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Under certain conditions,         generalizes well, i.e, it satisfies
“the large majority” of the infinite unseen constraints…

The scenario approach
Uncertain convex program
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We observe a finite number of situations (i.e. measure a finite number of values taken by �)
and obtain an optimal solution satisfying them.

Scenario program

( )
(1) (2) ( )subject to: f ( )

min

 fro0, , , ., m ..

d

i

T

N

c
�

�

�

� � � �
�

� �
�

N situations observed

Infinite constraints parametrized by
�, an uncertain parameter
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Probabilistic guarantees through the scenario approach

Scenario program
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N situations observed (i.i.d)

N��
optimal solution:

Then you can be sure that

Pr[ ]( ) 0Nf� � �� � �

It depends only on N
not on the probability distribution!

� distributed according to an unknown probability on �;



Mathematical details

Indeed,                                   holds
with very high probability , (                        ) independently
of the unknown probability distribution on �,

on condition that: .
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In practice…
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Fact 1: For general convex programs with d decision variables, you cannot find
any better � given N: this result is unimprovable!

Fact 2: Setting smaller � does not impact significantly on � given N
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Data-driven approach in short

N �Exact formula

Scenario
program

N��

 satisfies all the constraints 

except at most a proportion of t em h
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•Historical series
•Performed experiments
•…

Data acquisition
procedures

(1) (2) ( ), ,..., N� � �

Finance
(stock movements)

Control
(Input noise realizations)

Medical diagnosis
(after-CA resuscitations) solution

reliability level



Some issues about data-driven optimization

I. Shortage of samples
What if we have “too few” observations at our disposal to reach a desirable �?

II. Bias-Variance trade-off
How to choose “the right model” given the available data?

III. Deep into a-priori knowledge
Is it possible to characterise more deeply the scenario solution before
observing data? 

N��

We’ll face these issues using the example of Interval Predictor Models as a paradigm.



Example: Interval Predictor Models (I.P.M.)

Pr[ ( 0.05)]y I u� �

�� � �374 0.05N
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374 i.i.d observations of 
couples

This model (IPM of order 1) associates a 
guaranteed interval of y to each value of u

The red strip contains at least the 95% of the probability mass, viz.
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In general, to find the parameters of an IPM of order n, just solve the convex problem:
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(I) Same guarantees through a reduced number of samples

Final modelA few 
samples

Convex
program

Intermediate 
model

Simplified
convex
program

more samples

(no guarantees) Guaranteed:Pr[ ( )]y I u �� �

� � �Intermediate
model 
(IPM of order 3)

Final guaranteed model
(� suitably increased till
the new samples are all
contained in the strip)

New samples

A few samples

The FAST algorithm

•Ex. If order=600, you may guarantee �=0.1 with one tenth of the samples needed with the classic
procedure.

•Computational advantages for medium and large scale problems.

A few samples



(II) Bias vs Variance trade-off
“true” model 
(u,y) are uniformly distributed inside
the dotted strip

The model is too simple: 
it underfits data (bias)

The model is too complex
w.r.t. to the number of data: 
it overfits data (variance)

I(u)

u

y



(II) How to trade bias and variance with the scenario approach
N samples

�
Model builder

•�-guaranteed model of order 0 with perform. �1
•�-guaranteed model of order 1 with perform. �2

…
•�-guaranteed model of order m with perform. �m

Choose
the best one

�

IPM order

overfitti
ngunderfitting

ok!

For all these models the same
guarantee holds, with the same , 
i.e.

The procedure allows to diclose
overfitting or underfitting
phenomena

just by looking at 
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(II) Revealing overfitting through FAST
When the IPM order is too large to guarantee through the classic scenario approach,
split N and use the FAST algorithm

Final modelN1 Convex
program

Intermediate 
model

Simplified
convex
program

N2

Pr[ ( )]y I u� ��
N1 N2

y

u

� � The big � in the final model
suggests that the shape of the
intermediate model overfitted data

IPM of order 7

N



(III) Many a-priori reliability levels: �0, �1,…, �N-1 instead of just one �

�0

�57

�12

�0=0.05 � No more than 95% of       
mass probability outside this strip 

�12=0.10 � No more than 90% 
outside this

�57=0.24 � No more than 76% 
outside this

N samples

�0, �1,…, �N-1 (e.g. 0.05,...,0.10,…,0.24,…,1)

Convex
program

IPM model
(�0,,�0) ,(�1, �1) ,…,(�N-1,�N-1)

Exact
Formula

N (e.g.=418)
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