We fill this
gap by studying thejoint probability distributionof all the risksR1, R2, . . . , RN .
Our main achievement is that, no matter what the probabilitymeasureP∆ is, the
joint probability distribution ofRd+1, Rd+2, . . . , RN is equal to anordered Dirich-
let distribution whose parameters depend on the number of scenariosN and the
number of decision variablesd only. Based on this result, the distribution of the
variablesR1, . . . , RN can be tightly kept under control, and our conclusions can
be employed to support decisions in many real cases even for small sizes ofN .
To sum up, two kinds of quantities are central in the characterization of the relia-
bility of x∗:











c∗1
c∗2
...
c∗N











and











R1

R2
...

RN











,

i.e. the vectors of the costs and of the associated risks. While the costs are known
as soon as the optimal decision variablex∗ is computed, the corresponding risks
are hidden to the decision maker. Nevertheless, their jointprobability distribution
is known (as given by the theory here developed) so that the risks can be kept under
control. In particular, since the ordered Dirichlet distribution is thin tailed, the risks
can be bounded with high confidence by dropping the tails of the probability dis-
tribution. This way, a complete characterization of the reliability of x∗ is obtained,
and important information about the effective distribution of all the possible uncer-
tain costsℓ(x∗, δ) is acquired.

In the next Section 3.2, the main result about the riskR of c∗ is recalled more
in depth, our achievements are formally stated and some relevant aspects are dis-
cussed.

3.2 Main results

We first give the formal definition of the costsc∗1, . . . , c
∗
N and of their risks.

Definition 6 (costs). We define thecostsof the optimal decision variablex∗ as
c∗k := max

{

c ∈ R : c ≤ ℓ(x∗, δ(j)) for a choice ofk indexesj among{1, . . . , N}} ,
for k = 1, . . . , N . ⋆
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Clearly,c∗ = c∗1 ≥ c∗2 ≥ · · · ≥ c∗N .

Definition 7. We denote withRk the risk of the (empirical) costc∗k of the optimal
decisionx∗, formally

Rk := P∆{δ ∈ ∆ : ℓ(x∗, δ) > c∗k}, k = 1, . . . , N.

⋆

Clearly,c∗k is a statistic of the dataDN = δ(1), . . . , δ(N), having coverageC(c∗k) =
1−Rk, and eachRk is a random variable that depends on the random sampleD

N

throughx∗ andc∗k.
Our results are all given under the following assumption.

Assumption 1 (existence and uniqueness). For every value ofN and for every
value ofδ(1), δ(2), . . . , δ(N), the optimal solution toEPIN in (3.2) exists and is
unique.

⋆

This assumption can be relaxed, but we here prefer to maintain it to avoid technical
complications.

We now show that the risk ofc∗ can be studied in the light of the theory of
the scenario approach for general constrained convex problems. In particular, in
the following, we will reformulate in the present min-max context the main result
provided by that theory. For further details on the originalresult and others related,
the reader is referred to Appendix A. First, we need to formulate in the present
context the definition ofsupport scenarioand offully-supportedproblem.

Definition 8 (support scenario). For given scenariosδ(1), δ(2), . . . , δ(N), the sce-
nario δ(r), r ∈ {1, . . . , N}, is called a support scenario for the min-max problem
(3.1) if its removal changes the solution ofEPIN in (3.2).

⋆

Loosely speaking, support scenarios are those corresponding to the uppermost cost
functions, preventing the solution from moving to any improving direction. The
number of support scenarios can be bounded a-priori. Indeed, for every value of
δ(1), δ(2), . . . , δ(N), the number of support scenarios for the min-max problem (3.1)
is at mostd + 1 (see Proposition 2 in the Appendix A). We say that the min-max
problem isfully-supportedif, for all N ≥ d+ 1, with probability one with respect
to the possibleδ(1), δ(2), . . . , δ(N), it has exactlyd+ 1 support scenarios.

Now, consider, for any given pair(x, c), x ∈ Rd and c ∈ R, the function
defined as follows

V (x, c) := P∆{δ ∈ ∆ : ℓ(x, δ) > c}.

According to the scenario approach terminology, with reference to problem (3.2),
V (x, c) is theviolation probabilityof the pairz = (x, c). With this notation, the
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risk R of the worst empirical costc∗ corresponding to the optimal decisionx∗ is
given by

R = V (x∗, c∗),

i.e. R is the violation of the optimal solutionz∗ = (x∗, c∗) to the problem (3.2).
The main result recalled in the Appendix A (Theorem 12) dealswith V (x∗, c∗)
and, in our context, boils down to the fact that, whenever themin-max problem
(3.1) is fully-supported, the equality

PN
∆{R ≤ ǫ} = 1−

d
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i (3.4)

holds true, that is, the probability distribution functionof R is equal to a Beta with
parameters(d + 1, N − d) independently ofP∆ and of the specific problem con-
sidered. For non fully-supported problems, the result holds as a bound (Theorem
13):

PN
∆{R ≤ ǫ} ≥ 1−

d
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i. (3.5)

In the rest of this chapter, we will show that, by a slight specialization of the
fully-supportedness assumption, a broader result than (3.4) holds, and the whole
joint probability distribution function of the risks associatedwith all the costs can
be exactly computed without relying on the knowledge ofP∆.

Assumption 2 (specialized fully-supportedness). Let consider the min-max prob-
lem(3.1) for all N ≥ d+ 1. With probability one with respect to the possible data
samplesDN , it holds that:

i) it has exactlyd+ 1 support scenarios;

ii) for everyγ ∈ R, P∆{ℓ(x∗, δ) = γ} = 0.

⋆

Point i) of Assumption 2 is the classic fully-supportedness assumption (see As-
sumption 3 in Appendix A) and, since, by definition, the support scenarios carry
the same costc∗, it implies that the firstd + 1 costs are equal, i.e.c∗1 = c∗2 =
· · · = c∗d+1 = c∗ (see Fig. 3.1). Sincec∗1 = c∗2 = · · · = c∗d+1, the associ-
ated risksR1, R2, . . . , Rd+1 are equal too. Pointii) instead is a non-degeneracy
condition (satisfied in many practical problems) asking that the possible values
of the cost function atx∗, conditionally on the dataDN , do not accumulate over
the same point. It is easy to show that, whenii) is satisfied, the remaining costs
c∗d+1, c

∗
d+2, . . . , c

∗
N are all different from one another.

Before giving Theorem 6, we recall that theordered(N − d)-variate Dirichlet
distribution is the probability distribution having density function

p(νd+1, νd+2, . . . , νN ) =
N !

d!
νdd+11{0 ≤ νd+1 ≤ νd+2 ≤ · · · ≤ νN ≤ 1},



3.2 Main results 61

where1{·} denotes the indicator function, see e.g. [51], page 182. Thecumulative
distribution function of the ordered(N − d)-variate Dirichlet distribution will be
denoted byCDFd(ηd+1, . . . , ηN ), i.e.

CDFd(ηd+1, . . . , ηN ) =

N !

d!

∫ ηd+1

0
νdd+1

∫ ηd+2

0
· · ·
∫ ηN

0
1{0 ≤ νd+1 ≤ · · · ≤ νN ≤ 1}dνN · · · dνd+2dνd+1.

(3.6)

See Section 3.2.3 for additional information about Dirichlet distributions.

Theorem 6. Under Assumptions 1 and 2, the joint probability distribution function
ofRd+1, . . . , RN is as follows:

PN
∆{Rd+1 ≤ ǫd+1, Rd+2 ≤ ǫd+2, . . . , RN ≤ ǫN} = CDFd(ǫd+1, ǫd+2, . . . , ǫN ),

(3.7)
so that

PN
∆{R1 ≤ ǫ1, R2 ≤ ǫ2, . . . , Rd+1 ≤ ǫd+1, Rd+2 ≤ ǫd+2, . . . , RN ≤ ǫN}

= CDFd(ǫ, ǫd+2, . . . , ǫN ),

whereǫ := min{ǫ1, ǫ2 . . . , ǫd+1}.
⋆

Proof. See Section 3.4.

Theorem 6 states that for the class of problems satisfying Assumptions 1 and 2,
the risksR1, . . . , RN are pivotal quantities, since their joint probability distribu-
tion function is the same independently of the specific problem at hand and, in
particular, independently of the probability measureP∆. It is well known, see e.g.
[70], that the marginal distributions of an ordered Dirichlet distribution are Beta
distributions. Hence, it can be inferred that the probability distribution function of
Rk is a Beta with parameters(k,N − k + 1), k = d+ 1, . . . , N , that is,

PN
∆{Rk ≤ ǫ} = 1−

k−1
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i. (3.8)

Specializing (3.8) fork = d+ 1 and recalling thatRd+1 = R becausec∗d+1 = c∗,
we have that

PN
∆{R ≤ ǫ} = PN

∆{Rd+1 ≤ ǫ} = 1−
d
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i,

i.e. the result (3.4) is recovered from Theorem 6.
The class of problems satisfying Assumptions 1 and 2 is neither empty nor “patho-
logical”. Notable examples, like the following one, arise in min-max linear regres-
sion:

min(x1,...,xd)∈Rd maxi=1,...,N

∣

∣

∣
yi −

[

x1 + θ(i)x2 +
(

θ(i)
)2
x3 + · · ·+

(

θ(i)
)d−1

xd

]∣

∣

∣
,
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whereN ≥ d + 1, and the points(θ(i), y(i)) = δ(i), i = 1, . . . , N , are sampled
from ∆ = R2 according to a probabilityP∆ that admits a density, see [64]. As
is clear, however, specialized fully-supported problems does not cover the whole
realm of problems encountered in the practice of optimization.
Remarkably, Theorem 6 is just a corollary of a more general result that continues to
hold even when Assumption 2.i is dropped and the sole non-degeneracy condition
2.ii is preserved.

Theorem 7. Under Assumptions 1 and 2.ii, the joint probability distribution func-
tion ofRd+1, . . . , RN is as follows:

PN
∆{Rd+1 ≤ ǫd+1, Rd+2 ≤ ǫd+2, . . . , RN ≤ ǫN} = CDFd(ǫd+1, ǫd+2, . . . , ǫN ).

(3.9)
⋆

Proof. See Section 3.4.1.

Although equation (3.9) of Theorem 7 and equation (3.7) of Theorem 6 are for-
mally the same, the conveyed information is different because, without Assump-
tion 2.i, it is no longer true thatc∗ = c∗1 = c∗2 = · · · = c∗d+1, and (3.9) does not
determine the probability distribution of all the risks including the firstd. In fact,
under Assumptions 1 and 2.ii only, the distribution ofR1, . . . , Rd is intrinsically
problem-dependent.
Because of (3.9), the marginal distribution ofRk, k = d + 1, . . . , N , is still a
Beta as in (3.8). Under the assumptions of Theorem 7, we can only conclude that
c∗ ≥ c∗d+1, so thatR ≤ Rd+1, entailing that the probability distribution ofR is
dominated by that ofRd+1, that is

PN
∆{R ≤ ǫ} ≥ PN

∆{Rd+1 ≤ ǫ} = 1−
d
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i.

Hence,

PN
∆{R ≤ ǫ} ≥ 1−

d
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i

and the inequality (3.5) for general (i.e. not necessarily fully-supported) problems
is recovered. Furthermore, our study has thus shown that theright-hand side of
(3.5) is theexactprobability distribution of the risk associated with a costlower
thanc∗. Moreover, by observing that necessarily

R1 ≤ · · · ≤ Rd ≤ Rd+1,

becausec∗1 ≥ c∗2 ≥ · · · ≥ c∗d+1, we have thatRd+1 ≤ ǫ implies not onlyR ≤ ǫ,
but alsoRi ≤ ǫ, ∀i ≤ d, and the joint probability distribution function ofall the
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risksR1, . . . , Rd+1, . . . , RN including the firstd can be bounded as follows:

PN
∆{R1 ≤ ǫ1, . . . , Rd+1 ≤ ǫd+1, Rd+2 ≤ ǫd+2, . . . , RN ≤ ǫN}
≥ [let ǫ := min{ǫ1, ǫ2 . . . , ǫd+1}]
≥ PN

∆{R1 ≤ ǫ, . . . , Rd+1 ≤ ǫ,Rd+2 ≤ ǫd+2, . . . , RN ≤ ǫN}
= PN

∆{Rd+1 ≤ ǫ,Rd+2 ≤ ǫd+2, . . . , RN ≤ ǫN}
= [by using (3.9)]

= CDFd(ǫ, ǫd+2, . . . , ǫN ). (3.10)

This conclusion is formally stated in the following corollary.

Corollary 1. Under Assumption 1 and 2.ii, the joint probability distribution func-
tion of the risksR1, . . . , RN is lower bounded byCDFd(ǫ, ǫd+2, . . . , ǫN ), i.e.

PN
∆{R1 ≤ ǫ1, . . . , Rd+1 ≤ ǫd+1, Rd+2 ≤ ǫd+2, . . . , RN ≤ ǫN}

≥ CDFd(ǫ, ǫd+2, . . . , ǫN ), (3.11)

whereǫ := min{ǫ1, ǫ2 . . . , ǫd+1}.
⋆

Clearly, bound (3.11) is tight (i.e. cannot be improved without introducing addi-
tional assumptions) since it holds with equality for problems satisfying also As-
sumption 2.i.

3.2.1 Relaxing the non-degeneracy assumption

The non-degeneracy Assumption 2.ii is strictly required for the equalities in The-
orems 6 and 7 to hold true. Indeed, if for example the probability measureP∆ is
concentrated on a unique scenarioδ̄, the costsc∗1, c

∗
2, . . . , c

∗
N collapse to the same

valuec∗ = c∗1 = c∗2 = · · · = c∗N having zero risk andP∆{Rd+1 ≤ ǫd+1, Rd+2 ≤
ǫd+2, . . . , RN ≤ ǫN} = 1. In this case, though (3.7) and (3.9) are violated, the
distribution of the risksRd+1, Rd+2, . . . , RN is still trivially dominated by the or-
dered Dirichlet distribution. Actually, it is a general fact that if the non-degeneracy
assumption is dropped, then the cumulative probability distribution function of the
risks remains lower bounded by the ordered Dirichlet cumulative distribution func-
tion, as formally stated in the next theorem.

Theorem 8. Under Assumption 1 only, the joint probability distribution function
ofRd+1, . . . , RN is lower bounded byCDFd(ǫd+1, . . . , ǫN ), i.e.

PN
∆{Rd+1 ≤ ǫd+1, Rd+2 ≤ ǫd+2, . . . , RN ≤ ǫN} ≥ CDFd(ǫd+1, ǫd+2, . . . , ǫN ).

(3.12)
⋆
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Proof. See Section 3.4.3.

Mimicking (3.10), the following corollary is easily obtained.

Corollary 2. Under Assumption 1 only, the joint probability distribution function
of R1, . . . , RN is lower bounded as follows

PN
∆{R1 ≤ ǫ1, . . . , Rd+1 ≤ ǫd+1, . . . , RN ≤ ǫN} ≥ CDFd(ǫ, ǫd+2, . . . , ǫN ),

whereǫ := min{ǫ1, ǫ2 . . . , ǫd+1}.
⋆

3.2.2 Practical use of the theoretical results

The theory developed above can be applied in various ways. The following two are
especially useful in contexts where the uncertainty instancesδ(1), δ(2), . . . , δ(N)

come as observations obtained from a data acquisition experiment.

Post-experiment analysis
The decision-maker has collectedN scenariosδ(1), . . . , δ(N) and has solved the
min-max problem (3.1) obtainingx∗ and the corresponding costsc∗k, k = 1, . . . , N .
He fixes a confidence parameterβ ∈ (0, 1) to a very small value, e.g.β = 10−5 or
β = 10−7, and determinesǫd+1, . . . , ǫN such thatCDFd(ǫd+1, . . . , ǫN ) is bigger
than or equal to1− β. By appealing to Corollary 2, the decision-maker can claim
with high confidence1 − β that, simultaneously fork = 1, . . . , N , the riskRk of
each costc∗k is no larger than the respectiveǫk (takingǫk = ǫd+1 whenk < d+1).

Experiment design
The decision-maker fixes a very smallβ ∈ (0, 1), e.g. β = 10−5 or β = 10−7.
Then he fixes the desired upper bounds on the risks of the firstm costs, that is a
vector ofm increasing elements,0 ≤ ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫm ≤ 1. By letting ǫh = 1
for h > m, he computes the minimum numberN of scenarios guaranteeing that
CDFd(ǫ1, ǫd+2, . . . , ǫN ) is no less than1 − β. If N instances ofδ are indeed ob-
served and the min-max problem is solved, then, in the light of Corollary 2, the
obtainedx∗ and the corresponding costs are such thatRk ≤ ǫk, k = 1, . . . , N ,
simultaneously with high confidence1− β.

In both cases, the decision-maker can link the solutionx∗ and the costsc∗k ’s ob-
tained through the optimization procedure to the valuesǫk ’s that limit the corre-
sponding risksRk’s.
Now, let us consider the cumulative distribution function of the costℓ(x∗, δ) in-
curred at the optimal solutionx∗, defined asFℓ(c) := P∆{δ ∈ ∆ : ℓ(x∗, δ) ≤ c}.
Interestingly enough, the risks give us a lot of informationaboutFℓ(c) because, by
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the definition of risk, we have

Rk ≤ ǫk ⇐⇒ 1−Rk ≥ 1− ǫk

⇐⇒ P∆{ℓ(x∗, δ) ≤ c∗k} = Fℓ(c
∗
k) ≥ 1− ǫk,

so that, with confidence1− β, we have also that

Fℓ(c
∗
k) ≥ 1− ǫk, for all k = 1, . . . , N. (3.13)

Moreover, by observing thatFℓ(c) is monotonic, (3.13) implies that

Fℓ(c) ≥







1− ǫ1 if c ≥ c∗1
1− ǫk if c∗k ≤ c < c∗k−1, k = 2, . . . , N

0 if c < c∗N

i.e., we have found a step function that, with confidence1 − β, lower bounds the
cumulative distribution function of the costℓ(x∗, δ). This provides strong knowl-
edge on the performance of the decision variablex∗ without any further sampling
effort.
This result can be further refined in many situations, that is, when the assump-
tions of Theorem 7 are known to be satisfied. Theorem 7, indeed, provides the
exact distribution of the risksRd+1, . . . , RN , thus allowing the decision-maker to
computetwo-sidedconfidence intervals forR1, . . . , RN , i.e. it is possible to com-
pute ǭ1, ǭ2, . . . , ǭN (with ǭ1 = ǭ2 = . . . = ǭd = ǭd+1) and ǫ1, ǫ2, . . . , ǫN (with
ǫ1 = ǫ2 = . . . = ǫd = 0) so thatRk ∈ [ǫk, ǭk] simultaneously fork = 1, . . . , N
with confidence1− β. This is equivalent to building the “probability box”

Fℓ(c) ≥







1− ǭ1 if c ≥ c∗1
1− ǭk if c∗k ≤ c < c∗k−1, k = 2, . . . , N

0 if c < c∗N
and

Fℓ(c) ≤







1 if c > c∗1
1− ǫk if c∗k+1 < c ≤ c∗k, k = 1, . . . , N−1
1− ǫN if c ≤ c∗N

(3.14)

enveloping the cumulative distribution function ofℓ(x∗, δ) with confidence at least
1 − β, see Fig. 3.2. See [71] for a discussion of “probability boxes” and their
usefulness in risk-evaluation problems.

3.2.3 Some useful properties

In this section, we highlight some properties of the probability distribution func-
tion of the risksRd+1, . . . , RN as given by equation (3.9) of Theorem 7 that may
be useful in practice.
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Figure 3.2. A “probability box” for the cumulative distribution function of the cost,
Fℓ(c) = P∆{ℓ(x∗, δ) ≤ c}. The graph ofFℓ(c) is within the white area with confi-
dence1 − β. The box is built based on the empirical costsc∗

k
and the values̄ǫk, ǫk that

limit the corresponding risksRk = 1 − Fℓ(c
∗
k
). The probability box in this figure is a

stylized representation, for a real instance see Fig. 3.6 inSection 3.3.

Comments on Dirichlet distributions
Equation (3.9) states that the random vectorRd+1, Rd+2, . . . , RN is distributed ac-
cording to the(N−d)-variate ordered Dirichlet distribution functionCDFd(ǫd+1,
. . . , ǫN ). By applying the following transformation to the random variablesRk ’s

DN = 1−RN

DN−1 = RN −RN−1

...

Dd+1 = Rd+2 −Rd+1

the vectorDd+1,Dd+2, . . . ,DN is obtained, which is distributed according to the
so-calledDirichlet distribution, [51, 72]. Hence, the evaluation of an ordered
Dirichlet distribution function can be converted to the problem of evaluating a
Dirichlet distribution function. The reader is referred to[73, 74, 75, 76] and refer-
ences therein for studies on computational issues about Dirichlet distributions.
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Beta distributions as marginals
We have already observed that the marginal probability distribution function ofRk

is a Beta with parameters(k,N − k + 1), for eachk = d + 1, . . . , N , see (3.8).
Notably, the right-hand side of (3.8) can be easily evaluated by means of common
tools, like thebetainc function inMATLAB, [77], orpbeta in R, [78]. Such Beta
distributions have known expected values, precisely:

E∆[Rk] =
k

N + 1
, k = d+ 1, . . . , N,

hence,c∗k is a distribution freeN+1−k
N+1 -mean coverage statistic, satisfying (by the

same reasoning as in (1.2))

PN+1
∆ {ℓ(x∗, δ) ≤ c∗k} =

N + 1− k

N + 1
, k = d+ 1, . . . , N.

As is clear, a lower bound for the joint distribution function of Rd+1, . . . , RN is
given by the sum of the marginals, i.e.

PN
∆{Rd+1 ≤ ǫd+1, . . . , RN ≤ ǫN}

≥ 1−
N
∑

k=d+1

PN
∆{Rk > ǫk}

= 1−
N
∑

k=d+1

k−1
∑

i=0

(

N

i

)

ǫik(1− ǫk)
N−i, (3.15)

and (3.15) may indeed be an acceptable approximation ofCDFd(ǫd+1, . . . , ǫN ) in
some practical cases (see also Section 3.3).
Based on (3.15), we show in the following that for a givenβ ∈ (0, 1), if

N ≥ max
k=d+1,...,N

N (k), (3.16)

where

N (k) :=

⌊

2

ǫk

(

k + ln
1

β

)

+
4

ǫk
ln

(

2

ǫk

(

k + ln
1

β

))⌋

+ 1

(⌊·⌋ denotes integer part), thenPN
∆{Rd+1 ≤ ǫd+1, . . . , RN ≤ ǫN} ≥ 1 − β, i.e.

conditionsRk ≤ ǫk, k = d+ 1, . . . , N , hold simultaneously with high confidence
1 − β. Although (3.16) may be loose, it reveals the logarithmic dependence ofN
onβ by which it is possible to enforceveryhigh confidence without affecting too
much the sampling effort.

Proof. The fact that (3.16) entailsPN
∆{Rd+1 ≤ ǫd+1, . . . , RN ≤ ǫN} ≥ 1 − β is

now proved by following almost verbatim the proof in Appendix B of [79], which
is in a context different from our own but involves the same mathematical steps.
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Note that, by (3.16) and the definition ofN (k), for everyk = d+1, . . . , N we
have

N ≥ 2

ǫk

(

k + ln
1

β

)

+
4

ǫk
ln

(

2

ǫk

(

k + ln
1

β

))

=[lettingak = k + ln
1

β
]

=
2

ǫk
ak +

2

ǫk
· 2 · ln

(

2ak
ǫk

)

≥[since2 ≥ ak
ak − 1

]

≥ 2

ǫk
ak +

2

ǫk
· ak
ak − 1

· ln
(

2ak
ǫk

)

=
2

ǫk

ak
ak − 1

(

ak − 1 + ln

(

2ak
ǫk

))

=
1

ǫk
2 − 1

2ak
ǫk

(

ak − 1 + ln

(

2ak
ǫk

))

,

so that

ǫk
2

·N ≥
(

ak − 1 + ln

(

2ak
ǫk

))

+
1
2ak
ǫk

·N

≥[since1− 2ak
ǫk

≤ 0]

≥ak − 1 + ln

(

2ak
ǫk

)

+
1
2ak
ǫk

·
(

N + 1− 2ak
ǫk

)

≥[since lnx+
1

x
(y − x) ≥ ln y (by the concavity oflnx)]

≥ak − 1 + ln (N + 1)

=k − 1 + ln
1

β
+ ln (N + 1) .

Hence,

ǫkN

2
− (k − 1) ≥ ln

N + 1

β
,

and, by observing that(ǫkN−(k−1))2

2ǫkN
≥ ǫkN

2 − (k − 1), we have

e
− (ǫkN−(k−1))2

2ǫkN ≤ β

N + 1
.

SinceN > k
ǫk

, by the Chernoff’s bound (see e.g. [43], Chapter 2, Section 3), it
holds that

k−1
∑

i=0

(

N

i

)

ǫik(1− ǫk)
N−i ≤ e

− (ǫkN−(k−1))2

2ǫkN ,
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and, by recalling that

PN
∆{Rk > ǫk} =

k−1
∑

i=0

(

N

i

)

ǫik(1− ǫk)
N−i,

we conclude that

PN
∆{Rk > ǫk} ≤ β

N + 1
≤ β

N − d
.

From (3.15) it follows thatPN
∆{Rd+1 ≤ ǫd+1, . . . , RN ≤ ǫN} ≥ 1− β.

Connection with order statistics
Consider the sampling ofN random variables, uniformly and independently dis-
tributed in[0, 1], and sort them in order of magnitude,

X(1) ≤ X(2) ≤ · · · ≤ X(N),

X(i) being thei−th smallest value, i.e. thei−th order statistic. It is well known,
[51, 52], that order statistics have joint ordered Dirichlet distribution with unitary
parameters, that isP∆{X(1) ≤ ǫ1,X(2) ≤ ǫ2, . . . ,X(d+1) ≤ ǫd+1, . . . ,X(N) ≤
ǫN} can be expressed as

N !

∫ ǫ1

0

∫ ǫ2

0
· · ·
∫ ǫN

0
1{0 ≤ x1 ≤ · · · ≤ xN ≤ 1}dxN · · · dx2dx1. (3.17)

If ǫ1 = ǫ2 = · · · = ǫd+1, then, by integrating with respect to the firstd + 1
components, (3.17) becomes

N !

d!

∫ ǫd+1

0
xdd+1

∫ ǫd+2

0
· · ·
∫ ǫN

0
1{0 ≤ xd+1 ≤ · · · ≤ xN ≤ 1}dxN · · · dxd+2dxd+1,

which is exactlyCDFd(ǫd+1, . . . , ǫN ). In short, the computation ofCDFd(ǫd+1,
. . . , ǫN ) can be reduced to the well known problem of computing the joint cumula-
tive distribution function of order statistics, see e.g. [73, 75]. The freely distributed
packageµtoss forR, [80, 81, 78], contains the functionjointCDF.orderedUnif,
which computes (3.17), though, because of numerical issues, it is reliable for
N ≤ 100 only.

Computability through Monte-Carlo methods
By virtue of the analogy with the distribution of order statistics, even Monte-Carlo
methods can be employed to evaluateCDFd(ǫd+1, . . . , ǫN ). Indeed, one can repeat
a large number of times, sayM times, the following steps (C is a counter initially
set to0):

• draw a sequence ofN independent samples from a uniform distribution in
[0, 1];

• sort the sequence, i.e. compute all the order statistics fromX(1) (the smallest
value) toX(N) (the largest);
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• evaluate the conditionX(i) ≤ ǫi for i = d + 1, . . . , N , and increment the
counterC by 1 if it is satisfied for every value of the indexi.

Then,P̂ := C
M

is an estimate of the sought probabilityP := CDFd(ǫd+1, . . . , ǫN ).
P̂ andP are related by the Hoeffding’s inequality (see [82, 83]), which guarantees
that P ≥ P̂ − γ holds with confidence1 − η (e.g. η = 10−6) as long as the
number of experiments is large enough (precisely, as long asM ≥ 1

2γ2 ln
2
η
). This

method becomes increasingly impractical asγ gets smaller, and more advanced
randomized schemes must be considered if loweringγ under10−4 is needed.

3.3 An application to audio equalization

In this section, we shall employ the main results of Section 3.2 in the characteriza-
tion of the solution to anequalizer designproblem, [84].

3.3.1 Problem formulation

In a digital communication system, [85, 86], a signalu(t), t = 0,±1,±2, . . . , is
sent from atransmitterto areceiverthrough a communicationchannelC, see Fig.
3.3(a). In general, the signal at the receiver end, sayũ(t), is different from the
transmitted signal owing to the distortion introduced by the channel. This latter,
indeed, acts approximately as a linear frequency filter and is completely charac-
terized by its frequency responseC(ω), which is a complex-valued function of
ω ∈ [−π, π] linking the Fourier transform ofu(t), sayU(ω), to the Fourier trans-
form of ũ(t), say Ũ(ω), according to the equatioñU(ω) = C(ω)U(ω). If the
distortion introduced by the channel is unacceptably high,a deviceE calledequal-
izercan be added at the receiver end to improve the quality of the transmission, see
Fig. 3.3(b).

The equalizerE is a frequency filter too, whose frequency response is denoted
by E(ω). In particular, we consider a so-calledd-tap FIR (Finite Impulse Re-
sponse) equalizer:

E(ω) =
d−1
∑

k=0

xke
−ikω, (3.18)

where i is the imaginary unit andx0, x1, . . . , xd−1 are real parameters through
which the frequency response can be shaped. Here, we restrict to the cased = 10.
Overall, the frequency response of the equalized channel inFig. 3.3(b) linking
U(ω) and Ũ(ω) turns out to be the productC(ω)E(ω), and the aim is to de-
sign the equalizerE by choosing the vectorx of the parametersx0, x1, . . . , xd−1

so as to makeC(ω)E(ω) as similar as possible to adesired frequency response.
Clearly, this can be cast as an optimization problem where the dissimilarity be-
tweenC(ω)E(ω) and the desired frequency response is measured by a suitable
cost function to be minimized. In the line of [84], we regarde−iDω as the desired
frequency response (e−iDω is the frequency response of a pure delay ofD time
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Figure 3.3.Channel equalization

steps), while, as cost function, we choose the sum of themaximumand theaverage
absolute deviationbetweenC(ω)E(ω) ande−iDω, formally

MAAD(x) :=

max
k=−n,...,0,...,n

|C(ωk)E(ωk)− e−iDω|+ λ
1

2n+ 1

n
∑

k=−n

|C(ωk)E(ωk)− e−iDω|,

(3.19)

whereλ is a normalizing coefficient andωk = k
n
π, k = 0,±1, . . . ,±n, is a grid-

ding of [−π, π]. Throughout,n is set to100, while λ = 1 andD = 8. In the
MAAD cost function, the average absolute deviation takes care of the global be-
havior, over the whole range of frequencies, of the equalized channel, while the
maximum absolute deviation explicitly penalizes the presence of resonant peaks,
which are undesirable because they generate annoying whistling noise in audio
communications.

The problem with (3.19) is that, in real-world applications, the frequency re-
sponse of the channel is not exactly known because of imperfections in the estima-
tion procedure used to retrieveC(ω) or to an intrinsic variability of the environ-
ment, as, for example, in mobile communication.
Hence,C(ω) = C(ω, δ) whereδ is an uncertain parameter and the cost function
should be more properly written asMAAD(x, δ) so as to highlight the dependence
on the uncertainty besetting the channel. We are thus facingan uncertain optimiza-
tion problem and we resort to the scenario approach to deal with it.
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3.3.2 Scenario Approach

Problem solution
The only requirement is the availability ofN independent scenariosC(ω, δ(1)),
C(ω, δ(2)), . . . , C(ω, δ(N)) of the uncertain frequency response to rely on. No-
tably, the scenario approach can be employed without a full knowledge of the
probabilistic description of the uncertainty, and, in principle, the collected sce-
narios may be the results of field experiments performed in various environmental
conditions (data-based optimization). If instead the probability distributionP∆ of
δ is known, then the scenarios can be artificially generated. In this example, we
suppose to be in this second case and thatC(ω, δ) is a second-order frequency
response of the type:

C(ω, δ) =
1

ei2ω + δ1eiω + δ2
,

where the uncertain parameterδ = (δ1, δ2) is uniformly distributed over[−0.4, 0.4]×
[0.5, 0.8]. N = 3000 scenarios are thus obtained through a random number gener-
ator.

According to the scenario approach, the optimal equalizerE∗ is the one whose
design parameter vectorx∗ solves the convex problem

min
x∈R10

max
j=1,...,3000

MAAD(x, δ(j)). (3.20)

The solution in our simulation isx∗ = (7.08·10−2 , 1.00·10−3 ,−6.64·10−2, 1.42·
10−3, 4.71 · 10−2, 3.73 · 10−4, 8.37 · 10−1, 2 · 10−3, 5.09 · 10−1,−3.46 · 10−4).
The costsc∗1, . . . , c

∗
3000 are then computed according to Definition 6, i.e.c∗k =

max
{

c ∈ R : c ≤ MAAD(x∗, δ(j)) for a choice ofk indexesj among{1, . . . ,
3000}} . This amounts to evaluating the costsMAAD(x∗, δ(1)), . . . ,MAAD(x∗,
δ(3000)) and sorting their values in decreasing order. The reliability of the designed
equalizerE∗ is next evaluated in light of the results of this chapter.

Upper bounding the risks
We choose the vector of risk thresholdsǭ = (ǭ11, . . . , ǭ3000) according to the fol-
lowing rule: a parameterβ′ ∈ [0, 1] is fixed and, for eachk = 11, 12, . . . , 3000,
ǭk ∈ [0, 1] is selected such that

k−1
∑

i=0

(

N

i

)

ǭik(1− ǭk)
N−i =

β′

2989
.

In words, the rule consists in choosingǭ so that the marginal probabilityPN
∆{Rk >

ǭk} is equal to β′

2989 for all k = 11, 12, . . . , 3000.
According to (3.10) and (3.15), and by posingǭ1 = ǭ2 = · · · = ǭ11, the adopted
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choice forǭ entails that

PN
∆{R1 ≤ ǭ1, . . . ,R11 ≤ ǭ11, . . . , R3000 ≤ ǭ3000}

≥ PN
∆{R11 ≤ ǭ11, . . . , R3000 ≤ ǭ3000}

≥ 1−
N
∑

k=11

P3000
∆ {Rk > ǭk}

= 1−
3000
∑

k=11

k−1
∑

i=0

(

3000

i

)

ǭik(1− ǭk)
3000−i

= 1−
3000
∑

k=11

β′

2989

= 1− β′, (3.21)

i.e. the risksRk ’s are simultaneously less than the correspondingǭk ’s with con-
fidence at least1 − β′. For example, we have confidence0, 0.9, 0.99 for β′ =
1, 10−1, 10−2 respectively. A more refined evaluation ofPN

∆{R1 ≤ ǭ1, . . . , R11 ≤
ǭ11, . . . , R3000 ≤ ǭ3000} is obtained throughCDF10(ǭ11, . . . , ǭ3000) as stated by
Theorem 7. Indeed, by computingCDF10(ǭ11, . . . , ǭ3000) with the Monte-Carlo
algorithm in Section 3.2.3, it turns out that the conditionsR1 ≤ ǭ1, . . . , R3000 ≤
ǭ3000 simultaneously hold with confidence equal to0.98 (as opposed to0) when
β′ = 1, confidence0.997 (as opposed to0.9) whenβ′ = 10−1, and confidence
0.9997 (as opposed to0.99) whenβ′ = 10−2. Fig. 3.4 shows the values ofǭk for
β′ = 1, 10−1, and10−2. As it is apparent, the values ofǭk are quite insensitive to
the value ofβ′ so that enforcing a high confidence only marginally impacts on the
ǭk’s.

We selectβ′ = 10−2, so that confidence is0.9997 and we can reasonably sup-
pose the risks of the empirical costsc∗1, . . . , c

∗
N are simultaneously upper bounded

by thresholds̄ǫ1, ǭ2, . . . , ǭN .

Thus, by linkingc∗1, c
∗
2, . . . , c

∗
N to ǭ1, ǭ2, . . . , ǭN , as in Fig. 3.5, we can e.g.

claim that the risk that the equalizerE∗ carries a cost greater thanc∗11 = 1.298 is
just at most1.09%, i.e. cost1.298 is guaranteed for about the99% of the random
instances of the channel frequency responseC(ω, δ), while, at the same time, cost
c∗99 = 1.252 is guaranteed for the95% of the channel frequency responses, cost
c∗229 = 1.230 is guaranteed for the90% of them, and so forth and so on.

Cost distribution
The evaluation of the reliability ofE∗ can be further refined according to the dis-
cussion in Section 3.2.2. In fact, in the same line as above, alower bounding vector
ǫ11, . . . , ǫ3000 can be chosen such that the marginal probabilityPN

∆{Rk ≤ ǫk} is
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Figure 3.4. Values ofǭk, k = 11, . . . , 3000, for β′ = 1 (solid line),β′ = 10−1 (dashed
line), andβ′ = 10−2 (dash-dotted line).

equal to β′

2989 for all k = 11, 12, . . . , 3000, i.e., by recalling (3.8), such that

1−
k−1
∑

i=0

(

N

i

)

ǫik(1− ǫk)
N−i =

β′

2989
.

By takingǫ1 = ǫ2 = · · · = ǫ10 = 0, we can compute

PN
∆{ǫ1 ≤ R1 ≤ ǭ1, ǫ2 ≤ R2 ≤ ǭ2, . . . , ǫ3000 ≤ R3000 ≤ ǭ3000}
=PN

∆{ǫ11 ≤ R11 ≤ ǭ11, ǫ12 ≤ R12 ≤ ǭ12, . . . , ǫ3000 ≤ R3000 ≤ ǭ3000}

based onCDFd(ηd+1, . . . , ηN ) given by Theorem 7, and it turns out thatPN
∆{ǫ1 ≤

R1 ≤ ǭ1, ǫ2 ≤ R2 ≤ ǭ2, . . . , ǫ3000 ≤ R3000 ≤ ǭ3000} is 0.9993. In other words,
we have thatǫk ≤ Rk ≤ ǭk simultaneously hold for everyk = 1, . . . , N with
confidence0.9993, a quite high value, which permits us to be reasonably sure that
risks are indeed lower and upper bounded as indicated. Moreover, by recalling
the relation betweenFℓ(c) = P∆{MAAD(x∗, δ) ≤ c} and the risks, according to
equation (3.14), the probability box containingFℓ(c) with high confidence0.9993
can be computed, see Figs. 3.6 and 3.7. This result is a sharp characterization of
the probability distribution of the cost associated with the designed equalizer and
provides full information on the reliability ofE∗.
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3.4 Proofs

We first prove in next Section 3.4.1 the fundamental Theorem 7by computing

PN
∆{Rd+1 ≤ ǫd+1, Rd+2 ≤ ǫd+2, Rd+3 ≤ ǫd+3, . . . , RN ≤ ǫN} (3.22)

under Assumptions 1 and 2.ii. Based on this result, the proof of Theorem 8 is
developed in Section 3.4.3 by releasing Assumption 2.ii. Theorem 6 immediately
follows from Theorem 7 by noting that under the assumptions of Theorem 6 it
holds thatR1 = R2 = · · · = Rd+1.

3.4.1 Proof of Theorem 7

For any fixed(x, c, c̄) ∈ Rd+2, let D(x, c, c̄) := P∆{δ ∈ ∆ : c < ℓ(x, δ) ≤ c̄}
and, for any integerk such thatd+ 1 ≤ k ≤ N , let

Dk := D(x∗, c∗k+1, c
∗
k) (3.23)

wherec∗N+1 is defined to be equal to−∞. Similarly to theRk ’s, Dk ’s are random
variables, since they depend on the sample(δ(1), . . . , δ(N)) throughx∗, c∗d+1, . . . , c

∗
N ,

and, indeed,Dk is the conditional probability with respect tox∗, c∗k+1, c
∗
k that a

newly extracted uncertainty instanceδ carries a cost betweenc∗k and c∗k+1. The
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c

Figure 3.6.The graph ofFℓ(c), the cumulative distribution function of the cost atx = x∗,
lays in the white strip with confidence0.9993. Thus, for each value ofc on the abscissa,
Fℓ(c) belongs to an interval bounded from above and below. For a zoomed view of the
probability box see Fig. 3.7.

variablesDk ’s and theRk ’s are related by the following simple linear transforma-
tions

Rd+1 = 1−
N
∑

i=d+1

Dk Dd+1 = Rd+2 −Rd+1

Rd+2 = 1−
N
∑

i=d+2

Dk Dd+2 = Rd+3 −Rd+2

...
...

RN−1 = 1−
N
∑

i=N−1

Dk, DN−1 = RN −RN−1

RN = 1−DN , DN = 1−RN . (3.24)

Thanks to (3.24), the joint probability distribution function of theRk ’s can be easily
derived from the joint probability distribution function of theDk ’s and vice versa.
We, hence, proceed by computing the joint probability distribution function of the
Dk ’s first. In order to do so, we considerE∆N [D

kd+1

d+1 · · ·DkN
N ], the multivariate
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c
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ǭ2974 ǭ2973

ǫ2973
ǫ2972

Figure 3.7. A zoomed detail view of the probability box in Fig. 3.6. The probability box
for Fℓ(c) in [0.8415, 0.8422] is here represented and some empirical costsc∗

k
, together with

the lower (ǫk) and upper (̄ǫk) bounds to their risks, are put in evidence.

moment ofDd+1, . . . ,DN , and evaluate it for each possible assignment of non-
negative integerskd+1, . . . , kN . The joint distribution function ofDd+1, . . . ,DN

can then be deduced from the resulting moment problem.
To ease the notation, define:Md = N , Md+1 = N + kd+1, Md+2 = N + kd+1 +

kd+2, etc., untilMN = N+
∑N

i=d+1 ki. By (3.23), the productDkd+1

d+1 D
kd+2

d+2 · · ·DkN
N

gives the conditional probability with respect tox∗, c∗d+1, . . . , c
∗
N , i.e. with respect

to the data samples(δ(1), . . . , δ(N)), thatMN − N new independently extracted
uncertainty instances from∆, sayδ(N+1), . . . , δ(MN ), are such that the firstkd+1

(i.e. δ(N+1), . . . , δ(Md+1)) carry a cost betweenc∗d+1 andc∗d+2, the nextkd+2 (i.e.
δ(Md+1+1), . . . , δ(Md+2)) carry a cost betweenc∗d+2 andc∗d+3, and so forth and so
on till the lastkN carrying a cost belowc∗N (recall thatc∗N+1 = −∞). Therefore,

the productDkd+1

d+1 D
kd+2

d+2 . . . DkN
N can be expressed as

N
∏

i=d+1

Dki
i =

P
MN−N
∆ {c∗i+1 < ℓ(x∗, δ(j)) ≤ c∗i , i = d+ 1, . . . , N, j = Mi−1 + 1, . . . ,Mi},

(3.25)

wherePMN−N
∆ = P∆×· · ·×P∆ denotes as usual the product probability measure

of δ(N+1), . . . , δMN . Expressing probability as the integral of an indicator function
and using the compact notationδnm to indicate(δ(m), δ(m+1), . . . , δ(n)) and∆n

m =
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∆×∆× · · · ×∆ to indicate the domain forδnm, (3.25) can be rewritten as

N
∏

i=d+1

Dki
i =

∫

∆
MN
N+1

1{c∗i+1 < ℓ(x∗, δ(j)) ≤ c∗i , i = d+ 1, . . . , N,

j = Mi−1 + 1, . . . ,Mi}PMN−N
∆ {dδMN

N+1}.

As (δ(1), . . . , δ(N)) is let vary in∆N ,
∏N

i=d+1 D
ki
i takes on various values and we

are interested in computing its expected value, i.e.

E∆N

[

N
∏

i=d+1

Dki
i

]

=

∫

∆N
1

N
∏

i=d+1

Dki
i PN

∆{dδN1 }

=

∫

∆N
1

∫

∆
MN
N+1

1{c∗i+1 < ℓ(x∗, δ(j)) ≤ c∗i , i = d+ 1, . . . , N,

j = Mi−1 + 1, . . . ,Mi}PMN−N
∆ {dδMN

N+1}PN
∆{dδN1 },

which, by Tonelli’s theorem, can be restated as

∫

∆
MN
1

1{c∗i+1 < ℓ(x∗, δ(j)) ≤ c∗i , i = d+ 1, . . . , N,

j = Mi−1 + 1, . . . ,Mi}PMN

∆ {dδMN

1 },

that is the momentE∆N [D
kd+1

d+1 · · ·DkN
N ] is nothing but thetotal probability with

respect to all variablesδ(1), . . . , δ(N), δ(N+1), . . . , δ(MN ) thatδ(N+1), . . . , δ(Md+1)

carry a cost betweenc∗d+1 andc∗d+2, δ(Md+1+1), . . . , δ(Md+2) carry a cost between
c∗d+2 andc∗d+3, and so forth and so on. Now, letS̄ = {j1, . . . , jN} be a generic sub-
set ofN indexes taken from{1, . . . ,MN} and letz∗|S̄ = (x∗|S̄ , c

∗
|S̄) be the optimal

solution to problem

EPI|S̄ : min
c∈R,x∈X⊆Rd

c

subject to:ℓ(x, δ(i)) ≤ c, i ∈ S̄. (3.26)

Moreover, fork = 1, . . . , N , let c∗
k|S̄ = max{c ∈ R : c ≤ ℓ(x∗|S̄, δ

(i)) for a choice

of k indexesi amongS̄}, i.e. thec∗
k|S̄ are the costs associated withx∗|S̄, and let

c∗
N+1|S̄ = −∞. Eventually, for eachi = d+ 1, . . . , N , letSi = {j1, . . . , jki} be a

subset ofki indexes from{1, . . . ,MN} \ S̄ such thatSm ∩ Sn = ∅ if m 6= n. Due
to the i.i.d. (independent and identically distributed) nature of the uncertainty in-
stances (δ(1), δ(2), . . . , δ(MN )), the total probability that the instances with indexes
in Sd+1 carry a cost betweenc∗

d+1|S̄ andc∗
d+2|S̄ , those with indexes inSd+2 carry

a cost betweenc∗
d+2|S̄ andc∗

d+3|S̄, and so forth and so on till those with indexes in
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SN carrying a cost betweenc∗
N |S̄ andc∗

N+1|S̄ , does not depend in any way on the

choice ofS̄, Sd+1, . . . , SN . Whence
∫

∆
MN
1

1{c∗i+1 < ℓ(x∗, δ(j)) ≤ c∗i , i = d+ 1, . . . , N,

j = Mi−1 + 1, . . . ,Mi}PMN

∆ {dδMN
1 }

=

∫

∆
MN
1

1{c∗i+1|S̄ < ℓ(x∗|S̄ , δ
(j)) ≤ c∗i |S̄, i = d+ 1, . . . , N,

j ∈ Si}PMN

∆ {dδMN

1 } ∀(S̄, Sd+1, . . . , SN ) ∈ S,
whereS is the set of all feasible choices of̄S, Sd+1, . . . , SN from {1, . . . ,MN}.
Indicating with|S| the cardinality ofS, we have

E[D
kd+1

d+1 · · ·DkN
N ]

=

∫

∆
MN
1

1{c∗i+1 < ℓ(x∗, δ(j)) ≤ c∗i , i = d+ 1, . . . , N,

j = Mi−1 + 1, . . . ,Mi}PMN

∆ {dδMN
1 }

=
1

|S|
∑

(S̄,Sd+1,...,SN )∈S

∫

∆
MN
1

1{c∗i+1|S̄ < ℓ(x∗|S̄, δ
(j)) ≤ c∗i |S̄ ,

i = d+ 1, . . . , N, j ∈ Si}PMN

∆ {dδMN

1 }

=
1

|S|

∫

∆
MN
1

∑

(S̄,Sd+1,...,SN )∈S
1{c∗i+1|S̄ < ℓ(x∗|S̄, δ

(j)) ≤ c∗i |S̄ , i = d+ 1, . . . , N,

j ∈ Si}PMN

∆ {dδMN

1 }.

For a fixed sampleδMN
1 the inner sum

∑

(S̄,Sd+1,...,SN )∈S
1{c∗i+1|S̄ < ℓ(x∗|S̄ , δ

(j)) ≤ c∗i |S̄, i = d+ 1, . . . , N, j ∈ Si}

counts the number of partitions of uncertainty instancesδ(1), . . . , δ(MN ) into sets
S̄, Sd+1, . . . , SN , such that the costs associated with the instances inSd+1, . . . , SN

fit into the costs computed based on the instances inS̄ according to the condition

c∗
i+1|S̄ < ℓ(x∗|S̄ , δ

(j)) ≤ c∗
i|S̄ , i = d+ 1, . . . , N, j ∈ Si. (3.27)

It is a fact that such number is almost surely equal to1 as formally stated in the
next proposition, whose proof is postponed to next Section 3.4.2 in order to first
draw the conclusion.

Proposition 1. It holds with probability1 that
∑

(S̄,Sd+1,...,SN )∈S
1{c∗

i+1|S̄ < ℓ(x∗|S̄ , δ
(j)) ≤ c∗

i|S̄ , i = d+ 1, . . . , N, j ∈ Si} = 1.

⋆
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Thanks to Proposition 1, we have

E∆N [D
kd+1

d+1 · · ·DkN
N ] =

1

|S| =
1

(

MN

N,kd+1,...,kN

) , (3.28)

where the last equality follows from the evaluation of|S|, through a multinomial
coefficient, see e.g. [87]:

|S| =
(

MN

N, kd+1, . . . , kN

)

=
N−d−1
∏

i=0

(

MN−i

kN−i

)

=
MN !

N !kd+1! · · · kN !
.

Note that (3.28) holds true for every valuekd+1, . . . , kN so that (3.28) provides
the infinite multivariate moments ofDd+1, . . . ,DN . The probability distribution
function of Dd+1, . . . ,DN then is uniquely determined, [88]. In particular, by
integration one can check that the density of the Dirichlet distribution,

pD(xd+1, xd+2, . . . , xN ) =
N !

d!

(

1−
N
∑

i=d+1

xi

)d 1{ N
∑

i=d+1

xi ≤ 1, 0 ≤ xi ≤ 1

}

,

satisfies the moment problem posed by (3.28). By applying thetransformation
(3.24), we obtain the joint densitypR of Rd+1, . . . , RN :

pR(rd+1, rd+2, . . . , rN )

= pD(rd+2 − rd+1, rd+3 − rd+2, . . . , rN − rN−1, 1− rN )

=
N !

d!
rdd+11{0 ≤ rd+1 ≤ rd+2 ≤ · · · ≤ rN ≤ 1}, (3.29)

and equation (3.9) follows by integrating (3.29).

3.4.2 Proof of Proposition 1

Consider the optimization problem with all theMN uncertainty instancesδ(1), . . . , δ(N),
δ(N+1), . . . , δ(MN ) in place:

EPIMN
: min

c∈R,x∈X⊆Rd
c

subject to:ℓ(x, δ(i)) ≤ c, i = 1, . . . ,MN , (3.30)

and let(x̃, c̃) be the optimal solution. Moreover, letc̃k = max{c ∈ R : ℓ(x̃, δ(i)) ≥
c for a choice ofk indexesi among{1, . . . ,MN}}, k = 1, . . . ,MN , be the costs
associated with̃x. Plainly, c̃k ≤ c̃k′ whenk > k′. Assumption 2.ii implies that the
following strict ordering holds true almost surely:

c̃d+1 > c̃d+2 > · · · > c̃MN
. (3.31)
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Proof of (3.31).For every fixedδ(1), . . . , δ(MN ), at least one basis ofd + 1 in-
stances can always be found such that the solution to the optimization problem
when only those instances are considered is the same as the solution to (3.30)
with all MN instances in place, see e.g. [89]. Consider now the subset ofthe
(δ(1), . . . , δ(MN )) ∈ ∆MN

1 violating condition (3.31) and whose firstd + 1 in-
stances form a basis, so thatx̃ is determined once the values ofδ(1), . . . , δ(d+1) are
fixed. This subset has zero probability because, conditionally to δ(1), . . . , δ(d+1),
the probability thatℓ(x̃, δ(k)) = ℓ(x̃, δ(h)) for somek ∈ {d + 2, . . . ,MN} and
someh ∈ {1, . . . ,MN}, h 6= k, is zero thanks to Assumption 2.ii, and, hence, the
probability that two costs among̃cd+1, . . . , c̃N are equal is zero as well. The same
reasoning permits one to conclude that all the subsets ofδ(1), . . . , δ(MN ) violating
(3.31) and whose instancesδ(i1), . . . , δ(id+1) form a basis, for all possible choices
of i1, . . . , id+1 in {1, . . . ,MN}, have zero probability. The thesis follows by not-
ing that the instancesδ(1), . . . , δ(MN ) violating (3.31) are obtained as the union of
these subsets.

In order for (3.27) to hold, observe thatS̄ must be such that(x̃, c̃), the optimal
solution to (3.30), is equal to(x∗|S̄, c

∗
|S̄), the optimal solution computed with the

uncertainty instances in̄S in place only. Indeed, if this were not the case, there
would be an instanceδ(j) in one of the setsSd+1, . . . , SN violating (x∗|S̄ , c

∗
|S̄), i.e.

ℓ(x∗|S̄, δ
(j)) > c∗|S̄. By definition ofc∗

d+1|S̄ , this would entailℓ(x∗|S̄, δ
(j)) > c∗

d+1|S̄ ,
which does not fit (3.27).

Moreover, in order for (3.27) to hold,̄S must contain the setH = {i ∈
{1, . . . ,MN} : ℓ(x̃, δ(i)) ≥ c̃d+1}, i.e. the set of all indexes of uncertainty
instances corresponding to the uppermost costs in correspondence of̃x. Indeed,
suppose that one or more instances inH do not belong tōS, and that(x∗|S̄ , c

∗
|S̄) =

(x̃, c̃). Since by (3.31) the cardinality ofH is exactlyd + 1, then the costsc∗
d+1|S̄

must take on a value strictly below̃cd+1. Hence, for aj ∈ H \ S̄, we would
haveℓ(x∗|S̄ , δ

(j)) = ℓ(x̃, δ(j)) ≥ c̃d+1 > c∗
d+1|S̄ , again violating (3.27). If in-

stead we imposeH ⊆ S̄, we have that(x∗|S̄, c
∗
|S̄) = (x̃, c̃) because a simple in-

spection reveals thatH contains all uncertainty instances corresponding to active
constraints in (3.30). The other instances with indexes notbelonging toH carry
costs in correspondence ofx̃ which are equal to costs̃cd+2, . . . , c̃MN

and which
are strictly ordered by (3.31). By adding toSd+1 thekd+1 indexes of uncertainty
instances having costs̃cd+2, . . . , c̃d+2+kd+1−1, then toS̄ the next one having cost
c̃d+2+kd+1

, then toSd+2 the following kd+2, then toS̄ the next one having cost
c̃d+2+kd+1+kd+2

, and so forth and so on till the lastkN are put intoSN , one ob-
tains a partitionS̄, Sd+1, . . . , SN satisfying (3.27). Due to the ordering of costs of
instances not inH, this partition is the sole possible one.
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3.4.3 Proof of Theorem 8

When Assumption 2 is completely dropped, the assessment of the probability dis-
tribution function ofRd+1, . . . , RN can be obtained by mimicking the reasoning
used in [56] to prove the general result recalled in Section 3.2, equation (3.5). The
idea of [56] was to infinitesimally perturb the constraints of the scenario optimiza-
tion problem (“heating”) so as to go back to a setting where the needed assumption
is verified and then to infer the sought result via a limiting process. Here, this
reasoning can be decidedly simplified by perturbing constraints of (3.2) just along
the direction of componentc ∈ R. The proof is now sketched, pointing out the
differences from [56].

Heating
ConsiderH = [−ρ, ρ], ρ > 0, andδ′ = (δ, h) ∈ ∆′, with∆′ = ∆×H. We define,
for eachx ∈ X and δ′ = (δ, h), the functionℓ′(x, δ′) = ℓ(x, δ) + h. Finally,
indicating withU the uniform measure onH, the probabilityP′

∆ = P∆ × U is
defined over∆′. Clearly,ℓ′ andP′

∆ are such that Assumption 2.ii holds, since for
any(x, c) we haveP′

∆{ℓ′(x, δ′) = c} = 0. The problem obtained by extractingN
constraints from∆′ is called the heated scenario problem and is as follows:

H-EPIN : min
c∈R,x∈X⊆Rd

c

subject to:c ≥ ℓ(x, δ(i)) + h(i) i = 1, . . . , N.

(3.32)

The solution to (3.32) is indicated by(x′∗, c′∗). For this problem Theorem 7 is
valid. Hence, lettingc′∗k , k = 1, . . . , N , be the costs of the heated scenario prob-
lem and lettingR′

k, k = 1, . . . , N , be the corresponding risks (i.e.R′
k = {δ′ ∈

∆′ : ℓ′(x′∗, δ′) > c′∗k }), the joint probability distribution functionP′N
∆ {R′

d+1 ≤
ǫd+1, . . . , R

′
N ≤ ǫN} can be exactly computed and is given by (3.9).

Convergence of the heated solution to the original solution
Fix a δ(1), . . . , δ(N), and compute the solution of EPIN , (x∗, c∗), as well as the
costsc∗d+1, . . . , c

∗
N . Let ρn be a sequence of heating parameters monotonically

decreasing to zero. For everyn, pick anyN numbersh(1)n , . . . , h
(N)
n from the

intervalHn = [−ρn, ρn], and let(x′∗, c′∗) andc′∗d+1, . . . , c
′∗
N be the solution and

the costs of problem (3.32), whereδ′(1) = (δ(1), h
(1)
n ), . . . , δ′(N) = (δ(N), h

(N)
n ).

By mimicking [56], it is easy to show that the heated solutionas well as the heated
costs converge to the original solution and costs as the heating parameterρn tends
to zero:∀δ(1), . . . , δ(N) ∈ ∆N ,

lim
n→∞

sup
h
(1)
n ,...,h

(N)
n ∈Hn

||(x′∗,c′∗, c′∗d+1, . . . , c
′∗
N )− (x∗, c∗, c∗d+1, . . . , c

∗
N )|| = 0.

(3.33)
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In particular, the convergence of the costsc′∗k to c∗k, k = d+ 1, . . . , N , comes as a
consequence of the continuity ofℓ(x, δ) in x.

Derivation of (3.12)
Fix a data sampleDN = (δ(1), . . . , δ(N)) that isbad, i.e. such that the condition
Rj > ǫj is true for at least onej ∈ {d+1, . . . , N}. As above, consider a sequence
of heating parametersρn ↓ 0. In line with [56], it can be shown that, thanks to
(3.33), there exists a big enough̄n such that,∀n > n̄, and for every choice of
h
(1)
n , . . . , h

(N)
n , the heated data sample((δ(1), h(1)n ), . . . , (δ(N), h

(N)
n )) is such that

R′
j > ǫj , i.e. it is bad in the heated setting. To conclude the theorem, note that

(P∆ × U)N{∃j : R′
j > ǫj}

=

∫

∆N

∫

HN
n

1{∃j : R′
j > ǫj}

dhN
1

(2ρn)N
PN
∆{dδN1 }

≥
∫

∆N

1{∃j : Rj > ǫj}
∫

HN
n

1{∃j : R′
j > ǫj}

dhN
1

(2ρn)N
PN
∆{dδN1 }.

The outer indicator function limits the integration domainto data samples in∆N

that are bad. For every fixed data sample in this domain the inner integral is equal
to 1 for a sufficiently largen. Thus, by the dominated convergence theorem, taking
the limit for n → ∞ it holds that

(P∆ ×U)N{∃j : R′
j > ǫj}

≥
∫

∆N

1{∃j : Rj > ǫj}P∆{dδN1 }

= PN
∆{∃j : Rj > ǫj} = 1− PN

∆{∀j Rj ≤ ǫj}.

Equation (3.12) follows since

1− CDFd(ǫd+1, . . . , ǫN )

= 1− (P∆ × U)N{R′
j ≤ ǫj ∀j ∈ {d+ 1, . . . , N} }

= (P∆ ×U)N{∃j : R′
j > ǫj}.

3.5 Perspectives for future work and an open issue

The results presented in this chapter are full-fledged results for the kind of decision
problems considered, and our analysis has shown that they are not improvable in
the absence of further assumptions and before any data is observed. Moreover,
in our specific context, they throw a new light on already known results. The
theory presented is particularly useful in data-based optimization, where it can
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be employed to characterize in-depth a worst-case scenariosolution. We believe
that a significant application may be in the comparative evaluation of manifold
data-based decisions, where a theoretically sound evaluation of the respective cost
distributions may be crucial.1

If some a-priori knowledge about the distribution of the uncertainty is at dis-
posal, it can be integrated in the present framework. For example, bounds on the
possible values attained by the cost functionℓ(x, δ) can be integrated with the
probability boxes obtained in Section 3.2.2 so as to allow the computation of use-
ful confidence intervals forE∆[ℓ(x

∗, δ)].
Finally, the success in studying min-max convex decision problems suggests to in-
vestigate whether a larger class of problems can be studied with the same or similar
tools, to achieve similarly strong results.

3.5.1 Shortage of samples

The numberN of scenarios required to guarantee thatc∗ has a desired “high-
coverage property” is usually calledsample complexity. In large-scale problems
with very larged, the sample complexity may become too high, especially if the
scenarios come from real, expensive experiments. Indeed, we have seen that the
risk of c∗ is tightly bounded by the riskRd+1 of c∗d+1, which is large ifd is compa-
rable withN , see (3.3). This problem can be tackled in different ways. Anidea is
to try to introduce a mathematical machinery similar to thatused in Chapter 2. In
fact, the theory in Chapter 2, though at present limited to mean coverages, leads to
results that do not depend directly on the dimensiond, as discussed in Remark 4.
However, it is an open problem to what extent similar resultscan be obtained with-
out restricting a-priori the class of the possible cost functions, i.e. without aban-
doning the general convex context studied in the present chapter. In the following
Chapter 4, we will work under the same assumptions as in the present chapter and
we will focus on the coverage of the worst-case cost. We will show how to com-
pute a data-based decision similar to the worst-case decision x∗ accompanied by
a cost threshold similar toc∗ but with the desired coverage properties even when
a relatively small number of scenarios is at our disposal. The algorithm presented
in the following chapter is an instance of a more general idea, which consists in
suitably exploiting some structure that can be revealed by data. Indeed, as a mat-
ter of fact, very often reality is redundant: this means thateven a few randomly
observed scenarios may be sufficient to betray the structureof the whole unseen
reality. If suitable mechanisms are introduced to reveal and exploit such a struc-
ture, cost thresholds with good coverage properties can be provided even ifN is
small.

1A viable approach is that of combining the characterizationof the cost distribution here offered
with results in the line of Theorem 14. Indeed, Theorem 14 is used in [79] to compare various
possible decisions based on cost-risk pairs. It is viable toextend such an idea in the light of the
theory here presented so as to characterize each possible decision based not only on a cost-risk pair
but on the full distribution of the costs.



Chapter 4

Data-based min-max decisions
with reduced sample complexity

In this chapter, we focus on the sample-complexity of data-based convex min-max
problems. For a fixed (usually small)ǫ and a fixed (usually very small)β, the
sample-complexityis the numberN of scenarios needed in order for the coverage
of the empirical worst-case costc∗ to be no smaller than1−ǫ with confidence1−β.
The sample complexity of the data-based min-max optimization rapidly increases
with the dimensiond of the decision variable, and this may pose a hurdle to its
applicability to medium and large scale problems. We here introduce FAST (Fast
Algorithm for the Scenario Technique), a variant of the min-max decision-making
algorithm with reduced sample complexity.

4.1 Introduction and problem position

We will work in the same framework of Chapter3. We recall briefly the fundamen-
tal facts. Given a cost functionℓ(x, δ), convex in the decision variablex for any
value of the uncertainty variableδ, we have studied the properties of the decision
x∗, solution to the min-max problem

min
x∈X⊆Rd

max
i=1,...,N

ℓ(x, δ(i)), (4.1)

whereX is a convex and closed set, andδ(1), ..., δ(N) are instances of the uncer-
tainty variableδ independently generated according to a probability measure P∆.
We have seen that the worst-empirical costc∗, i.e. the optimal value of (4.1), al-
lows for a probabilistic characterization ofx∗ in a distribution-free manner. In
particular, ifN is suitably chosen, relationℓ(x∗, δ) ≤ c∗ holds with probability
1 − ǫ with respect toδ (with very high confidence1 − β). That is,c∗ is a cost
guaranteed with probability1 − ǫ when decisionx∗ is made. It turns out that this
“suitableN ” is inversely proportional toǫ and is proportional tod, the number of
components in the optimization variablex, i.e.N scales as1

ǫ
· d, see (3.3) on page

85



86 Data-based min-max decisions with reduced sample complexity

56. However, as noted also in [90, 91], this dependence onǫ andd may result in
too many scenarios for large scale problems with larged, thus posing a difficulty
in practice. In fact, we may not have enough scenarios at our disposals. Moreover,
even if we can sample an arbitrary number of scenarios, it canbe hard in practice
to solve the min-max problem with so many scenarios for computational reasons,
since it involves solving a convex problem with so many constraints. In both cases,
we would like to make a decision with an associated guaranteed cost based on a
smaller amount of scenarios than that required by the “classical” decision-making
algorithm.

In the present chapter a modified version of the worst-case decision-making
algorithm, called FAST (Fast Algorithm for the Scenario Technique), is introduced
in order to get around this difficulty. FAST associates to a min-max decisionx∗F a
costc∗F still having coverage no less than1 − ǫ, i.e such thatℓ(x∗F , δ) ≤ c∗F holds
with probability1−ǫ, with a sample complexityN that exhibits a dependence onǫ
andd of the form 1

ǫ
+ d. This significantly reduces the sample complexity in large

scale optimization problems.

4.1.1 The idea behind FAST

FAST operates in two steps. First, a moderate numberN1 of scenariosδ(i) are
considered and problem (4.1) withN = N1 is solved so generating a solution
x∗|N1

and an optimal valuec∗|N1
, refer to Figure 4.1(a). This first step is carried

out at a low effort due to the moderate numberN1 of scenarios involved. On the
other hand,ℓ(x∗|N1

, δ) ≤ c∗|N1
is not guaranteed with the desired probability level

1 − ǫ sinceN1 is too low for this to happen. Then, adetuningstep is started
whereN2 additional scenarios are considered and the smallest valuec∗F such that
ℓ(x∗|N1

, δ(i)) ≤ c∗F , i = 1, . . . , N1 + N2, is computed, see Figure 4.1(b). The
algorithm returns the solutionx∗F = x∗|N1

and the valuec∗F . The theory in Section
4.2 shows thatℓ(x∗F , δ) ≤ c∗F holds with the desired probability1 − ǫ. In this
construction,N1 andN2 scale asd and1

ǫ
respectively, leading to an overall number

of scenariosN = N1 +N2 that is typically much smaller than that required by the
classical worst-case approach. Moreover, choosing a smallǫ does not affectN1

and only results in a largeN2 value, which corresponds to having many scenarios
in the detuning step, a step that is a simple detuning procedure that can be solved
efficiently even for large values ofN2.

The remainder of the chapter is organized as follows. In nextSection 4.2,
the FAST algorithm is presented in detail. In Section 4.2.1 theoretical results are
presented, and a discussion about the practical use of FAST follows in Section
4.2.2. The proofs are in Section 4.3. In the Appendix B, an extension of FAST
to the more general set-up presented in Appendix A is provided. A simulation
example, in the general case, is also given in Appendix B.4.
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x∗
|N1

c∗|N1

x
(a) first step

x∗
F

c∗|N1

c∗
F

x
(b) detuning step

Figure 4.1. Illustration of FAST. Each line represents a functionℓ(x, δ(i)).

4.2 The FAST algorithm

We maintain here for simplicity the assumption that any problem of the form

min
x∈X⊆Rd

max
i=1,...,m

ℓ(x, δ(i))

has a unique solution for anym and any choice ofδ(1), . . . , δ(m). Moreover, the
following notation is in force to express shortly the fundamental Beta distribution
function:

BN,d
ǫ :=

d
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i. (4.2)

The FAST algorithm follows

The FAST algorithm

• INPUT:

· ǫ ∈]0, 1[, risk parameter;

· β ∈]0, 1[, confidence parameter;

· N1, an integer such thatN1 ≥ d+ 1.

1. Compute the smallest integerN2 such that

N2 ≥
ln β − lnBN1,d

ǫ

ln (1− ǫ)
, (4.3)

whereBN1,d
ǫ is as in equation (4.2).

2. SampleN1+N2 independent constraintsδ(1), . . . , δ(N1), δ(N1+1), . . . , δ(N1+N2),
according toP∆.
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3. Solve problem (4.1) withN = N1; let x∗|N1
be the solution.

4. (Detuning step) Compute

c∗F := max
i=1,...,N1+N2

ℓ(x∗|N1
, δ(i)).

• OUTPUT:

· (x∗F , c
∗
F ) := (x∗|N1

, c∗F ).

4.2.1 Theoretical results

Consider the risk of the costc∗F defined as

RF := P∆{δ ∈ ∆ : ℓ(x∗F , δ) > c∗F }.

Clearly,RF is a random variable that depends on the samplesδ(1), . . . , δ(N1+N2).
The following theorem bounds the probability thatRF > ǫ.

Theorem 9. The following relation holds

PN1+N2
∆ {RF > ǫ} ≤ (1− ǫ)N2 ·BN1,d

ǫ . (4.4)

⋆

The proof of Theorem 9 is given in Section 4.3. It is a fact thatthe bound
on the right-hand side of (4.4) is not improvable. Indeed, the following Theorem
10 holds for the class of problems satisfying the specialized fully-supportedness
assumption. We recall that a min-max problem (3.1) satisfiesthe fully supported
assumption (Assumption 2) if for allN ≥ d + 1, and with probability one with
respect to the possible scenarios,

i) it has exactlyd+ 1 support scenarios;

ii) for everyγ ∈ R, P∆{ℓ(x∗, δ) = γ} = 0.

For a discussion see page 60.

Theorem 10. We have that relation

PN1+N2
∆ {RF > ǫ} = (1− ǫ)N2 · BN1,d

ǫ (4.5)

holds under Assumption 2. ⋆

For a proof see Section 4.3.
Thus, Theorem 10 states thatc∗F is a distribution-free statistic, and, implicitly, that
the bound in Theorem 9 is tight, i.e. it cannot be improved without further infor-
mation onP∆ or the structure of the problem considered.
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To prove the following main Theorem 11 from Theorems 9 and 10,let us con-
sider the wayN2 is selected in point 1 of the FAST algorithm of Section 4.2. An
easy computation shows that equation (4.3) is equivalent to

(1− ǫ)N2 · BN1,d
ǫ ≤ β.

Thus, an application of Theorem 9 shows that

PN1+N2
∆ {RF > ǫ} ≤ β.

On the other hand, sinceN2 is the smallest integer such that (4.3) holds, anyN ′
2 <

N2 gives
(1− ǫ)N

′
2 · BN1,d

ǫ > β,

and, in light of Theorem 10, this implies that

P
N1+N ′

2
∆ {RF > ǫ} > β

when Assumption 2 is satisfied. We have proved the following theorem.

Theorem 11(main theorem on the FAST algorithm). In the current set-up, it holds
that

PN1+N2
∆ {RF > ǫ} ≤ β. (4.6)

Moreover,N2 given in point 1 of the FAST algorithm cannot be improved in the
sense that there are problems for which noN2 smaller than that given in point 1 of
the FAST algorithm makes(4.6) true. ⋆

4.2.2 Discussion

In the FAST algorithm, the user solves problem (4.1) withN1 scenarios, and com-
putesN2 through (4.3).N1 is decided by the user, whileN2 depends onN1, ǫ,
andβ. In this section, guidelines on how to selectN1, and a handier formula for
N2, are provided. Moreover, the pros and cons with using FAST are also discussed.

Selection ofN1

Computational reasons suggest thatN1 should be chosen as small as possible, but
other requirements also apply. IfN1 is too large, solving (4.1) forx∗|N1

becomes
expensive so losing the advantages of using FAST. On the other hand, ifN1 is too
small,x∗|N1

is poorly selected, and this in turn leads to a large cost value c∗F after
the detuning phase in FAST is carried out. As a rule of thumb out of empirical
experience, we suggest to takeN1 = 20d. Notice that the theoretical result in The-
orem 11 remains valid for any choice ofN1.
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A handier formula for N2

To a first approximation, in point 1 of the FAST algorithm, equation (4.3) can be
substituted by the handier formula

N2 ≥
1

ǫ
ln

1

β
. (4.7)

In fact,
ln β − lnBN1,d

ǫ

ln(1− ǫ)
≤ ln β

ln(1− ǫ)
≤ 1

ǫ
ln

1

β
,

showing that anN2 satisfying (4.7) also satisfies (4.3). (4.7) is easier to apply than
(4.3) since (4.3) also involves computing the termBN1,d

ǫ .

Advantages with using FAST
Reduced sample size requirements
The FAST algorithm provides a cheaper way to find solutions tomedium and
large scale problems than the classical scenario approach.Indeed, one can choose
N1 = Kd, whereK is a user-selected number normally set to20, while, using
(4.7),N2 can be taken as the first integer bigger than or equal to1

ǫ
ln 1

β
. Hence, a

handy formula to estimate the overall number of scenarios needed with FAST is

Kd+
1

ǫ
ln

1

β
.

A comparison with the evaluation of the sample complexity inthe classic approach
(see (3.3) in Chapter 3), i.e.

N ≥ e

e− 1

1

ǫ

(

d+ ln
1

β

)

,

shows the key point that, with FAST, the critical multiplicative dependence on1
ǫ
·d

is replaced by an additive dependence on1
ǫ

andd.

Possibility to reduceǫ to small values
The detuning step 4 of FAST is a simple maximization problem.Therefore, run-
ning step 4 with a largeN2 can be done at low computational effort so thatǫ can
be reduced to values much smaller than with the classical scenario approach.

Suboptimality of FAST
Figure 4.2 represents the solution obtained using FAST.c∗|N1

is the cost value for
the problem withN1 scenarios, andc∗F is the cost value after the introduction ofN2

extra scenarios in the detuning step. In white is the region above all cost functions
ℓ(x, δ(i)), i = 1, . . . , N1 + N2. To achieve the same level of risk as in FAST,
with the classical scenario approach additional scenarioshave to be introduced,
so reducing the white region in which(x∗, c∗), the cost-decision pair computed
according to classical approach, will have to lie. From an inspection of Figure
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c∗F

c∗|N1

xx∗|N1

Figure 4.2.Comparison between FAST and the classical worst-case approach.

4.2 it appears that the classical approach may outperform FAST, that is, it may
happen thatc∗ < c∗F . If so, however, it certainly holds thatc∗F − c∗ < c∗F −
c∗|N1

. Consequently, the decision-maker has a simple way to evaluate the potential
suboptimality of FAST by computingc∗F − c∗|N1

. Empirical evidence shows thatc∗F
andc∗ are often close to each other, and suboptimality is negligible.

4.3 Proofs

Theorems 9 and 10 are proved together in the following Section 4.3.1.

4.3.1 Proof of Theorems 9 and 10

Recall that∆ is the uncertainty domain where the random variableδ takes value,
and define, for brevity,δnm := (δ(m), δ(m+1), ..., δ(n)), so thatδnm ∈ ∆n−m+1.

We want to compute the probability of set

H :=
{

δ
N1+N2
1 : RF > ǫ

}

.

Now, consider, for any given pair(x, c), x ∈ Rd andc ∈ R, the violation probabil-
ity function

V (x, c) := P∆{δ ∈ ∆ : ℓ(x, δ) > c}.
With this notation,RF = V (x∗F , c

∗
F ). For a givenx∗F , consider the set

L := {c ∈ R : V (x∗F , c) > ǫ}.
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L is a random set, depending onδN1
1 throughx∗F = x∗|N1

. Oncex∗|N1
is fixed,

1 − V (x∗|N1
, c), as a function ofc, is clearly the cumulative distribution function

of the random variableℓ(x∗|N1
, δ). Hence,V (x∗N1

, c) is right-continuous and non-
increasing inR, entailing thatL can be written asL =] − ∞, c̄[. The following
property provides a useful characterization of setH.

Property 1. δ
N1+N2
1 ∈ H if and only ifV (x∗|N1

, c∗|N1
) > ǫ andℓ(x∗|N1

, δ(i)) ∈ L,
∀i ∈ {N1 + 1, ..., N1 +N2}. ∗

Proof. At the detuning step 4, the FAST algorithm computes

c∗F = max
i=1,...,N1+N2

ℓ(x∗|N1
, δ(i)),

i.e. c∗F = max{c∗|N1
,maxi=N1+1,...,N1+N2 ℓ(x

∗
|N1

, δ(i))}. If V (x∗|N1
, c∗|N1

) > ǫ,

we havec∗|N1
< c̄. If ℓ(x∗|N1

, δ(i)) ∈ L, ∀i ∈ {N1 + 1, ..., N1 + N2}, we have

maxi=N1+1,...,N1+N2 ℓ(x
∗
|N1

, δ(i)) < c̄. Thus, we havec∗F < c̄, i.e. c∗F ∈ L,

when both conditions hold true simultaneously, yieldingδ
N1+N2
1 ∈ H. Vice versa,

if V (x∗|N1
, c∗|N1

) ≤ ǫ we havec∗|N1
> c̄, so thatc∗F ≥ c∗|N1

> c̄, i.e. c∗F /∈ L

andδ
N1+N2
1 is not in H; on the other hand, ifℓ(x∗|N1

, δ(̄i)) /∈ L for someī ∈
{N1 + 1, ..., N1 +N2} we haveℓ(x∗|N1

, δ(̄i)) > c̄, so thatc∗F ≥ ℓ(x∗|N1
, δ(̄i)) > c̄,

i.e. c∗F /∈ L andδN1+N2
1 is not inH.

Based on Property 1 we proceed now to evaluate the probability of H:

PN1+N2
∆ {H}
= [1{·} = indicator function]

=

∫

∆N1+N2

1{V (x∗|N1
, c∗|N1

) > ǫ andℓ(x∗|N1
, δ(i)) ∈ L,

∀i ∈ {N1 + 1, . . . , N1 +N2}}PN1+N2
∆ {dδN1+N2

1 }

=

∫

∆N1+N2

1{V (x∗|N1
, c∗|N1

) > ǫ} · 1{ℓ(x∗|N1
, δ(i)) ∈ L,

∀i ∈ {N1 + 1, . . . , N1 +N2}}PN1
∆ {dδN1

1 }PN2
∆ {dδN1+N2

N1+1 }

= [using Fubini’s theorem]

=

∫

∆N1

1{V (x∗|N1
, c∗|N1

) > ǫ}
[∫

∆N2

1{ℓ(x∗|N1
, δ(i)) ∈ L,∀i ∈ {N1 + 1, . . . , N1 +N2}}PN2

∆ {dδN1+N2
N1+1 }

]

PN1
∆ {dδN1

1 }. (4.8)
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As we show below in this proof, the inner integral in the square brackets is
upper-bounded by(1− ǫ)N2 for anyδN1

1 , and it is exactly equal to(1− ǫ)N2 when
Assumption 2 is satisfied. Therefore,PN1+N2

∆ {H} is upper-bounded as follows

PN1+N2
∆ {H} ≤ (1− ǫ)N2

∫

∆N1

1{V (x∗|N1
, c∗|N1

) > ǫ}PN1
∆ {dδN1

1 }. (4.9)

The integral in (4.9) isPN1
∆ {V (x∗N1

, c∗N1
) > ǫ}, that is, the complementary distri-

bution function, evaluated atǫ, of the risk ofc∗|N1
when the min-max decisionx∗|N1

is made based onN1 scenarios. According to (3.4), this quantity is upper-bounded
by BN1,d

ǫ , while it is exactly equal toBN1,d
ǫ whenever Assumption 2 is satisfied,

see (3.5). Thus, from (4.9) we conclude that

PN1+N2
∆ {H} ≤ (1− ǫ)N2 ·BN1,d

ǫ ,

which is the statement of Theorem 9, while, if Assumption 2 issatisfied, we have
equality, i.e.

PN1+N2
∆ {H} = (1− ǫ)N2 ·BN1,d

ǫ ,

and Theorem 10 is proved.
To complete the proof we have to evaluate the inner integral in (4.8).
In what follows, we take a fixedδN1

1 - so thatx∗N1
is fixed - and the result is

proved by working conditionally with respect toδN1
1 .

By the independence of the samples,
∫

∆N2

1{ℓ(x∗|N1
, δ(i)) ∈ L,∀i ∈{N1 + 1, . . . , N1 +N2}}PN2

∆ {dδN1+N2
N1+1 } (4.10)

=

(
∫

∆
1{ℓ(x∗|N1

, δ) ∈ L}P∆{dδ}
)N2

=
(

P∆{ℓ(x∗|N1
, δ) ∈ L}

)N2

=
(

P∆{ℓ(x∗|N1
, δ) < c̄}

)N2

. (4.11)

By Assumption 2.ii, P∆{ℓ(x∗|N1
, δ) = c} = 0 so thatV (x∗|N1

, c) = P∆{ℓ(x∗|N1
, δ) >

c} is a continuous function ofc. Since c̄ is the extreme point of the set where
V (x∗|N1

, c) > ǫ, by continuity it follows thatV (x∗|N1
, c̄) = ǫ. Hence,P∆{ℓ(x∗|N1

, δ)

< c̄} = P∆{ℓ(x∗|N1
, δ) ≤ c̄} = 1−P∆{ℓ(x∗|N1

, δ) > c̄} = 1−V (x∗|N1
, c̄) = 1− ǫ

and the right-hand side of (4.10) equals(1 − ǫ)N2 . If Assumption 2 does not
hold, we prove thatP∆{ℓ(x∗|N1

, δ) < c̄} ≤ 1 − ǫ. To this end, define the sets

Ln :=
]

−∞, c̄− 1
n

]

for n > 1. Clearly,Ln ⊆ L, andP∆{ℓ(x∗|N1
, δ) ∈ Ln} =

1− V
(

x∗|N1
, c̄− 1

n

)

< 1− ǫ. Applying theσ-additivity of P∆, we conclude that

P∆{ℓ(x∗|N1
, δ) ∈ L} =P∆{ℓ(x∗|N1

, δ) ∈ ∪∞
n=1Ln}

= lim
n→∞

[

1− V

(

x∗|N1
, c̄− 1

n

)]

≤ 1− ǫ
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and the right-hand of (4.10) is upper-bounded by(1− ǫ)N2 .

4.4 Conclusion and perspectives for future work

In this chapter we have presented a decision-making algorithm that is a modifica-
tion of the classical data-based min-max algorithm, working with reduced sample
complexity. Indeed, the obtained cost thresholdc∗F for the FAST solutionx∗ has
a risk that concentrates on smaller values than does the classical worst-case cost
c∗ for the classical worst-case decisionx∗. Moreover, we have proved thatc∗F is
a distribution-free coverage statistic for a whole (non-pathological) class of prob-
lems. The main idea behind FAST is that of exploiting redundancy in the data.
In particular, in FAST this is done by solving two problems incascade: at the
first stage a classical min-max decision problem is solved and x∗F obtained; at the
second stage a simple one-dimensional optimization is performed, leading to the
guaranteed costc∗F . From a theoretical point of view, the most interesting fact
about FAST is the possibility ofexactlycomputing the distribution of the risk of
the two-step solution(x∗F , c

∗
F ), thus suggesting that ideas similar to that behind

FAST can be used to design decision-making algorithms withtight guarantees on
risks.

A possible difficulty with FAST arises when the decision-maker incurs an unac-
ceptable suboptimality. We recall that suboptimality can be easily detected during
the decision process by evaluating how large the differencec∗F−c∗|N1

is. If c∗F−c∗|N1

is too high, the decision-maker may want to improve its decision x∗F , e.g. by iter-
ating the FAST algorithm with a largerN1. FAST can then be used as the building
block for an iterative procedure where a limited number of iterations can be per-
formed, thus allowing the user to trade the sample complexity with the quality of
the decision. Clearly, the confidence in the risk being no higher than a givenǫ
should be accordingly computed (or, at least, bounded by a simple application of
the union bound).

In Appendix B the FAST algorithm is presented for more general convexand
constrainedoptimization problem, and an example is given in that context.



Conclusions and future
developments

We have studied the theoretical properties of decisions made according to two dif-
ferent data-based approaches: a least-squares approach and a worst-case approach
with convex cost function. In particular, we have shown thatit is possible to eval-
uate in a distribution-free manner, tightly and before any data is observed, the
coverage probabilities of meaningful cost thresholds, which are associated with a
data-based decision according to suitably defined rules. Inthe least-squares con-
text, we have provided an algorithm to compute cost thresholds with guaranteed
mean coverage, and we have shown that these thresholds are close to the empirical
costs. In the worst-case approach, we have extended to all the empirical costs a
known result about the exact probability distribution of the coverage of the worst
empirical cost. We have introduced a version of the worst-case approach that al-
lows for reliable decision-making even when data are few.

All our results hold under the hypothesis that data are independent and iden-
tically distributed (i.i.d.). Since we do not assume that the probability according
to which data are generated is known to the decision-maker, we believe that, in
the situations considered, we have provided useful theoretical tools to put data-
based decision-making on a solid theoretical ground. Also,the theory presented
can be applied to wider contexts than decision-making. For instance, the author of
this thesis is particularly interested in themodel selection problem, which is now
briefly outlined.

The model selection problem
In Chapter 2, Example 4, we have mentioned an application of our theory to a re-
gression problem, that is, to amodel fittingproblem. In a model fitting problem,
the decision variablex ∈ Rd represents a model, characterized byd parameters,
of the dataDN = δ(1), . . . , δ(N) observed, and the cost functionℓ(x, δ) measures
how badly a data pointδ fits the modelx. The best modelx∗ can be chosen accord-
ing to the average approach or the worst-case approach studied in this work. Our
theory allows us to associate with the modelx∗ a certificate about the reliability
of the modelx∗, i.e. a valuec(DN ) such that, for a new data pointδ, it holds that
ℓ(x, δ) ≤ c(DN ) with a guaranteed probabilityα. Different models can be ob-
tained by selecting the best model from various (sayk) model classes of increasing

95
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complexity, e.g.M(1) ⊆ M(2) ⊆ · · · ⊆ M(k), thus obtainingk best-fitting mod-
els , x(1)

∗
, . . . , x(k)

∗
. To each model a cost can be associated in the light of our

theory, i.e. c(1)(DN ), . . . , c(k)(DN ), so that each of these costs is guaranteed at
the same level of probabilityα. The comparison amongc(1)(DN ), . . . , c(k)(DN )
provides a first criterion to select a good model among various classes of models.
For a basic introduction to the model selection problem, seee.g. [13], Chapter 7.⋆

Our work can be continued along several directions. The theory presented in
Chapter 2, dealing with mean coverages, waits to be completed with theoretically
sound results about other properties of the coverages, e.g.variances. Algorithms
alternative to FAST, presented in Chapter 4, can be studied to face the problem of
the dependence on the problem dimension in the theory of Chapter 3.
More sophisticated decision-making schemes can also be investigated. For exam-
ple, a sliding window approach to the observed data can be useful in keeping under
control contingent changes ofP∆ with time, as well as allowing an interesting
frequentist interpretation of the coverage properties, inthe line of results for trans-
ductive predictors studied in [53].
The properties of decisions made according to iterative schemes are at present sub-
ject of research: an iterative scheme allows to updateon-linea decision when new
observations suggest that the decision can be improved. Finally, the study of more
general cost functions (non-quadratic in the average approach and non-convex in
the worst-case approach) and, from a more radical point of view, relaxations of the
i.i.d. assumption constitute open and stimulating research areas. In this regard,
the introduction of weak dependence assumptions, likeβ-mixing (see e.g. [43],
Chapter 2, Section 5), is certainly worth being considered.



Appendix A

The scenario approach to
constrained convex optimization
problems

While, in our work, we have only considered convex min-max optimization prob-
lems, the theory of the scenario approach studied in [29, 30,56, 92, 67, 44, 93, 57]
is set-up for general convex constrained optimization problems. In this appendix, a
brief overview of the main results of this theory is given. InAppendix B the FAST
algorithm presented in Chapter 4 is extended to this generalcontext.

A.1 General problem statement

Given a constant vectorr ∈ Rd+1, a convex and closed setZ ⊆ Rd+1 and a family
of convex and closed setsZδ, parameterized in the uncertainty variableδ, consider
the following constrained convex scenario program

min
z∈Z⊆Rd+1

rT z

subject to:z ∈
⋂

i=1,...,N

Zδ(i) , (A.1)

whereδ(1), . . . , δ(N) are instances ofδ independently sampled according to proba-
bility measureP∆. In a convex setting, linearity of the objective function iswithout
loss of generality, since every convex program can be rewritten with linear objec-
tive, see e.g. [62]. Also, note that (A.1) generalizes the min-max problem:

min
x∈X⊆Rd

max
i=1,...,N

ℓ(x, δ(i)). (A.2)

In fact, (A.2) can be rewritten in epigraphic form as follows:

min
x∈X⊆Rd,c∈R

c

subject to:ℓ(x, δ(i)) ≤ c, i = 1, . . . , N.
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Hence, (A.2) is a particular case of (A.1) withz = (x, c), Z = X × R,
Zδ = {(x, c) : ℓ(x, δ) ≤ c}, andrT = (0, 0, . . . , 0, 1). In other words, a con-
vex problem like (A.1) is an extension of the min-max problems discussed in our
work, and it arises in modeling uncertain optimization where the feasible setX
depends onδ, too. Note that (A.1)is more general than (A.2),becausethe cost
function ℓ(x, δ) is real-valued. If the cost function were defined as an extended
real-valued function, i.e.ℓ : X ×∆ → (R ∪ {±∞}), then (A.1) and (A.2) would
be equivalent. Indeed, (A.1) can be formulated as a min-max problem by posing
x = z, X = Z, ℓ(x, δ) = +∞ for anyx /∈ Zδ, andℓ(x, δ) = rTx otherwise.

We are interested in quantifying the probability thatz∗, the solution to (A.1),
is violated by an unseen uncertainty instanceδ, that is, we want to studyP∆{δ ∈
∆ : z /∈ Zδ}. We give the following formal definition.

Definition 9 (violation probability). Theviolation probability, or just violation, of
a given pointz ∈ Z is defined as

V (z) := P∆{δ ∈ ∆ : z /∈ Zδ}.
∗

Throughout, we will assume implicitly that, for anym and any choice of
δ(1), . . . , δ(m), any problem of the form

min
z∈Z⊆Rd+1

rT z

subject to:z ∈
⋂

i=1,...,m

Zδ(i) (A.3)

is feasible and its feasibility domain has non-empty interior, and that the solution
of (A.3) exists and is unique. This assumption is common in studying constrained
convex problems. Relaxations of it are possible, in the linesuggested in Section
2.1 of [56], but we will not consider them for simplicity. Note that in the min-max
context, the condition of feasibility and non-empty interior is always satisfied.

A.2 Review of main results

We need a preliminary definition and a proposition.

Definition 10 (support scenario). For given scenariosδ(1), δ(2), . . . , δ(N), the sce-
nario δ(r), r ∈ {1, . . . , N}, is called a support scenario for the optimization prob-
lem(A.1) if its removal changes the solution of(A.1).

⋆

Proposition 2. For every value ofδ(1), δ(2), . . . , δ(N), the number of support sce-
narios for (A.1) is at mostd+ 1, i.e. the number of optimization variables.

⋆

For a proof, see [94, 29].
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A.2.1 Fundamental theorem

Following [56], we focus provisionally on situations wherethe following fully-
supportedness assumption is satisfied.

Assumption 3(fully-supportedness). Let consider(A.1) for all N ≥ d + 1. With
probability one with respect to the extractions of samplesδ(1), δ(2), . . . , δ(N), it
holds that the optimization problem(A.1) hasexactlyd+ 1 support scenarios.

⋆

As shown in Chapter 3, the class of problems satisfying Assumption 3 is not
empty, nor pathological. For this class, the following fundamental theorem holds
true.

Theorem 12([56]). Under Assumption 3, it holds that:

PN
∆{V (z∗) > ǫ} =

d
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i, (A.4)

independently ofP∆. ⋆

The equation (A.4) reads that for fully-supported problemsthe probability
of seeing a “bad” sampleDN = δ(1), . . . , δ(N) such thatV (z∗) > ǫ is exactly
∑d

i=0

(

N
i

)

ǫi(1 − ǫ)N−i. The right-hand side of (A.4) is the so-called incomplete
Beta function ratio, see e.g. [70], that is, the violationV (z∗) is a random variable
having aBeta distribution, whateverP∆ is. When Assumption 3 is dropped, the
distribution ofV (z∗) is still dominated by a Beta distribution, that is, the following
theorem holds true.

Theorem 13([56]). It holds that:

PN
∆{V (z∗) > ǫ} ≤

d
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i, (A.5)

independently ofP∆. ⋆

The bound in (A.5) is a bound valid irrespective ofP∆, so that an application
of Theorem 13 does not require knowledge of probabilityP∆. Moreover, result
(A.5) is not improvable since the inequality≤ in (A.5) becomes an equality= for
the class of the fully-supported problems.

When using (A.5), one can fix a valueǫ and an arbitrarily small confidence
parameterβ, and find the smallest integerN such that

∑d
i=0

(

N
i

)

ǫi(1 − ǫ)N−i ≤
β. Due to (A.5), thisN entails thatPN

∆{V (z∗) > ǫ} ≤ β, so that solving the
optimization problem (A.1), based onN observed scenariosδ(1), . . . , δ(N), returns
a solution such thatV (z∗) ≤ ǫ holds with (high) confidence1− β.
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A.2.2 Explicit formulas

In [93], it is shown that everyN satisfying

N ≥ 1

ǫ

(

d+ ln
1

β
+

√

2d ln
1

β

)

is such that
∑d

i=0

(

N
i

)

ǫi(1 − ǫ)N−i ≤ β, so thatPN
∆{V (z∗) > ǫ} ≤ β. We here

prefer to use the slightly less refined but more compact condition (also proved in
[93])

N ≥ e

e− 1

1

ǫ

(

d+ ln
1

β

)

, (A.6)

which still shows the fundamental fact thatN has a logarithmic dependence on the
confidence parameterβ, and goes liked

ǫ
.

A.2.3 Expected value

Observe that for a problem withN scenarios andd+ 1 decision variables, the dis-
tribution ofV (z∗) has expected value equal tod+1

N+1 , for fully-supported problems,
while in general it holds that

E∆N [V (z∗)] ≤ d+ 1

N + 1
.

This result was first proved in [29] but can be derived from Theorem (A.5) as well.

A.2.4 Scenarios removal

Assume that, for anyN scenariosδ(1), . . . , δ(N), we have a rule to removek sce-
narios, sayδ(i1), . . . , δ(ik). GivenN scenarios, we consider the solutionz∗

N\k to

the problem obtained by ignoringk scenarios, sayδ(i1), . . . , δ(ik), i.e. the solution
to

min
z∈Z⊆Rd+1

rT z

subject to:z ∈
⋂

i∈{1,...,N}\{i1,...,ik}
Zδ(i) . (A.7)

The rule to removek scenarios is arbitrary, the only constraint we impose is that it
must lead to a solutionz∗

N\k that with probability1 is violated byδ(i1), . . . , δ(ik),
i.e. it must hold true thatz∗

N\k /∈ Z
δ
(ij ) , j = 1, . . . , k. Under this condition, the

following theorem, proved in [57], holds true.

Theorem 14([57]). The violation probability ofz∗
N\k can be bounded as follows:

PN
∆{V (z∗N\k) > ǫ} ≤

(

k + d

k

) k+d
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i,

independently ofP∆.
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This result allows the user for trading-off the probabilitythat the solution is
satisfied by the unseen uncertainty instances and the cost attained by the solution.
Of no less importance is the fact that this result can be used to make the solutions
more stable. Indeed, scenario solutions can be very different when different sets of
scenarios are considered: removing “worst” scenarios reduces this variability.

A.3 Applications

The most important applications of the general theory here presented are in ro-
bust optimization (i.e. as probabilistic relaxations of robust problems) and chance-
constrained optimization. See e.g. [29, 68, 79, 95] for applications of the the-
ory here presented to robust control or input design, and [7]for an application
to chance-constrained problems in finance. However, results here presented have
found applications also in models for interval prediction,see [65], and a general-
ization of the mathematical machinery underlying Theorem 12 has been exploited
in machine learning, to bound the probability of error of a classification algorithm
presented in [96].





Appendix B

Generalized FAST algorithm

A generalized FAST algorithm can be applied to find a decisionin the presence of
uncertainty in the general constrained context of (A.1), see Appendix A. We will
see that the generalized FAST algorithm produces, in two steps, a final decision
z∗F such that the distribution of the violation probabilityV (z∗F ) can be kept under
control, for relatively smallN .

Before presenting the algorithm, a further assumption is needed: we have to
assume that the user knows a “robustly feasible” point.

Assumption 4. A point z̄ ∈
(
⋂

δ∈∆Zδ

)

∩ Z is known to the user. ∗
It is perhaps worth stating explicitly that there are no requirements on̄z other

than it is robustly feasible, in particular there are no requirements on its perfor-
mance valuerT z̄. Assumption 4 is satisfied in many situations of interest. In
particular, it is usually easy to check the feasibility of a “no action” solution: an
example is robust feedback controller synthesis with bounded noise, as in [68],
where one can takēz corresponding to the zero controller set-up. Similarly, a
suitablez̄ can be found in applications as IPMs (Interval Predictor Models), see
[65]. One way to search for a robustly feasiblez̄ in more general contexts is by
sequential randomized algorithms, see e.g. [97, 98, 91].

In the following, the generalized FAST algorithm is given. The main theoreti-
cal result for the generalized FAST algorithm is presented in Section B.2, followed
by a brief discussion in Section B.3. In Section B.4 a numerical example is given.

B.1 Generalized FAST algorithm

• INPUT:

· ǫ ∈]0, 1[, violation parameter;

· β ∈]0, 1[, confidence parameter;

· N1, an integer such thatN1 ≥ d+ 1;

· z̄ ∈
(
⋂

δ∈∆ Zδ

)

∩ Z, a robustly feasible point.
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1. Compute the smallest integerN2 such that

N2 ≥
ln β − lnBN1,d

ǫ

ln (1− ǫ)
, (B.1)

whereBN,d
ǫ =

∑d
i=0

(

N
i

)

ǫi(1− ǫ)N−i.

2. SampleN1+N2 independent constraintsδ(1), . . . , δ(N1), δ(N1+1), . . . , δ(N1+N2),
according toP∆.

3. Solve problem (A.1) withN = N1; let z∗|N1
be the solution.

4. (Detuning step) Let̂z[α] := (1−α)z∗N1
+αz̄, α ∈ [0, 1], i.e. ẑ[α] describes the

line segment
connectingz∗|N1

with z̄. Compute the solutionα∗ to the problem

min
α∈[0,1]

rT ẑ[α]

subject to:ẑ[α] ∈
N1+N2
⋂

i=N1+1

Zδ(i) . (B.2)

• OUTPUT:

· z∗F := ẑ[α∗].

B.2 Theoretical results

The violation of the solutionz∗F obtained with the generalized FAST algorithm is
characterized by the following theorem.

Theorem 15(main theorem on the generalized FAST algorithm). In the current
set-up, it holds that

PN1+N2
∆ {V (z∗F ) > ǫ} ≤ β. (B.3)

Moreover,N2 given in point 1 of the generalized FAST algorithm cannot be im-
proved in the sense that there are problems for which noN2 smaller than that
given in point 1 of the generalized FAST algorithm makes(B.3) true.

∗

A proof is given in Section B.5.
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B.3 Discussion

The essential difference between the FAST algorithm of Section 4.2 and the gener-
alized FAST algorithm of this section is the detuning step: the idea of raisingc∗|N1

in the FAST algorithm is replaced in the generalized FAST algorithm by the idea
of movingz∗|N1

towardsz̄. This operation can be performed at low computational
effort since (B.2) is an optimization problem with a scalar decision variableα, so
that (B.2) can be solved e.g. by means of bisection. Moreover, all observations in
the discussion Section 4.2.2 can be carried overmutatis mutandisto the context of
the present section.

Remark 5 (interpretation). Though mathematically analogue to the FAST algo-
rithm of Chapter 4, the usage and interpretation of the generalized FAST algorithm
here presented may differ substantially. Indeed, in the present general constrained
context, we cannot always interpret a candidate solutionz as a decision-cost pair:
in general, a pointz ∈ Rd+1 represents a decision, with an associated costrT z
that may depend on all thed+1 components ofz. Being the vectorr deterministic,
the question is not the uncertainty of the cost corresponding toz∗F , but the fact that
z∗F may be unfeasible for a new instance ofδ, so that, ifz∗F /∈ Zδ, the costrT z∗F
looses its significance. Hence,rT z∗F is still a guaranteed cost, but only becausez∗F
is guaranteed to beǫ-feasible.

B.4 Numerical example

In this section, the classical scenario approach to convex problems is compared
with FAST on an example.

B.4.1 Constrained convex scenario program

The following constrained convex problem with200 optimization variables and
uncertain LMI (Linear Matrix Inequality) constraints has no specific interpretation
but resembles problems arising in robust control, see [99].

min
z∈R200

200
∑

j=1

zj

subject to:
200
∑

j=1

Rj(δ
(i))B(δ(i))Rj(δ

(i))T zj � I, i = 1, . . . , N,

(B.4)

where

I =

[

1 0
0 1

]

; B(δ(i)) =

[

δ
(i)
1 δ

(i)
2

δ
(i)
2 δ

(i)
3

]

;
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Rj(δ
(i)) =





cos
(

2π j−1
T (δ(i))

)

− sin
(

2π j−1
T (δ(i))

)

sin
(

2π j−1
T (δ(i))

)

cos
(

2π j−1
T (δ(i))

)



 , j = 1, ..., 200,

with T (δ(i)) = 200 + 2002δ
(i)
4 , andδ(i) = (δ

(i)
1 , δ

(i)
2 , δ

(i)
3 , δ

(i)
4 ) are sampled from

[0, 1]4 with uniform probability. B(δ(i)) is a stochastic matrix andRj(δ
(i)) is a

rotation matrix whose periodT (δ(i)) is also stochastic.

B.4.2 Classical approach vs FAST

Takeǫ = 0.01 andβ = 10−9, i.e. we are interested in a scenario solution with a
violation probability no more than 1%, with confidence1− 10−9.

In the classical approach, using (A.5) in Appendix A, we write

199
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i ≤ 10−9,

which yieldsN = 29631. Solving (B.4) withN = 29631 yielded a cost value
∑200

j=1 z
∗
j = −1.052. Turning to FAST, we tookN1 = 4000, and, according to

(B.1), we obtainedN2 = 2062. Running (B.4) withN = N1 = 4000 we obtained
a solutionz∗|N1

with cost value
∑200

j=1 z
∗
|N1,j

= −1.076. Next, we selected̄z = 0,
so thatẑ[α] = (1− α)z∗|N1

, and solved the detuning step withN2 scenarios:

min
α∈[0,1]

(1− α)

200
∑

j=1

z∗|N1,j

subject to:(1− α)

200
∑

j=1

Rj(δ
(i))B(δ(i))Rj(δ

(i))T z∗|N1,j
� I,

i = N1 + 1, ..., N1 +N2. (B.5)

The optimal detuning value wasα∗ = 0.048, yielding the final solutionz∗F =
(1 − α∗)z∗|N1

= 0.952z∗|N1
with cost value0.952 · (−1.076) = −1.024. Solving

the problems by using cvx, [100], the total execution time with FAST was20 times
faster than with the classical scenario approach. With smaller values ofǫ, the
comparison between the execution times is further unbalanced in favour of FAST,
and FAST continues to offer a viable approach even for valuesof ǫ as small as
0.001 while the classical scenario approach becomes rapidly impractical asǫ is let
decrease.

B.5 Proof of Theorem 15

The proof of Theorem 15 follows the same line of reasoning as that of Theorems 9
and 10 in Chapter 4, see Section 4.3.1. For brevity,δ

n
m := (δ(m), δ(m+1), ..., δ(n)),
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so thatδnm ∈ ∆n−m+1.
We want to compute the probability of set

H :=
{

δ
N1+N2
1 : V (z∗F ) > ǫ

}

. (B.6)

Given z∗|N1
, the solutionz∗F obtained by the generalized FAST algorithm lies

on the half-line defined aŝz[α] := (1−α)z∗|N1
+αz̄,α ∈]−∞, 1]: this half-line ex-

tends the line segment at point 4 of the generalized FAST algorithm in Section B.1
beyond pointz∗|N1

. The setZ of points on this half-line with a violation probability
bigger thanǫ is formally defined as:

Z := {ẑ[α] : α ∈]−∞, 1] andV (ẑ[α]) > ǫ}.

Since setsZδ are convex and closed,V (ẑ[α]) is right-continuous and nonincreasing
in α ∈]−∞, 1]. Hence,Z is an open half-line. In formulas, by defining

ᾱ := sup
α∈]−∞,1]

{α : V (ẑ[α]) > ǫ}, (B.7)

Z can then be rewritten as

Z = {ẑ[α] : α ∈]−∞, ᾱ[}.

The following property provides a useful characterizationof setH.

Property 2. δ
N1+N2
1 ∈ H if and only ifV (z∗|N1

) > ǫ andZ ∩ Zδ(i) 6= ∅,∀i ∈
{N1 + 1, ..., N1 +N2}.

∗

This Property 2 can be proved similarly to Property 1 in Section 4.3.1, by
observing thatZ has here the same role asL in Section 4.3.1. Refer to Figure B.1
for a geometrical visualization of the various objects involved.
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optimization

direction

Z : V (ẑ[α]) > ǫ
Zδ(i)

z∗|N1
= ẑ[0]

z̄ = ẑ[1]

z∗F

Figure B.1. Optimization domain for problem (B.2) in step 4 of the generalized FAST al-
gorithm. The algorithm returns the pointz∗

F
closest toz∗|N1

and such thatz∗
F
∈ Zδ(i) , ∀i ∈

{N1 + 1, ..., N1 + N2}. In this figure, setZδ(i) is the region above the shaded area, and
Z ∩ Zδ(i) 6= ∅.

Based on Property 2 and mimicking (4.8), the probability ofH can be written
as

PN1+N2
∆ {H}

=

∫

∆N1

1{V (z∗|N1
) > ǫ}

[
∫

∆N2

1{Z ∩ Zδ(i) 6= ∅,∀i ∈ {N1 + 1, . . . , N1 +N2}}

PN2
∆ {dδN1+N2

N1+1 }
]

PN1
∆ {dδN1

1 }.

By the independence of the samples, the inner integral in this latter equation can
be written as

∫

∆N2

1{Z ∩ Zδ(i) 6= ∅,∀i ∈ {N1 + 1, . . . , N1 +N2}}PN2
∆ {dδN1+N2

N1+1 }

= (P∆{Z ∩ Zδ 6= ∅ })N2 ,

which, as we shall show below in this proof, is upper-boundedby (1 − ǫ)N2 for
everyδN1

1 (it can also be proved that it is exactly(1 − ǫ)N2 whenever the setsZδ

satisfy a non-degeneracy condition). Thus, we conclude that

PN1+N2
∆ {H}

≤ (1− ǫ)N2

∫

∆N1

1{V (z∗N1
) > ǫ}PN1

∆ {dδN1
1 }

≤ (1− ǫ)N2BN1,d
ǫ , (B.8)
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where the last inequality follows from Theorem 13 in Appendix A (for fully-
supported problems it is an equality in light of Theorem 12).Theorem 15 follows
by substituting in (B.8) the expression forN2 given in (B.1).

The fact that(P∆{Z ∩ Zδ 6= ∅ })N2 ≤ (1 − ǫ)N2 is now proved by working
conditionally on a fixedδN1

1 , so thatẑ[α], α ∈] − ∞, 1] has to be thought of as a
fixed half-line. Define the sets

Zn :=
{

ẑ[α] : α ∈
]

−∞, ᾱ− 1
n

]}

,

for n > 1. Clearly,{δ ∈ ∆ : Zn ∩ Zδ 6= ∅} = {δ ∈ ∆ : ẑ[ᾱ − 1
n
] ∈ Zδ}, that

is for Zn ∩ Zδ to be non empty, the extreme pointẑ[ᾱ − 1
n
] of Zn must be inZδ.

Now, by the Definition 9 of violation probability,P∆{δ ∈ ∆ : ẑ[ᾱ− 1
n
] ∈ Zδ} =

1− V (ẑ[ᾱ− 1
n
]), and by theσ-additivity of P∆, we have that

P∆ {Z ∩ Zδ 6= ∅}

= P∆

{ ∞
⋃

n=1

{Zn ∩ Zδ 6= ∅}
}

= lim
n→∞

[

1− V
(

ẑ
[

ᾱ− 1
n

])]

≤ 1− ǫ,

where the last inequality follows from the fact thatV (ẑ[ᾱ− 1
n
]) > ǫ, ∀n, see (B.7).

Thus,(P∆ {Z ∩ Zδ 6= ∅})N2 ≤ (1− ǫ)N2 , and the theorem is proved.
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gramming: modeling and theory, MPS-SIAM, Philadelphia, Pennsylvania,
USA, 2009.

[40] H. Henrion and C. Strugarek, “Convexity of chance constraints with inde-
pendent random variables,”Computational Optimization and Applications,
vol. 41, no. 2, pp. 263–276, 2008.

[41] V. Vapnik, Statistical Learning Theory, Wiley, New York, USA, 1996.

[42] M. Vidyasagar, “Statistical learning theory and randomized algorithms for
control,” IEEE Control Systems Magazine, vol. 18, no. 6, pp. 69–85, 1998.

[43] M. Vidyasagar,A Theory of Learning and Generalization, Springer-Verlag
New York, Inc., Secaucus, New Jersey, USA, 2nd edition, 2002.

[44] T. Alamo, R. Tempo, and E.F. Camacho, “Randomized strategies for proba-
bilistic solutions of uncertain feasibility and optimization problems,”IEEE
Transactions on Automatic Control, vol. 54, no. 11, pp. 2545–2559, 2009.

[45] V. Koltchinskii, “Rademacher penalties and structural risk minimization,”
IEEE Transactions on Information Theory, vol. 47, no. 5, pp. 1902–1914,
2001.

[46] T. Kanamori and A. Takeda, “Worst-case violation of sampled convex pro-
grams for optimization with uncertainty,”Journal of Optimization Theory
and Applications, vol. 152, no. 1, pp. 171–197, 2012.

[47] S. Boucheron, G. Lugosi, and O. Bousquet, “Concentration inequalities,” in
Advanced Lectures on Machine Learning, O. Bousquet, U. von Luxburg,
and G. Rätsch, Eds., vol. 3176 ofLecture Notes in Computer Science.
Springer-Verlag Berlin and Heidelberg, Germany, 2003.

[48] L. El Ghaoui and H. Lebret, “Robust solutions to least-squares problems
with uncertain data,”SIAM Journal on Matrix Analysis and Applications,
vol. 18, no. 4, pp. 1035–1064, 1997.

[49] H. Hindi and S. Boyd, “Robust solutions to l1, l2, and l-infinity uncer-
tain linear approximation problems using convex optimization,” in Pro-
ceedings of the American Control Conference, Philadelphia, Pennsylvania,
USA, 1998.

[50] G.C. Calafiore, U. Topcu, and L. El Ghaoui, “Parameter estimation with
expected and residual-at-risk criteria,”Systems and Control Letters, vol. 58,
no. 1, pp. 39–46, 2009.



BIBLIOGRAPHY 115

[51] S.S. Wilks,Mathematical Statistics, Wiley, New York, USA, 1962.

[52] H.N. Nagaraja H.A. David,Order Statistics, 3rd Edition, Wiley, New York,
USA, 2003.

[53] V. Vovk, A. Gammerman, and G. Shafer,Algorithmic Learning in a Random
World, Springer-Verlag New York, Inc., Secaucus, New Jersey, USA, 2005.

[54] J.G. Saw, M.C.K. Yang, and T.C. Mo, “Chebyshev inequality with estimated
mean and variance,”The American Statistician, vol. 38, no. 2, pp. 130–132,
1984.

[55] U. Köyluoglu, A.S. Cakmak, and S.R.K. Nielsen, “Interval algebra to deal
with pattern loading and structural uncertainty,”Journal of Engineering
Mechanics, vol. 121, no. 11, pp. 1149–1157, 1995.

[56] M.C. Campi and S. Garatti, “The exact feasibility of randomized solutions
of uncertain convex programs,”SIAM Journal on Optimization, vol. 19, no.
3, pp. 1211–1230, 2008.

[57] M.C. Campi and S. Garatti, “A sampling-and-discardingapproach to
chance-constrained optimization: feasibility and optimality,” Journal of Op-
timization Theory and Applications, vol. 148, no. 2, pp. 257–280, 2011.

[58] R.A. Horn and C.R. Johnson,Matrix Analysis, Cambridge University Press,
1985.

[59] S.L. Campbell and C.D. Meyer, “The Moore-Penrose or generalized in-
verse,” inGeneralized Inverses of Linear Transformations. SIAM, Philadel-
phia, Pennsylvania, USA, 2009.

[60] T. Drezner and Z. Drezner, “The Weber location problem:the threshold
objective,” INFOR, vol. 49, no. 3, pp. 212–220, 2011.

[61] W.W. Hager, “Updating the inverse of a matrix,”SIAM Review, vol. 31, no.
2, pp. 221–239, 1989.

[62] S. Boyd and L. Vandenberghe,Convex Optimization, Cambridge University
Press, Cambridge, UK, 2004.

[63] H.L. Harter, “Minimax methods,” inEncyclopedia of Statistical Sciences,
vol. 4, pp. 514–516. John Wiley & Sons, 1982.

[64] S. Garatti and M.C. Campi, “L-infinity layers and the probability of false
prediction,” inProceedings of the 15th IFAC Symposium on System Identifi-
cation, Saint Malo, France, 2009.

[65] M.C. Campi, G. Calafiore, and S. Garatti, “Interval predictor models: iden-
tification and reliability,”Automatica, vol. 45, no. 2, pp. 382–392, 2009.



116 BIBLIOGRAPHY

[66] H. Markowitz, “Portfolio selection,”The Journal of Finance, vol. 7, no. 1,
pp. 77–91, 1952.

[67] B.K. Pagnoncelli, S. Ahmed, and A. Shapiro, “Sample average approxima-
tion method for chance constrained programming: theory andapplications,”
Journal of Optimization Theory and Applications, vol. 142, no. 2, pp. 399–
416, 2009.

[68] M.C. Campi, S. Garatti, and M. Prandini, “The scenario approach for sys-
tems and control design,”Annual Reviews in Control, vol. 33, no. 2, pp.
149–157, 2009.

[69] R. Hochreiter, “An evolutionary computation approachto scenario-based
risk-return portfolio optimization for general risk measures,” inApplications
of Evolutionary Computing, M. Giacobini, Ed., vol. 4448 ofLecture Notes in
Computer Science. Springer-Verlag Berlin and Heidelberg, Germany, 2007.

[70] A.K. Gupta and S. Nadarajah, Eds.,Handbook of Beta Distribution and Its
Applications, Mercel Dekker, Inc., New York, USA, 2004.

[71] C. Baudrit and D. Dubois, “Practical representations of incomplete proba-
bilistic knowledge,”Computational Statistics & Data Analysis, vol. 51, no.
1, pp. 86–108, 2006.

[72] R.D. Gupta and D.S.P. Richards, “The history of the Dirichlet and Liouville
distributions,” International Statistical Review, vol. 69, pp. 433–446, 2001.

[73] H. Finner and M. Roters, “Multiple hypotheses testing and expected number
of type I errors,”The Annals of Statistics, vol. 30, no. 1, pp. 220–238, 2002.

[74] A. Gouda and T. Szántai, “New sampling techniques for calculation of
Dirichlet probabilities,”Central European Journal of Operations Research,
vol. 12, no. 4, pp. 389–403, 2004.

[75] K.S. Kwong and Y.M. Chan, “On the evaluation of the jointdistribution of
order statistics,”Computational Statistics & Data Analysis, vol. 52, no. 12,
pp. 5091–5099, 2008.

[76] A. Gouda and T. Szántai, “On numerical calculation of probabilities accord-
ing to Dirichlet distribution,” Annals of Operations Research, vol. 177, no.
1, pp. 185–200, 2010.

[77] MATLAB, version 7.10.0 (R2010a), The MathWorks Inc., Natick, Mas-
sachusetts, 2010.

[78] R Development Core Team,R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,2010,
http://www.R-project.org.

http://www.R-project.org


BIBLIOGRAPHY 117

[79] M.C. Campi and S. Garatti, “Variable robustness control: principles and
algorithms,” inProceedings of the 19th International Symposium on Math-
ematical Theory of Networks and Systems, Budapest, Hungary, 2010.

[80] G. Blanchard, T. Dickhaus, N. Hack, F. Konietschke, K. Rohmeyer,
J. Rosenblatt, M. Scheer, and W. Werft, “Mutoss - multiple hypothesis test-
ing in an open software system,” inJournal of Machine Learning Research:
Workshop and Conference Proceedings, 2010, vol. 11.

[81] MuToss Coding Team, “Package mutoss -
unified multiple testing procedures, version 0.1-7,”
http://cran.r-project.org/web/packages/mutoss/,
May 2012.

[82] W. Hoeffding, “Probability inequalities for sums of bounded random vari-
ables,”Journal of the American Statistical Association, vol. 58, no. 301, pp.
13–30, 1963.

[83] R. Tempo, G. Calafiore, and F. Dabbene,Randomized Algorithms for Anal-
ysis and Control of Uncertain Systems, Springer, London, UK, 2005.

[84] A. Mutapcic, S.J. Kim, and S.P. Boyd, “Robust ChebyshevFIR equaliza-
tion,” in Proceedings of the 50th IEEE Global Communication Conference
(GLOBECOM ’07), Washington, DC, USA, 2007.

[85] J.G. Proakis and M. Salehi,Digital Communications, McGraw-Hill, 2008.

[86] A.V. Oppenheim and R.W. Schafer,Discrete-Time Signal Processing, Pren-
tice Hall, Upper Saddle River, New Jersey, USA, 2010.

[87] D.R. Mazur,Combinatorics: A Guided Tour, MAA textbooks. Mathemati-
cal Association of America, Washington, DC, USA, 2009.

[88] H. Cramér and H. Wold, “Some theorems on distribution functions,”Journal
of the London Mathematical Society, vol. s1-11, no. 4, pp. 290–294, 1936.

[89] Z. Drezner, “On minimax optimization problems,”Mathematical Program-
ming, vol. 22, pp. 227–230, 1982.

[90] A. Nemirovski and A. Shapiro, “Convex approximations of chance con-
strained programs,”SIAM Journal on Optimization, vol. 17, no. 4, pp. 969–
996, 2006.

[91] Y. Oishi, “Polynomial-time algorithms for probabilistic solutions of
parameter-dependent Linear Matrix Inequalities,”Automatica, vol. 43, no.
3, pp. 538–545, 2007.

http://cran.r-project.org/web/packages/mutoss/


118 BIBLIOGRAPHY

[92] J. Luedtke and S. Ahmed, “A sample approximation approach for optimiza-
tion with probabilistic constraints,”SIAM Journal on Optimization, vol. 19,
pp. 674–699, 2008.

[93] T. Alamo, R. Tempo, and A. Luque, “On the sample complexity of ran-
domized approaches to the analysis and design under uncertainty,” in Pro-
ceedings of the American Control Conference (ACC), Baltimore, Maryland,
USA, 2010.

[94] V.L. Levin, “Application of E. Helly’s theorem to convex programming,
problems of best approximation and related questions,”Sbornik: Mathe-
matics, vol. 8, pp. 235–247, 1969.

[95] J. Welsh and H. Kong, “Robust experiment design throughrandomisation
with chance constraints,” inProceedings of IFAC 2011 World Congress,
Milano, Italy, 2011.

[96] M.C. Campi, “Classification with guaranteed probability of error,” Machine
Learning, vol. 80, no. 1, pp. 63–84, 2010.

[97] B.T. Polyak and R. Tempo, “Probabilistic robust designwith linear quadratic
regulators,”Systems and Control Letters, vol. 43, pp. 343–353, 2001.

[98] Y. Fujisaki, F. Dabbene, and R. Tempo, “Probabilistic design of LPV control
systems,”Automatica, vol. 39, no. 8, pp. 1323–1337, 2003.

[99] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix In-
equalities in System and Control Theory, vol. 15 ofStudies in Applied Math-
ematics, SIAM, Philadelphia, Pennsylvania, USA, 1994.

[100] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex pro-
gramming, version 1.21,”http://cvxr.com/cvx, October 2010.

http://cvxr.com/cvx

	Overview
	Compendio
	Decision-making in the presence of uncertainty
	Theoretical set-up
	Scenario Approach
	Probabilistic framework
	Distribution-free coverage properties

	Interpretation of the probabilistic framework
	Introduction to the problems studied in this work
	Average setting
	Worst-case setting

	Review of the literature
	Quadratic cost function
	Average setting with quadratic cost function
	Worst-case setting with convex cost function


	The coverage probabilities of the least squares residuals
	Introduction and problem position
	Main result
	Frequently used matrix notations
	Main theorem
	Distribution-free results and conservatism

	Numerical example
	An application to facility location
	Monte-Carlo tests

	Proofs
	Proof of Theorem 2
	Proof of Theorem 3
	Asymptotic result

	Perspectives for future works

	On the reliability of data-based min-max decisions
	Introduction and problem position
	Main results
	Relaxing the non-degeneracy assumption
	Practical use of the theoretical results
	Some useful properties

	An application to audio equalization
	Problem formulation
	Scenario Approach

	Proofs
	Proof of Theorem 7
	Proof of Proposition 1
	Proof of Theorem 8

	Perspectives for future work and an open issue
	Shortage of samples


	Data-based min-max decisions with reduced sample complexity
	Introduction and problem position
	The idea behind FAST

	The FAST algorithm
	Theoretical results
	Discussion

	Proofs
	Proof of Theorems 9 and 10

	Conclusion and perspectives for future work

	Conclusions
	The scenario approach to constrained convex optimization problems
	General problem statement
	Review of main results
	Fundamental theorem
	Explicit formulas
	Expected value
	Scenarios removal

	Applications

	Generalized FAST algorithm
	Generalized FAST algorithm
	Theoretical results
	Discussion
	Numerical example
	Constrained convex scenario program
	Classical approach vs FAST

	Proof of Theorem 15

	Bibliography

