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The scenario approach

Uncertain convex program

. T
OrEIIRQ c . Infinite constraints parametrized by
subject to: f5(a) <0, SeA d, an uncertain parameter

convex

We observe afinite number of situations (i.e. measure afinite number of values taken by 6)
and obtain an optimal solution satisfying them.
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Scenario program
minc' «

acR® P

subject to: f , () <0, SO 5@ S0 from A

N situations observed

— Optimal solution: a;:l

Under certain conditions, 05;:' generalizeswell, i.e, it satisfies
“the large mgjority” of the infinite unseen constraints...
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Probabilistic guarantees through the scenario approach

o distributed according to an unknown probability on A;

Scenario program

minc' o | .
aeR® — optimal solution: &,

subject to: f , (&) <0, s 5@ 50N from A

N situations observed (i.i.d)

Then you can be sure that
Prf, (ay)>0]<¢

It depends only on N
not on the probability distribution!




Mathematical details

Indeed, Pr[ f, () > 0] < & holds
with very high probability 1- g, (#~0,eg. 4=10°) independently
of the unknown probability distribution on A,

on condition that: ,B<Z( ]f(l )"

In practice...

Fact 1. For general convex programs with d decision variables, you cannot find
any better € given N: this result is unimprovabl el

Fact 2. Setting smaller B does not impact significantly on € given N
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Some Issues about data-driven optimization

|.  Shortage of samples

What if we have “ too few” observations at our disposal to reach a desirable €?

||. Bilas-Variance trade-off

How to choose “ the right model” given the available data?

I11. Deep into a-priori knowledge

IS it possible to characterise more deeply the scenario solution a,i, before
observing data?

We'll face these issues using the example of Interval Predictor M odels as a paradigm.



Example: Interval Predictor Models (1.P.M.)
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Thered strip contains at least the 95% of the probability mass, viz.P[y ¢ | (u)] <0.05

In general, to find the parameters of an IPM of order n, just solve the convex problem:

min y
Qo :G1s---:0n

subject to:

y® — [qn (u(” )n + qn_l(u(” )n_1 TR ql(u(‘))+ qOJ

<y 1=1,...N




(1) Same guarantees through a reduced number of samples

The FAST agorithm
more Iamples
A few c Intermediate Simplified _
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*EX. If order=600, you may guarantee €¢=0.1 with one tenth of the samples needed with the classic
procedure.
«Computational advantages for medium and large scale problems.
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(11) How to trade bias and variance with the scenario approach

ec-guaranteed model of order 0 with perform. y, |
Model builder |—s*e-guaranteed model of order 1 with perform.y, | Choose

N samples —

e —* the best one
*¢-guaranteed model of order m with perform. vy,
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,, For all these models the same
1 4 guarantee holds, with the sameg,
o i.e. Alyzl(U)]<e

The procedure allows to diclose
overfitting or underfitting
phenomena

just by looking at ¥




(11) Revealing overfitting through FAST

When the IPM order istoo large to guarantee ¢ through the classic scenario approach,
split N and use the FAST algorithm

N2
N |
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ST del convex b
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Thebig ¥ inthe final model
suggests that the shape of the
Intermediate model overfitted data




..., &y.¢ INStead of just one ¢

0 0.1 0.2 0.3 0.4 05 06 0.7 0.a 05 1
N (e.g.=418)
!
Exact N samples _.
Formula
€0s €1--+» Enq (€.0. 0.05,...,0.10,...,0.24,...,1)

(111) Many a-priori reliability levels: ¢, ¢,
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