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A Scenario-Based Stochastic MPC Approach for
Problems With Normal and Rare Operations

With an Application to Rivers
Hasan Arshad Nasir , Algo Carè, and Erik Weyer

Abstract— This paper formulates a control problem for systems
that are affected by uncertain inputs and are vulnerable to risks
as a chance-constrained optimization problem (CCP) with two
chance-constraints (CCs). The first CC encompasses require-
ments of the normal operations of the system, whereas the second
CC ensures the avoidance of risks associated with rare events.
CCPs are in general difficult to solve, and this paper proposes a
scenario-based optimization, testing, and improving algorithm to
find approximate solutions to such problems within a stochastic
model predictive control setting in a computationally cheap
manner. The proposed approach is applied to a river control
problem with flood avoidance, and the controller performed well
in realistic simulations of the upper part of Murray River in
Australia.

Index Terms— Chance-constrained optimization problem
(CCP), risk mitigation, scenario approach, stochastic model
predictive control (MPC).

I. INTRODUCTION

IN ALL real systems, there are physical and operational
constraints, which must be considered when controllers are

designed. Model predictive control (MPC) [1] is often a natural
choice in such situations because of its ability to explicitly
consider constraints in the problem formulation.

Some systems are affected by disturbances, which are diffi-
cult to bound a priori. In such cases, hard robust constraints in
the formulation of the control problem may not only degrade
the performance of the solution due to conservativeness,
but they can also lead to an infeasible problem. For such
systems, probabilistic constraints are useful. The constraints
are now only required to be satisfied with a certain probability,
and this leads to a chance-constrained optimization prob-
lem (CCP) [2]–[5]. An optimization problem with multiple
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chance-constraints (CCs), each to be satisfied with different
probabilities, is known as a multiple CCP (M-CCP) [6]. In this
paper, we propose an algorithm to find approximate solutions
to M-CCPs with two CCs within a stochastic MPC setting.

A problem which naturally leads to an M-CCP formulation,
and which is the main motivation for this paper, is control of
rivers [7], [8]. Rivers have unregulated in-flows from tribu-
taries which are uncertain, and using deterministic measures
to bound their values is neither easy nor natural. Under normal
circumstances, water levels, flows and possibly their rates
of change should be kept within certain limits to ensure
satisfactory environmental outcomes and a certain level of
service to irrigators and other users. The limits can, however,
occasionally be exceeded by small amounts without causing
any major problems, and hence imposing a probabilistic con-
straint is natural. In addition, there are (higher) water level
limits that should not be exceeded, as it would lead to flooding
and major damage, and such water level constraints should be
satisfied with a very high probability. In practice, when there
is a risk of flooding, river operators switch the operational
mode, and flood avoidance becomes the main objective.

In this paper, we consider systems with two modes of
control operations: normal operations and operations for rare
situations (e.g., flood avoidance in rivers). Such a control
problem is formulated as a CCP with two CCs, where the first
CC is related to normal operations and the second is related
to risk mitigation.

Chance-constrained problems are generally nonconvex and
difficult to solve. Randomized strategies [9]–[17] provide
computationally tractable approximate solutions to such prob-
lems, especially the scenario approach introduced in [9]–[12],
[17], and [18] is promising because of its simplicity. It does
not require any specific assumption on the nature of the
disturbance, and it can also be extended to M-CCPs [6], [19].
However, due to the high probability with which the second
CC needs to be satisfied, the corresponding scenario problem
can become computationally very expensive.

In this paper, we propose an optimization, testing, and
improving (OTI) algorithm that uses the scenario approach
together with ideas borrowed from validation set meth-
ods [20]–[24] to find approximate solutions to CCPs with two
CCs. The algorithm is motivated by applications where the
CCs possess a certain form of nestedness, where the satisfac-
tion of constraints associated with normal operations usually,
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but not always, leads to satisfaction of the risk avoidance
constraints. For example, in rivers, if the water level stays
below the limit associated with normal operations, it also stays
below the limit associated with flood avoidance. Nonetheless,
the probability of a flood event must be constrained to be
much smaller than the probability that a normal operation
constraint is violated. Therefore, the CC related to normal
operations does not imply the CC related to flood avoidance.
The proposed algorithm is in three steps: optimization, testing,
and improving. In the optimization step, the algorithm solves
an optimization problem with the CC associated with normal
operations only. In the testing step, which is computationally
inexpensive, the algorithm tests the solution against the CC
associated with risk mitigation. The found solution is accepted
if the test is passed; otherwise, the solution is improved in a
computationally cheap way by solving a 1-D scenario problem
to satisfy the second CC in the improving phase.

In the proposed algorithm, the concept of a default solution
plays a crucial role in the improving phase. A default solution
is a possible backup solution, which in terms of the objective
criterion may give poor performance, but it is the safest option
when a situation takes a turn for the worse, e.g., close the
gates completely when there is a high risk of flooding. This
can give poor performance, since minimum flow conditions in
parts of the river may be violated and the daily flow change
may be too large. However, it is the safest option in terms of
preventing flooding. In the improving procedure, the solution
obtained from the optimization step is moved closer to the
default solution. This is achieved by solving a 1-D scenario
problem with the only aim of satisfying the CC associated
with risk mitigation.

The main difference between the OTI algorithm and sequen-
tial randomized algorithms, such as those in [21]–[23], is that,
in our scheme, the most informative sampled constraints in the
testing step (namely, the constraints that violated the solution
obtained in the optimization step) are reused in the improving
phase.1 This helps in reaching low violation probabilities
using a small sample in the improving step. Moreover, our
scheme deals with two different kinds of CCs and treats
them differently, since they serve different purposes for the
problem at hand. While the proposed algorithm is applicable to
general systems where the above described properties (namely,
the nestedness of CCs and the availability of a default solution)
are satisfied, the main motivation and contribution of this paper
is in the area of river control.

This paper is organized as follows. In Section II, we formu-
late the control problem and state the two CCs. A discussion
of some existing techniques for solving M-CCPs is given in
Section III. The OTI algorithm is introduced in Section IV.
The river control problem is presented in Section V, and the
proposed algorithm is applied to operational data from the
upper part of Murray River in Australia. Conclusions are given
in Section VI.

1This idea is inspired by the approach in [24] [see Section III-C (a
comparison with validation methods) therein]. In [24], however, the existence
of a robustly feasible solution is assumed, while in this paper, we relax this
assumption by introducing the concept of a default solution and by adding
suitable tests.

II. PROBLEM FORMULATION

In this section, we give the system description and formulate
the control problem.

A. System Description

We consider the following state space system:

xn+1 = Axn + Bun + wn (1)

yn = Cxn (2)

where x ∈ R
ns is the state vector, u ∈ U ⊂ R

m is the input,
w ∈ W ⊂ R

ns is a vector of disturbances (uncertain variables),
and y ∈ R

p is the output.
Over a finite time horizon M , let the vectors of

states, inputs, disturbances and outputs be xn+1 =[
xn+1 xn+2 . . . xn+M

]ᵀ, un = [
un un+1 . . . un+M−1

]ᵀ, wn =[
wn wn+1 . . . wn+M−1

]ᵀ, and yn = [
yn yn+1 . . . yn+M−1

]ᵀ,
respectively. From (1), the relationship between the states at
time n and n + i is given by

xn+i = Ai xn + [
Ai−1 B . . . B

]

⎡

⎢
⎣

un
...

un+i−1

⎤

⎥
⎦

+ [
Ai−1 . . . I

]
⎡

⎢
⎣

wn
...

wn+i−1

⎤

⎥
⎦. (3)

Using (3) with i = 1, 2, . . . , M , we obtain the following
compact model for xn+1, which will be used in the problem
formulation:

xn+1 = Fxn + Gun + H wn (4)

with

F =

⎡

⎢
⎢
⎢
⎣

A
A2

...

AM

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
(Mns×ns )

, G =

⎡

⎢
⎢
⎢
⎣

B 0 . . . 0
AB B . . . 0
...

...
. . .

...

AM−1 B AM−2 B . . . B

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
(Mns×Mm)

H =

⎡

⎢⎢
⎢
⎣

I 0 . . . 0
A I . . . 0
...

...
. . .

...

AM−1 AM−2 . . . I

⎤

⎥⎥
⎥
⎦

︸ ︷︷ ︸
(Mns×Mns )

.

B. Feedback-Based Control Policy

For systems with disturbances, it is advisable to optimize the
objective function over feedback control policies rather than
control values [25]. A natural choice is a time-varying state
feedback control policy, i.e., un = Kn xn , but optimization
over Kn is likely to be difficult, since the parametrisation is
nonconvex in Kn [26], [27].

However, the control policies can also be parametrized
as affine functions of past disturbances [26], [27], which
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are linearly related to the current state [see (1) and (4)].
By using (1), un = Kn xn can be written as

un = Kn

n−1∏

i=0

(A + B Ki)x0

+
n−1∑

j=1

Kn

n−1∏

i= j

(A + B Ki )w j−1 + Knwn−1. (5)

Such a control policy can be parametrized as

un = γn + θn,0w0 + θn,1w1 + . . . θn,n−1wn−1 (6)

where θn,i ∈ R
m×ns and γn ∈ R

m . Over a finite horizon M ,
we have

un = �nwn + �n (7)

where

�n = [
γ

ᵀ
n γ

ᵀ
n+1 . . . γ

ᵀ
n+M−1

]ᵀ
︸ ︷︷ ︸

(Mm×1)

�n =

⎡

⎢⎢
⎢
⎣

0 0 . . . 0
θn+1,n 0 . . . 0

...
...

. . .
...

θn+M−1,n θn+M−1,n+1 . . . 0

⎤

⎥⎥
⎥
⎦

︸ ︷︷ ︸
(Mm×Mns )

. (8)

This parametrization is convex with respect to �n and �n (for
details see [26]–[28]). The parametrization in (8) also ensures
causality of the control action. To use (7) as a control policy,
the value of wn−1 is needed at time n [see (6)], and it can be
obtained from

wn−1 = xn − Axn−1 − Bun−1 (9)

which assumes that the full state vector is measured.

C. Stochastic MPC-Based Optimization Problem

In this section, we first introduce the two CCs related to
normal operations and risk mitigation, respectively, and then
we state the M-CCP problem to be solved in a stochastic MPC
setting.

1) Chance Constraint Related to Normal Operations: This
CC is given by

P{wn ∈ W : un(wn) ∈ U ∩ f (un, wn) ≤ 0} ≥ 1 − ε (10)

where P is the probability according to which wn is distributed,
W = W M , un(wn) is the control action computed by the
control policy given by (7), U = U M , f (un, wn) is a function,
and ε ∈ (0, 1) is the allowed violation probability.

2) Chance Constraint Related to Risk Mitigation: This CC
is given by

P{wn ∈ W : g(un, wn) ≤ 0} ≥ 1 − εV (11)

where g(un, wn) is a function and εV ∈ (0, 1) is the allowed
violation probability with εV � ε.

The problem formulation and the algorithm presented ahead
are motivated by applications, where the two CCs (10)
and (11) possess a certain form of nestedness and involve the

same decision variables. Instead of giving a formal definition
of nestedness, we exemplify the concept by referring to
the river example: we say that the CC related to normal
operations (10) and the CC related to flood avoidance (11)
are nested, because the constraints f (un, wn) ≤ 0 and
g(un, wn) ≤ 0 are both constraints on the water level, and
it holds that g(un, wn) ≤ f (un, wn) for every un and wn .
This means that if the water level stays below the limit
associated with normal operations, it also stays below the limit
associated with flood avoidance. Note, however, that although
f (un, wn) ≤ 0 implies g(un, wn) ≤ 0, it is not true that
one CC implies the other. In fact, the violation probability
requirement for flood avoidance is higher than that of normal
operations, i.e., εV � ε, as mentioned above.

The objective function J (�n,�n) for normal control oper-
ations is given by

J (�n,�n) = E
[
(xn − r)ᵀQ(xn − r) + uᵀ

n Run + �uᵀ
n S�un

]

(12)

where �un = [
un . . . un+M−1

]ᵀ − [
un−1 . . . un+M−2

]ᵀ.
We seek to minimize the following:

1) deviation of states xn from a reference vector r;
2) control actions un to avoid waste of system resources;
3) change in control actions �un .

Q and R are block diagonal matrices of positive definite
weighting matrices, and S is a block diagonal matrix of
positive semidefinite weighting matrices.

We use the objective function in (12) and the constraints
in (4), (7), (10), and (11), and state the chance-constrained
optimization problem as

min.
�n,�n

J (�n,�n)

s.t. P{wn ∈ W : un(wn) ∈ U ∩ f (un, wn) ≤ 0} ≥ 1 − ε,

P{wn ∈ W : g(un, wn) ≤ 0} ≥ 1 − εV ,

xn+1 = Fxn + Gun + H wn, un = �nwn + �n (13)

where �n and �n are the parameter matrices [see (7) and (8)].
We make the following assumptions.

1) Set convexity: U is a convex set.2

2) Function convexity: The functions f (un, wn) and
g(un, wn) are convex3 with respect to �n and �n .

3) Default solution existence: A default solution exists as
detailed in the following.

Default Solution: The concept of the default solution is
motivated from the river control problem, where, in order to
avoid flooding, dam gates can be opened or closed completely.
This is, however, an action that is not allowed during normal
operations. We denote the default solution as u∗

d .
In general, the default solution is the safest or one of the

safest options for satisfying the constraints related to risk
mitigation. Which form it takes is of course very problem-
dependent. Note the following.

2A set X is said to be convex, if for all x1, x2 ∈ X and α ∈ [0, 1], then
the point αx1 + (1 − α)x2 also belongs to X .

3A function f : X → R is a convex function, if for all x1, x2 ∈ X and
α ∈ [0, 1], then f (αx1 + (1 − α)x2) ≤ α f (x1) + (1 − α) f (x2).
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1) The default solution does not have to be a solution to an
optimization problem, but if a robustly feasible solution
is available, then that can serve as a default solution.

2) It can possibly belong to a set, say U ′, which is larger
than U .

A stochastic MPC is obtained by solving Problem (13)
in a receding horizon fashion. However, Problem (13) is
difficult to solve, because a probabilistic constraint is in
general nonconvex with respect to the optimization variables.
The randomized strategies in [9]–[17] provide computationally
tractable approximate solutions to CCPs, which are discussed
in Section II-D.

D. Scenario-Based Approach to Solve CCPs

To find an approximate solution to a CCP, we employ the
scenario-based randomized approach described in [9]–[12],
[17], and [18]. Here, we illustrate the idea of the approach
using a CCP obtained by only considering the first CC of
Problem (13). From now on, we will not explicitly state the
state dynamics (4) and the control law (7) in the problems
formulations. The CCP with the first CC of Problem (13) is

min.
�n,�n

J (�n,�n),

s.t. P{wn ∈ W : un(wn) ∈ U ∩ f (un, wn)≤0}≥1 − ε. (14)

To find a scenario-based approximate solution of Problem (14),
we generate Nr independent realizations of the disturbance
wn according to the given probability distribution and replace
Problem (14) with

min.
�n,�n

J (�n,�n)

s.t. un
(
w(k)

n

) ∈ U, f
(
un

(
w(k)

n

)
, w(k)

n

) ≤ 0

for k = 1, 2, . . . , Nr (15)

that is, we replace the probabilistic constraint in Problem (14)
with Nr constraints, each corresponding to an independent
realization of the disturbance vector wn . Problem (15) is called
a scenario problem, and it can be solved by resorting to stan-
dard convex optimization techniques.4 Moreover, according
to the scenario theorem stated in the following, the scenario
solution provides with high confidence a feasible solution to
the chance-constrained Problem (14), provided Nr is chosen
large enough.

Theorem 1 [32]: If the number of scenarios Nr used in a
scenario problem satisfies

d−1∑

i=0

(
Nr

i

)
εi (1 − ε)Nr −i ≤ β (16)

where ε ∈ (0, 1), β ∈ (0, 1), and d is the number of
optimization variables, then the scenario solution is feasible
for the original CCP with confidence 1 − β.

4Strictly speaking, not all convex optimization problems are computationally
tractable. However, it is a fact that important classes of convex problems
are tractable in practice, possibly after reformulation. Sufficient conditions
for computational tractability are known and are related to the existence of
suitable (self-concordant) barrier functions for interior point methods or to
the oracle complexity in black-box methods [29]–[31].

Theorem 1 holds true under the assumption that the scenario
problem is always feasible and has a unique solution.5 Also,
note that the number of optimization variables, d , can be
replaced by Helly’s dimension or an upper bound on the
number of support constraints (see [33] for details). Bounds on
the number of scenarios, Nr , for particular cases in an MPC
context are derived in [34]–[37].

Let �∗
n and �∗

n denote the solution to the scenario Prob-
lem (15). We will also refer to the policy, u∗

n = �∗
nwn + �∗

n ,
as the solution to the scenario problem in this paper. Note
that �∗

n and �∗
n are stochastic, because they depend on the Nr

drawn scenarios of wn in Problem (15). Theorem 1 says that if
the number of scenarios Nr used in Problem (15) satisfies (16),
then the following holds true:

P
Nr

{
P
{
u∗

n ∈ U ∩ f
(
u∗

n, wn
) ≤ 0

} ≥ 1 − ε
} ≥ 1 − β

where P
Nr is the probability measure on the Nr extracted

samples of wn and β is a confidence parameter.
The parameter β can be explained as follows [10], [12].

We cannot guarantee that the scenario solution is always
feasible for Problem (14), because it might happen that the Nr

extracted realizations are not representative enough. However,
if we meet the criterion in (16), then the probability of such
an event is less than β. In [22] and [33], explicit expressions
to compute Nr are described, e.g., it is shown in [22] that (16)
holds true whenever Nr satisfies

Nr ≥ d − 1 + ln(1/β) + √
2(d − 1)ln(1/β)

ε
. (17)

Nr depends logarithmically on β, and hence β can be chosen
very small (e.g., 10−6) without increasing Nr much. The
scenario-based optimization problems can be solved by
standard convex optimization solvers as, e.g., used by
YALMIP [38] and CVX [39].

III. SOME APPROACHES TO FIND APPROXIMATE

SOLUTIONS TO AN M-CCP

In this section, we first discuss some existing approaches
to find an approximate solution to Problem (13), before we
present the intuitive idea behind the OTI algorithm to be
introduced in Section IV.

A. Some Possible Ways to Solve Problem (13)

1) There are some cases when a CCP or an M-CCP is
convex with respect to the optimization variables, e.g.,
when wn is normally distributed with linear inequal-
ity constraints or when the distribution of wn is log-
concave [40], [41].

2) A naive application of the scenario approach to the
multiple chance-constrained Problem (13) is to set ε =
εV . However, the small value of εV � ε would lead to a
very large number of constraints in the scenario problem

5When the scenario problem is feasible, the existence of a unique solution
can be easily enforced by a tie-break rule and possibly by constraining the
domain so as to avoid that the optimal solution drifts toward infinity [32].
In general, replacing d − 1 with d in (16) is enough to guarantee that the
probability that a scenario solution is found which does not satisfy the chance-
constrained optimization is no larger than β (see [17] for details.)
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[see (16)]. The computational effort is, therefore, large,
and thus this is not a viable option in general.

3) In [6] and [19], scenario problems with multiple CCs
are considered and it is suggested to apply the scenario
approach individually to each CC. Moreover, they pro-
vide ways to reduce the computational burden of the
corresponding scenario problem. Those results improve
considerably on the naive approach when the CCs are
sufficiently decoupled, i.e., when each CC involves
different decision variables. This decoupling, which is
typical in some important applications, e.g., in produc-
tion planning and in portfolio optimization [6], is not
present for applications where the constraints involve the
same output variables and decision variables, which is
the type of constraints that are motivating the proposed
algorithm in this paper.

4) One approach is to robustify the constraints such that
they must be satisfied for all possible realizations of the
disturbances and solve a robust MPC problem. This may
be difficult if the disturbances have a very large support,
in which case a combination of robust MPC and a
scenario optimization problem can be used to determine
a range or set to which the disturbances belong most of
the time [35], [36].

B. Intuitive Description of the OTI Algorithm

Here, we give a description of the noniterative OTI algo-
rithm, which is an improved version of the iterative algorithm
in [42]. It has three main steps as follows.

1) Optimization: We first solve an optimization problem
with only the first CC, i.e., we solve Problem (14). We generate
Nr independent realizations of the disturbance wn , according
to the given probability distribution, and replace Problem (14)
with Problem (15). We then solve Problem (15) and find a
scenario solution, say u∗

n .
2) Testing: In the second step, we test the solution u∗

n
against the second CC by resorting to a Monte Carlo sample
of NT new scenarios. This is computationally cheap, since no
optimization is performed. If the number of scenarios violating
the constraint is below a selected threshold, we use the solution
u∗

n and provide a certificate with a probabilistic guarantee that
the solution satisfies both CCs. Otherwise, we improve the
obtained solution.

3) Improving: If the solution u∗
n fails the aforementioned

test, we test the default solution u∗
d (see Section II-C) against

the second CC using the same NT scenarios. If the violations
are less than the selected threshold, we solve a 1-D scenario
problem by moving u∗

n in the direction of the default solution
u∗

d along the line (1 − α)u∗
n + αu∗

d , where α ∈ (0, 1]. In the
scenario problem, we minimize the value of α and consider
the scenarios wn ∈ W that violate the risk-mitigation (second)
constraint with u∗

n to ensure improvement but satisfy the
constraint with u∗

d to ensure the feasibility of the scenario
problem. However, if the default solution fails the test against
the second CC, then we exit the algorithm and inform system
operators that no solution can be found. In the case of control
of rivers, flood operations can be pursued on such occasions.

Fig. 1. OTI algorithm (basic idea).

The sample sizes Nr and NT are computed in such a way
that the solution comes with precise probabilistic guarantees.
In particular, if the algorithm successfully ends after the
testing procedure, a certificate is delivered that states that both
the CCs in Problem (13) are satisfied with high confidence.
Otherwise, the first CC of Problem (13) can be tested with
the improved solution, and depending on the outcome of
the test, a certificate with the satisfaction of both CCs or a
certificate guaranteeing only the second CC is delivered. Fig. 1
summarizes the idea of the algorithm with an emphasis on the
computational advantages it provides.

IV. OPTIMIZATION, TESTING, AND IMPROVING

ALGORITHM TO SOLVE PROBLEM (13)

In this section, we formally state the OTI algorithm, fol-
lowed by theoretical justifications of sample sizes and allowed
violation probabilities. For notational simplicity, we omit the
subscripts from the un , u∗

n , and wn vectors.

A. OTI Algorithm

The following parameters must be chosen by the user.

1) β = δ/7, where δ ∈ (0, 1) is the overall probability of
failure (POF) of the algorithm. It is the probability that
the algorithm delivers a wrong certificate. δ should be
set very low, e.g., 10−7 (see also Remark 1).

2) ε and εV give the allowed violation probabilities of the
two CCs in Problem (13).

3) � > 0 and �V > 0 are the margins in the tests. The tests
are devised such that the estimated violation probability
p̂ must be less than ε−� in order to pass the test, where
ε is the allowed violation probability. � and �V can, e.g.,
be chosen as � = ε

2 and �V = ( εV
2 ).

Next we present Algorithm 1. The technical explanation for
the sample sizes NT and NI in Steps B-1 and C-4 is given
in Section IV-B1, and the allowed violation probability εα in
Step C-1 is explained in Sections IV-B2 and IV-B3.

Algorithm 1:
A-Optimization (Find a scenario solution u∗ of Prob-

lem (14) using Problem (15)):

A-1) Compute the smallest number (of scenarios) Nr that
satisfies (16), given the violation probability ε for the
first CC, the number of decision variables d , and the
confidence parameter β.
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A-2) Find the solution, u∗, of Problem (15).6

B-Testing (Test the solution, u∗, against the second CC in
Problem (13)):

B-1) Compute the smallest number (of scenarios) NT that
satisfies

∑�NT (εV −�V )
i=0

(NT
i

)
εi

V (1 − εV )NT −i < β, given
the violation probability εV for the second CC, and the
margin �V .

B-2) Generate NT scenarios of w ∈ W, and compute the
violation probability estimate for the second CC:

p̂ = 1

NT

NT∑

k=1

1{g(u∗, w(k)) > 0}, (18)

where 1(·) denotes the indicator function.
B-3) If p̂ ≤ εV −�V , then the test is passed. Exit the algorithm

and forward the following solution,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u∗

with a certificate:

“P{w ∈ W : u∗ ∈ U ∩ f (u∗, w) ≤ 0} ≥ 1 − ε,

P{w ∈ W : g(u∗, w) ≤ 0} ≥ 1 − εV .”

Otherwise, test the default solution u∗
d ∈ U ′ ⊇ U (see

Section II-C) by computing the violation probability
estimate,

p̂d = 1

NT

NT∑

k=1

1
{
g
(
u∗

d , w(k)
)

> 0
}
. (19)

If p̂d ≤ εV − �V , then proceed to the next step.
Otherwise, exit the algorithm with no solution found.

Preparation for the Improving step
P-1) Save, in a set Q, the w-scenarios which violate the con-

straint ‘g(u, w) ≤ 0’ with u∗, but satisfy the constraint
with u∗

d , i.e., Q = {w(k)|g(u∗, w(k)) > 0∧g(u∗
d , w(k)) ≤

0, for k = 1, 2, . . . , NT }.
C-Improving (Improve the solution u∗ in the direction of u∗

d ):

C-1) Compute εα = (εV − ˆ̄εd )/ε̂T , where ˆ̄εd and ε̂T are
obtained by solving:

∑ p̂d NT
i=0

(NT
i

) ˆ̄εi
d (1 − ˆ̄εd )NT −i = β

and
∑ p̂T NT

i=0

(NT
i

) ˆ̄εi
T (1− ˆ̄εT )NT −i = β respectively, p̂T =

|Q|/NT , and |Q| is the cardinality of the set Q in Step
P-1.
εα is the allowed conditional7 violation probability, for
the CCP corresponding to the one-dimensional scenario
Problem (20) given below, and compute Nα (the number
of scenarios required) according to Nα = ln β/ ln(1 −
εα).

C-2) If Nα > |Q|, then generate Nα − |Q| realisations of
w ∈ W, such that the constraint g(u∗, w) ≤ 0 is violated,
but g(u∗

d , w) ≤ 0 is satisfied. Include the generated
realisations in Q.

6There is a possibility that the scenario Problem (15) is infeasible with the
drawn scenarios. In such circumstances, the optimization schemes introduced
in [33] can be used. However, for the schemes in [33], one would need to
recalculate the overall POF of the algorithm. For a discussion on the theory
of the scenario approach for infeasible problems (see also [8]).

7εα is the allowed violation probability, conditioned on the set: {w ∈
W | g(u∗, w) > 0 ∧ g(u∗

d , w) ≤ 0}.

Fig. 2. OTI algorithm.

C-3) Let (�α,�α) = (1 − α)(�∗,�∗) + α(�∗
d ,�∗

d ), where
(�∗,�∗) is the parametrisation of the solution, u∗,
obtained in Step A and (�∗

d ,�∗
d ) is the parametrisation

of the default solution, u∗
d , and α ∈ (0, 1]. Denote the

control policy corresponding to (�α,�α) by ūα(·) Solve
the following one-dimensional scenario problem,

min.
α∈(0,1] J (�α,�α)

s.t. ūα(w(k)) ∈ U ′, g(ūα, w(k)) ≤ 0

for k = 1, 2, . . . , Nα, (20)

The scenarios w(k) are drawn (without replacement)
from the set Q. Denote the solution by α∗ and the
corresponding control policy by ū∗.
Test against the first CC:

C-4) Compute the smallest number (of scenarios) NI that
satisfies

∑�NI (ε−�)
i=0

(NI
i

)
εi (1 − ε)NI −i < β, given the

violation probability ε for the first CC, and the margin
�.

C-5) Generate NI scenarios of w ∈ W, and compute the
violation probability estimate for the first CC:

p̂I = 1

NI

NI∑

k=1

1{ f (ū∗, w(k)) > 0}. (21)

C-6) If p̂I ≤ ε − �, then the test is passed. Forward the
following solution,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ū∗

with a certificate:

“P{w ∈ W : ū∗ ∈ U ′ ∩ f (ū∗, w) ≤ 0} ≥ 1 − ε,

P{w ∈ W : g(ū∗, w) ≤ 0} ≥ 1 − εV .”

Otherwise, forward the following solution,
⎧
⎪⎨

⎪⎩

ū∗

with a certificate:

“P{w ∈ W : ū∗ ∈ U ′ ∩ g(ū∗, w) ≤ 0} ≥ 1 − εV .”

Fig. 2 summarizes the steps of the algorithm and their POFs.
Remarks:

1) As there are seven β terms in the algorithm, the POF
is δ when each β term is δ/7. There is one term
in the optimization phase associated with the scenario
problem and two terms in the testing phase associated
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with the two tests in Step B-3. There are also two
terms associated with the computations of the upper
bounds required for computing εα in the first step of the
improving phase (see Sections IV-B2 and IV-B3) and
finally two terms in the improving phase related to the
scenario problem in Step C-3 and the test in Step C-6.
The β terms are added to bound the probability of the
event where any of the randomized steps in the algorithm
fail. The validity of adding β terms is explained in
Section IV-B5.

2) If the algorithm exits in Step B-3 with no solution, then
the control can be shifted to some alternative operations.
For example, for river control problems, this could mean
changing the operational mode to flood operations.

3) If the number of scenarios Nα , computed in Step C-1,
is larger than what the computational resources can
deal with, we can replace Nα with an upper limit
Nmax. In that case, the found solution must be tested
against both CCs. If the tests are passed, the probability
guarantees remain valid. However, this scheme requires
one extra β term (corresponding to the test against
the second CC) in the overall POF.

4) The proposed algorithm is developed specifically for
cases where εV � ε, and in such cases, the algorithm
offers large computational savings.

5) A sampling-and-discarding approach [11] can be intro-
duced to deal with possible conservatism in ensuring
feasibility of the scenario problem constraints. In this
approach, some scenarios are removed in order to further
decrease the value of the cost function, with an increase
in the violation probability of the constraints up to an
allowed limit (for details see [11], [17], and [43]).

6) A possible extension of the algorithm to problems with
more than two CCs is described in [28].

Discussion:
Other works that exploit the fact that testing is computa-

tionally cheaper than optimization include [21]–[24]. Different
from those works, the found solution in the optimization step
is here tested against a different, but related CC.

Note that an approach based on a combination of robust
MPC and scenario optimization [35], [36] can also be used to
find a solution in the optimization step, which is feasible with
confidence 1 − β.

The number of scenarios required in the optimization step of
a stochastic MPC problem can be bounded in different ways by
considering the problem formulation and the system structure,
and it is problem-dependent, which bounds lead to the smallest
scenarios [34]–[37].

In the problem formulation [see Problem (13)], we have
used a so-called joint CC. Stagewise CCs of the form
P{g(xk, uk) ≤ 0} ≥ 1 − εk, for k = n + 1, . . . , n + M , are also
commonly used [34], [35], [37]. Considering stagewise CCs in
the formulation can be favorable in terms of the sample com-
plexity. However, adapting our scheme to the stagewise setup
will require several modifications in the problem formulation,
and that is not considered due to space limitations.

B. Technical Explanation

In this section, we explain how the required number of
scenarios for the tests can be found and how εα in Step C-1 is
computed.

1) Number of Scenarios Required for Testing: The tests
carried out in the algorithm consist of drawing a number N of
independent realizations of w ∈ W and calculate the empirical
frequency of constraint violation. Consider a constraint of
the type P{w ∈ W : h(u∗, w) ≤ 0} ≥ 1 − ε, and let
p be the actual probability that the constraint is violated,
i.e., p = P{w ∈ W : h(u∗, w) > 0}. We evaluate the constraint
h(u∗, w(k)) ≤ 0 for the independently drawn realizations
w(k) ∈ W, k = 1, 2, . . . , N . The corresponding Bernoulli
random variables Bk take the value 1 if the constraint is
violated, and 0 otherwise, i.e., Bk = 1{h(u∗, w(k)) > 0}. The
probability P(Bk = 1) = P{w(k) ∈ W : h(u∗, w(k)) > 0} = p.

An estimate of the violation probability can, therefore,
be obtained as

p̂ = 1

N

N∑

k=1

Bk = 1

N

N∑

k=1

1{h(u∗, w(k)) > 0}. (22)

The test is passed if p̂ ≤ ε − �, where � ∈ (0, ε] is a user
chosen margin.

The number of realizations N should be chosen large
enough, so that the probability of passing the test when the
actual violation probability p is larger than the allowed one ε
is less than β, i.e.,

P( p̂ ≤ ε − �|p > ε) < β. (23)

In order to find N , we observe that the total number of
violations, V , in N Bernoulli trials is a Binomial random
variable, and the probability that V = v is

P(V = v, p) =
(

N

v

)
pv (1 − p)N−v . (24)

For a given p = μ, it follows that:

P( p̂ ≤ ε − �|p = μ) =
�N(ε−�)∑

i=0

(
N

i

)
μi (1 − μ)N−i (25)

where �N(ε − �) is the largest integer smaller or equal to
N(ε − �). Furthermore,

P( p̂ ≤ ε − �|p = μ > ε) ≤ sup
μ>ε

�N(ε−�)∑

i=0

(
N

i

)
μi (1 − μ)N−i ,

=
�N(ε−�)∑

i=0

(
N

i

)
εi (1 − ε)N−i .

The last equality holds because the expression before the
equality sign is monotonically decreasing in μ. From the above
considerations, we have the following result.

Lemma 1: The minimum number of realizations, N ,
required to guarantee P( p̂ ≤ ε − �|p > ε) < β, where
ε, p, and p̂ are the allowed, actual, and empirical violation
probabilities, is given by

min{N ∈ N :
�N(ε−�)∑

i=0

(
N

i

)
εi (1 − ε)N−i < β} (26)
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where N is the set of natural numbers.
From Lemma 1, it follows that NT in Step B-1 of the algorithm
can be found from:

min

⎧
⎨

⎩
NT ∈ N :

�NT (εV −�V )∑

i=0

(
NT

i

)
εi

V (1 − εV )NT −i < β

⎫
⎬

⎭

(27)

and NI in Step C-4 can be found from

min

⎧
⎨

⎩
NI ∈ N :

�NI (ε−�)∑

i=0

(
NI

i

)
εi (1 − ε)NI −i < β

⎫
⎬

⎭
. (28)

2) Violation Probability for the 1-D Scenario Problem: In
the improvement step (Step C-3), we solve a 1-D scenario
Problem (20), where the scenarios are drawn from the set

T = {
w ∈ W | g(u∗, w) > 0 ∧ g

(
u∗

d , w
) ≤ 0

} ⊆ W. (29)

The set T contains the realizations of w that satisfy the second
CC with u∗

d [this grants feasibility of Problem (20)] but does
not satisfy the CC with u∗. Problem (20) finds a policy
along the line from u∗ to u∗

d , where the line is formulated
in the (�,�) space. In general, selecting a policy which is a
convex combination of two policies does not guarantee that the
violation probability of the obtained policy is small, although
it is bounded by the sum of the violation probabilities of
the original two policies due to the convexity assumption.
However, in the OTI algorithm, the violation probability of
the 1-D optimization problem is chosen such that one can
guarantee with confidence 1 − β that the violation probability
for the second CC is no more than εV for the found control
policy. This is shown in Theorem 2.

In addition to the set T , we also need the set VS(u∗
d ) =

{w ∈ W | g(u∗
d , w) > 0} in Theorem 2.

Theorem 2: Assume that P(T ) ≤ ˆ̄εT and P(VS(u∗
d )) ≤ ˆ̄εd .

Let

εα ≤ εV − ˆ̄εd

ε̂T
(30)

and furthermore let the number of scenarios for the scenario
Problem (20) be Nα = ln β/ ln(1 − εα), where the scenarios
are independently sampled according to the probability distri-
bution of w ∈ W conditioned on that w belongs to T . Then,
the control policy ū∗ = (1−α∗)u∗+α∗u∗

d , corresponding to the
solution of Problem (20), violates the constraint "g(ū∗, w) ≤
0" with a probability no more than εV with a confidence 1−β.

A proof of Theorem 2 is given in the Appendix. To compute
the allowed violation probability εα in (30), we need the upper
bounds ˆ̄εd and ˆ̄εT , which are discussed in what follows.

3) Upper Bounds on P(T ) and P(VS(u∗
d )): 8 For a given

solution, the number of violations of a CC in the N Bernoulli
trials is a binomial random variable V . The probability,

8The idea behind finding the upper bounds on the violation probabilities is
the same as used in the Clopper–Pearson method to find a confidence interval
for the parameter of the binomial distribution function (for details see [44]
and the references therein).

Fig. 3. F((v/NT ), p) as a function of p.

P(V = v, p), is given by (24), and the probability that the
number of violations is v or smaller is given by

F

( v

N
, p

)
= P

(
p̂ ≤ v

N
, p

)
=

v∑

i=0

P(V = i, p). (31)

The function F((v/N), p) is nonincreasing with respect to p.
When v violations have occurred, the desired upper bound
is obtained by finding the largest value of p, such that
F((v/N), p) ≥ β. This is shown in Fig. 3, where F((v/N), p)
is plotted as a function of p for a given v, and the upper bound
ˆ̄ε is characterized by F((v/N), ˆ̄ε) = β.

Therefore, the upper bounds ˆ̄εT and ˆ̄εd on P(T ) and
P(VS(u∗

d)) can be found by solving the following equations:

p̂T NT∑

i=0

(
NT

i

)
ˆ̄εi
T (1 − ˆ̄εT )NT −i = β (32)

p̂d NT∑

i=0

(
NT

i

)
ˆ̄εi
d (1 − ˆ̄εd )NT −i = β (33)

where p̂d is given by (19) and p̂T = |Q|/NT where |Q| is
the cardinality of the set Q generated in preparation for the
improving step (see Steps P-1, C-1, and C-2 of the algorithm).

4) Strict Positivity of εα in (30): The above procedure is
guaranteed to produce an upper bound on P(VS(u∗

d )) which
is less than εV , which implies that εα > 0. This can be seen as
follows. From Step B-1 and (26), it follows that NT is chosen
such that:

�NT (εV −�V )∑

i=0

(
NT

i

)
εi

V (1 − εV )NT −i < β (34)

holds true. Furthermore, the default solution must have passed
the test in Step B-3, and hence p̂d ≤ εV − �V [see (19)].
In view of the monotonicity of (31) with respect to p,
by comparing (33) and (34), we conclude that ˆ̄εd < εV .

5) Validity of Adding β Terms in the Algorithm: The β
terms are added to bound the probability of the event where
any of the randomized steps in the OTI algorithm fails. This is
valid because of the following argument, where, for simplicity,
we consider just the optimization step followed by the testing
of u∗ with respect to the second CC. The reasoning goes
through similarly for all the other POFs. We want to bound
the probability of the event: {u∗ violates the first CC} ∪
{issue a false claim about u∗ based on the testing outcome}.
This is an event over Nr + NT samples and whose probability
can be bounded by P

Nr +NT {u∗ violates the first CC} +
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P
Nr +NT { p̂ ≤ εV − ρ and P{VS(u∗)} > εV }, where VS(u∗)

is the set of all realizations w ∈ W that violate the
constraint “g(u∗, w) ≤ 0." Since u∗ depends only on the
first Nr scenarios, P

Nr +NT {u∗ violates the first CC} =
P

Nr {u∗ violates the first CC}, which is bounded by
β in view of Theorem 1. Now, P

Nr +NT { p̂ ≤ εV −
ρ and P{VS(u∗)} > εV } = P

NT { p̂ ≤ εV − ρ | P{VS(u∗)} >
εV } × P

Nr {P{VS(u∗)} > εV }, which is bounded by
P

NT { p̂ ≤ εV − ρ | P{VS(u∗)} > εV }, and this probability is
also less than β by (27) and Lemma 1.

V. APPLICATION TO A RIVER CONTROL PROBLEM

In this section, we show how a river control problem can be
formulated as a CCP with two CCs within a stochastic MPC
setting, and we apply the proposed algorithm to historical data
from the upper part of Murray River in Australia.

A. River Control Problem as a CCP With Two CCs

Water is a precious resource, and in the last few decades,
large efforts have gone into improving the management of
water resources, including rivers. Many works have appeared
on system identification and control of rivers [7], [8], [28],
[45]–[52].

Rivers have long time delays, since locations where flows
can be regulated are often far away from locations where
the controlled variable is measured. As a result, forecasts
of unregulated in- and out-flows are required for control
purposes. These forecasts are uncertain and a hard constraint,
e.g., on the water level in a lake, that is dependent on
uncertain flow forecasts can cause infeasibility in the control
optimization problem. Therefore, it is natural to formulate
the river control problem as an optimization problem with
probabilistic constraints.

Like several other systems, rivers have both normal opera-
tions and operations related to risk mitigation. The objectives
of normal river operations include keeping water levels in
reservoirs and flow releases from reservoirs within safe limits,
while the change in flows and water levels should also be less
than given thresholds. These constraints can be encapsulated
in one CC associated with normal operations as in (10), [8].
Risk mitigation operations can include avoiding floods and
damage to infrastructure (e.g., dams), and such constraints can
be expressed as the second CC associated with risk mitigation,
as in (11). The aforementioned two CCs together with the
objective function, J (�n,�n), in (12), form the river control
problem as a CCP with two CCs [similar to Problem (13)] to
be solved in a stochastic MPC setting.

The OTI algorithm proposed in Section IV can be used
to find approximate solutions to the river control problems.
The strategy of the algorithm, i.e., optimization, testing, and
improving, is well suited to the flood risk mitigation problem,
because we do not want to be overly cautious about flood
risks, since most of the time there is no or a very little risk of
flooding.

B. Application of the Proposed Algorithm to the Upper Part
of Murray River

In this section, we describe the upper part of Murray River
in Australia and apply the OTI algorithm to river data.

1) Upper Part of Murray River: Murray River is the longest
river in Australia. Fig. 4 shows a sketch of the river from
Hume Reservoir to Lake Mulwala, which has a river distance
of 180 km. The release from Hume is measured at Heywoods.
The maximum discharge capacity from Hume is approximately
600 000 ML/day9 at full supply level. Two unregulated rivers:
Kiewa River and Ovens River join Murray River on its way to
Lake Mulwala. Inflows from Kiewa and Ovens are measured
at Bandiana and Peechelba, respectively.10 There are several
measuring stations upstream of Lake Mulwala on the Murray
River, such as Doctors Point, Albury, Howlong, and Corowa.
At the downstream end of the lake, there are three demand-
based releases: at Yarrawonga Weir to the downstream part
of Murray River, and to the irrigation channels: Yarrawonga
Main Channel and Mulwala Canal, which have maximum flow
capacities of 3170 and 10 000 ML/day, respectively. During
normal operations, the water level is controlled from Hume
only. The main control objectives are as follows.

1) The water level in Lake Mulwala should be kept between
124.65 and 124.9 mAHD (meter Australian Height
Datum—relative to sea level), and when there is a
risk of flooding, it should only cross a higher limit of
125 mAHD with a very small probability.

2) The release from Hume Reservoir should be kept
between 2500 and 30 000 ML/day. However, when there
is a risk of flooding, the release can be further reduced
to 1000 ML/day.

3) In order to protect the river banks, the rate of decrease
in the water level at Heywoods should be less than
0.20 m/day. We roughly translate this requirement, with
the help of rating curves, to a constraint on the rate of
decrease in the release from Hume, which should be less
than 800 ML/day/day.

We use the following discrete time model of the water level
in Lake Mulwala “yLM," which is given in [48] [the sampling
interval (Ts) is 8 h]:

yLM,n+1 = yLM,n + 10−6

× [4.96QH,n−9 + 7.70QB,n−9 + 4.71Q P,n−2

− 4.90QDYW,n − 7.78QYMC,n − 5.34QMC,n]
(35)

where QH , QB , and Q P are the inflows from Heywoods,
Bandiana, and Peechelba, and QDYW, QYMC, and QMC are
the releases to downstream of Yarrawonga Weir, Yarrawonga
Main Channel, and Mulwala Canal. The MPC strategy uses an
equivalent state space model to the model in (35) (for details
see [28]).

In this paper, we assume that the flow demands from the
irrigation channels, Yarrawonga Main Channel and Mulwala

91 m3/s = 86.4 ML/day.
10Strictly speaking, flows are not measured but they are calculated from

water level measurements using rating curves.
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Fig. 4. Hume Reservoir to Lake Mulwala on the Murray River (plot not to
scale).

Fig. 5. (a) Kiewa and (b) Ovens Rivers (plot not to scale).

Canal, and the flow over Yarrawonga Weir are known for a
finite future horizon. However, the unregulated inflows from
Bandiana and Peechelba are not known. Therefore, forecast
models of the flows at Bandiana and Peechelba are needed.
The forecast model for the flows at Bandiana, Q f

B , is [28]

Q f
B,n = 0.99QKMS,n−2 + 1.50QKAB,n−2 + 1.17QO,n−1

(36)

where QKMS, QKAB, and QO are the inflows at Kiewa
Mainstream, Kiewa Ana-branch, and Osbornes Flat (O), which
all contribute to the flows at Bandiana. A sketch of Kiewa
River is given in Fig. 5(a). Similarly, the forecast model for
the flows at Peechelba, Q f

P , is [28]

Q f
P,n = 1.50QBr,n−8 + 1.50QHL,n−8

+ 0.67QBR,n−8 + 1.50QC,n−9 + 1.50QG,n−8 (37)

where QBr , QHL, QBR, QC , and QG are the inflows
at Bright (Br), Harris Lane (HL), Buffalo River (BR),
Cheshunt (C), and Greta South (G), which all contribute to
the flows at Peechelba. A sketch of Ovens River is given
in Fig. 5(b). More details are given in [28].

Fig. 6 shows the simulations of the flows at Bandiana and
Peechelba on a validation data set, using the forecast models
in (36) and (37). The blue curves show the actual recorded
data and the red dashed curves show the simulation results.
The models pick the trends in the data well; however, they
show some discrepancies, especially at peaks. To account
for the discrepancies, we introduce additive error terms wB

and wP in the models (36) and (37), where wB and wP

are independent and identically distributed Gaussian random
variables with zero means and 50 and 200 ML/day standard
deviations (s.d.), respectively. The s.d. is chosen based on the

Fig. 6. Measured and simulated flows at Bandiana and Peechelba.

simulation results of the forecast models on different validation
data. The choice of wB and wP as independent and identically
distributed Gaussian random variables is made for simplicity.
More detailed error models can also be used.

2) Control Design and Parametrization: We first formulate
the constraints and the objective function. Probabilistic ver-
sions of the following constraints constitute the normal river
operations requirement.

1) 124.65 ≤ yLM,n+1 ≤ 124.9, for i = 1, 2, . . . , M .
2) 2500 ≤ QH,n+i ≤ 30 000, for i = 1, 2, . . . , M .
3) −800 ≤ QH,n+i − QH,n+i−1 ≤ 1, 200, for i =

1, 2, . . . , M .

Here M = 20 samples (6.67 days) is the prediction hori-
zon. The above constraints are required to be satisfied with
probability at least 1 − ε = 0.9. The upper limit on the
change in the flow at Heywoods (1200 ML/day/day) is higher
than the lower limit (800 ML/day/day), since the risk of
damage to the river banks is higher when the flow decreases.
Additionally, the following constraint is required to be satisfied
with probability at least 1 − εV = 0.99.

1) yLM,n+i ≤ 125, for i = 1, 2, . . . , M .

The above constraint constitutes the requirement of the flood
risk mitigation operation. This constraint is less restrictive
than the one above, where the water level should stay below
124.9 mAHD. However, this constraint must be satisfied with
a higher probability.

The matrices Q and R in the objective function J (�n,�n)
[see (12)] were selected such that they prevented water level
deviations from the set-point (124.775 mAHD) in Lake Mul-
wala and minimized the flow release from Hume Reservoir.
Q and R were tuned based on the experiments on historical
data. We used S = 0 [in (12)], since the change in flow at
Heywoods is already subjected to constraints.

We used the parametrization of �n and �n matrices as
in (8). However, we let the parameters on the subdiago-
nals (i.e., θi+k, j+k , where i > j, k = 1, . . . , M − 1) of the
�n matrix be the same to reduce the number of optimization
variables d . Additionally, the parametrization was modified as
follows. Due to the system structure, only three elements of the
wn matrix are nonzero. The reason is that most of the states are
representing delayed flows leading to update equations of the
type xl,n+1 = xl+1,n without any uncertainty. Here, xl and xl+1
are the scalar elements of the state vector. Therefore, there are
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Fig. 7. Inflows and outflows in the data set.

TABLE I

PARAMETERS AND SAMPLE SIZES USED IN THE SIMULATIONS

only three nonzero elements in the wn vector (corresponding
to the water level in Lake Mulwala and the flows at Bandiana
and Peechelba). As a consequence, we only need to optimize
over the three columns in θi, j corresponding to the nonzero
elements of the wn vector. As there is only one control input,
the number of parameters is 20 for �n and 19 × 3 for �n . d
was further increased with 1, making d = 78. This is because
we used a feasibility assurance optimization scheme [8], [28]
to solve the scenario problem that requires an additional
decision variable. The idea of the scheme is to optimally relax
the constraints (by solving an extra optimization problem)
before the scenario problem (with the relaxed constraints) is
solved (for details see [8] and [28]).

The parameters and sample sizes of the OTI algorithm
are given in Table I. For the improving phase, we selected
the default solution (see Section II-C) as QH,d = 1000
ML/day, which is nonzero, because some release is necessary
for riparian and in-stream environmental needs. The default
solution is useful for preventing flooding; however, it violates
the minimum flow requirement (2500 ML/day) between Hey-
woods and Doctors Point (see Fig. 4) and the lower limit
on the change of flow at Heywoods (−800 ML/day/day)
may also be violated. Nα was calculated at each time step
of the simulations based on the probability of violations of
the solution of the first scenario problem and the default
solution against the CC related to flood avoidance, using (30).
For computational reasons, we restricted Nα to maximum
Nmax = 2500 in the following simulations.

3) Simulation Results: For the simulations, we used the data
set from September 19, 2001 to November 16, 2001, which
has high inflows from the unregulated rivers (QB and Q P ).
The data set was sampled at Ts = 8 h (shown in Fig. 7). All
optimization problems were solved by running YALMIP [27]
over SDPT3 [53].

Fig. 8 shows the water level in Lake Mulwala. The blue
curve shows the controlled water level obtained from the
proposed algorithm, the light-blue curve shows the controlled
water level obtained by using Step A of the algorithm only (the

Fig. 8. Controlled water level in Lake Mulwala.

Fig. 9. Regulated flows at Heywoods.

Fig. 10. α values obtained in the improving phase [see Problem (20)].

optimization with the first CC), without considering the risk
mitigation CC, the black curve shows the actual recorded water
level, and the magenta curve shows the simulation of the model
in (35), using the measured input data (in Fig. 7). The model
performed reasonably well and picked up the main trends in
the data set.

Using the proposed algorithm, the water level was main-
tained within 124.65 and 124.9 mAHD throughout the sim-
ulation (blue curve in Fig. 8). However, it was about to
hit the boundary (124.9 mAHD) at the 42nd time instant.
It can be explained from the regulated flows at Heywoods.
In Fig. 9, the red curve shows the actual recorded flows at
Heywoods and the blue curve shows the flow release obtained
from the proposed algorithm. From sampling instant 22 to
37, the flows were decreased at the maximum allowed rate,
i.e., −800 ML/day/day. The restriction on the rate of flow
decrease caused the water level to rise, as shown in Fig. 8.

In Fig. 9 (blue curve), the flows at Heywoods went below
2500 ML/day twice. These were the events when the test
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Fig. 11. Controlled water level in Lake Mulwala with nonzero S in the
objective function.

Fig. 12. Regulated flows at Heywoods with nonzero S in the objective
function.

in Step B-3 of the algorithm (Section IV-A) failed with
the obtained solution. In the test, the water level crossed
125 mAHD more than NT (εV − �V ) = 44 times out of
NT = 8798 different noise scenarios, and the improving
procedure was called.

Fig. 10 shows the α values obtained from Problem (20).
A nonzero α value indicates an event where an improved
solution was needed, and α = 1 indicates the instants when
the default solution was used, i.e., the flows were reduced to
1000 ML/day. Fig. 10 shows that 65% of the time there was
no need to solve Problem (20), and a solution was available
at the end of the optimization phase of the algorithm. In the
improving phase, Nα exceeded the upper limit (Nmax = 2500)
42 times in the simulation. The algorithm, however, restricted
Nα to be Nmax at those steps and the obtained solution was
tested against the risk mitigation constraint after the improving
was done, and the test passed every time.

In Figs. 8 and 9, the light-blue curves show the controlled
water level in Lake Mulwala and the controlled release from
Hume Reservoir, respectively, for the case when we only per-
formed Step A of the algorithm. The blue and light-blue curves
show a similar behavior in Figs. 8 and 9 until the sampling
instants 63 and 58, respectively, which indicates that as long as
the testing phase of the algorithm did not report any problems,
the response is similar (it is not exactly the same response
because the two simulations were run separately and the
scenarios were drawn independently in the scenario programs
of the stochastic MPC problem). Otherwise, when the algo-
rithm used the default solution, the blue curve shows a stable
response around the desired water level (124.775 mAHD), but

Fig. 13. α values obtained in the improving phase [see Problem (20)] with
nonzero S in the objective function.

the light-blue curve exceeded the upper limit (124.9 mAHD)
from sampling instant 79 to 89.

Fig. 9 shows a number of small frequent changes in the
controlled flow release from Hume Reservoir. This can be
avoided by considering a nonzero S matrix in the objective
criterion J (�n,�n) [in (12)], as shown in Figs. 11 and 12.
Fig. 12 shows that with this change the control action varied
smoothly, as compared with Fig. 9. In this case, we did
not experience any rise in the water level close to the 42nd
time instant. This can be explained from Fig. 12, where
the flows did not get very high around the 22nd sampling
instant, as compared with Fig. 9, where it nearly reached
14 500 ML/day. The performance of the algorithm for the rest
of the time was similar, and the water level was maintained
between its upper and lower limits, as shown in Figs. 8
and 11. Fig. 13 shows the corresponding α values obtained
in Problem (20), which indicates that the number of times
an improved solution was sought was similar to the previous
case (see Fig. 10) where S = 0.

In this section, we have seen that with the application of
the OTI algorithm, we managed to keep the water level within
safe limits, even when there were large unregulated inflows.
The comparison with the recorded data is not completely fair,
since we had access to the exact future water demands and
we adjusted the flow release every 8 h while the operators
only adjusted the flow every 24 h. However, it is still a
reasonable comparison because the unregulated in-flows carry
the most uncertainty and is the critical factor when it comes to
flooding [28]. Furthermore, in the river model, the time delay
from Peechelba to Lake Mulwala is 16 h, which is less than
24 h, and therefore, it makes more sense to have the sampling
time (Ts) of the stochastic MPC problem to be at most 16
h or less. We selected Ts = 8 h, because both 16 and 24 are
the multiples of 8.

VI. CONCLUSION

A control problem for systems that are affected by uncertain
inputs and are vulnerable to risks is formulated as an MCCP.
The optimization problem includes two CCs: one for normal
operations and one for risk avoidance operations, where the
latter constraint has a much smaller allowed violation probabil-
ity. An optimization, testing, and improving-based algorithm
to solve the MCCPs has been proposed and applied to the
upper part of Murray River in Australia. The simulation
results confirmed that the proposed control strategy achieved
the control objectives of the river during normal conditions,
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Fig. 14. Pictorial description of violation sets.

and avoided flooding whenever flood risks appeared in a
computationally affordable way.

APPENDIX

PROOF OF THEOREM 2

Fig. 14(a) shows the space W from which the w realisations
are drawn. Let “VS(u)" be the set of all realizations w ∈ W

that violate the constraint “g(u, w) ≤ 0" evaluated with u.
Fig. 14 shows three sets: VS(u∗), VS(u∗

d ), and VS(ū∗) marked
with blue circles, green crosses, and red squares, respectively,
where u∗ is the solution of Problem (15), u∗

d is the default
solution, ū∗ = (1 − α∗)u∗ + α∗u∗

d , and α∗ is the solution
of Problem (20). Note that, VS(u∗

d ) and VS(ū∗) are not
necessarily contained in VS(u∗), i.e., the two situations shown
in Fig. 14(a) and (b) are both possible.
T = VS(u∗) \ VS(u∗

d ) [see (29)] is the set that contains
all realizations of w that cause u∗ to violate the constraint
“g(u∗, w) ≤ 0" while u∗

d satisfies the corresponding constraint.
In Problem (20), we specifically sample w from the set T .
By convexity, there are no realizations of w for which the
constraint “g(u, w) ≤ 0" is satisfied by both u∗ and u∗

d but is
violated by ū∗. However, there can be realizations of w that
violate the constraint with u∗ and/or u∗

d , but satisfy it with ū∗.
We can represent VS(ū∗) as

VS(ū∗) = {VS(ū∗) \ T } ∪ {VS(ū∗) ∩ T }. (38)

Again, by the convexity argument above, VS(ū∗) \ T ⊆
VS(u∗

d ), and hence

VS(ū∗) ⊆ VS(u∗
d ) ∪ {VS(ū∗) ∩ T }. (39)

Thus,

P
(
VS

(
ū∗)) ≤ P

(
VS

(
u∗

d

)) + P(VS(ū∗) ∩ T )

= P
(
VS

(
u∗

d

)) + P(VS(ū∗)|T )P(T )

≤ ˆ̄εd + P(VS(ū∗)|T )ε̂T (40)

where we have used the upper bounds P(VS(u∗
d)) ≤ ˆ̄εd and

P(T ) ≤ ˆ̄εT . As Nα satisfies (16) with ε = εα and d = 1,
the solution to Problem (20) satisfies P(VS(ū∗)|T ) ≤ εα with
a confidence 1 − β. Using εα ≤ (εV − ˆ̄εd )/ ˆ̄εT , the theorem
follows from (40).
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