

Convegno SIDRA 2010 L'Aquila 13-15 Settembre 2010

Data-driven optimization through the scenario approach

Algo Carè

algo.care@ing.unibs.it

Simone Garatti

sgaratti@elet.polimi.it

Marco C. Campi

campi@ing.unibs.it

The scenario approach

Uncertain convex program

$$\min_{\alpha \in \mathbb{R}^d} c^T \alpha$$

subject to: $f_{\delta}(\alpha) \le 0$, $\delta \in \Delta$

Infinite constraints parametrized by δ, an *uncertain parameter*

We observe a finite number of situations (i.e. measure a finite number of values taken by δ) and obtain an optimal solution satisfying them.

Scenario program

convex

$$\min_{\alpha \in \mathbb{R}^d} c^T \alpha$$

Optimal solution: $\alpha_{\scriptscriptstyle N}^*$

Under certain conditions, α_N^* generalizes well, i.e, it satisfies "the large majority" of the infinite unseen constraints...

Probabilistic guarantees through the scenario approach

 δ distributed according to an unknown probability on Δ ;

Then you can be sure that

$$\Pr[f_{\delta}(\alpha_N^*) > 0] \le \varepsilon$$

It depends only on *N* not on the probability distribution!

Mathematical details

Indeed, $\Pr[f_{\delta}(\alpha_N^*) > 0] \le \varepsilon$ holds with very high probability $1 - \beta$, ($\beta \approx 0$, e.g. $\beta = 10^{-6}$) independently of the unknown probability distribution on Δ ,

on condition that:
$$\beta \leq \sum_{i=0}^{d-1} {N \choose i} \varepsilon^i (1-\varepsilon)^{N-i}$$
.

Fact 1: For general convex programs with d decision variables, you cannot find any better ε given N: this result is unimprovable!

Fact 2: Setting smaller β does not impact significantly on ε given N

Data-driven approach in short

 α_N^* satisfies all the constraints $\delta \in \Delta$ except at most a proportion ε of them

Some issues about data-driven optimization

I. Shortage of samples

What if we have "too few" observations at our disposal to reach a desirable \varepsilon?

II. Bias-Variance trade-off

How to choose "the right model" given the available data?

III. Deep into a-priori knowledge

Is it possible to characterise more deeply the scenario solution α_N^{π} before observing data?

We'll face these issues using the example of Interval Predictor Models as a paradigm.

Example: Interval Predictor Models (I.P.M.)

The **red strip** contains at least the 95% of the probability mass, viz. $\Pr[y \notin I(u)] \le 0.05$

In general, to find the parameters of an IPM of order n, just solve the convex problem:

$$\min_{q_{0},q_{1},...,q_{n}} \gamma
\text{subject to: } \left| y^{(i)} - \left[q_{n} \left(u^{(i)} \right)^{n} + q_{n-1} \left(u^{(i)} \right)^{n-1} + ... + q_{1} \left(u^{(i)} \right) + q_{0} \right] \right| \leq \gamma \quad i = 1,...,N$$

(I) Same guarantees through a reduced number of samples

- •Ex. If order=600, you may guarantee $\varepsilon=0.1$ with <u>one tenth</u> of the samples needed with the classic procedure.
- •Computational advantages for medium and large scale problems.

Bias vs Variance trade-off "true" model (u,y) are uniformly distributed inside the dotted strip 0.5 -0.5 -1.5 L The model is too complex 2 1.5 _F The model is too simple: w.r.t. to the number of data: it underfits data (bias) it overfits data (variance) 0.5 -0.5 I(u)-0.5 -1 -1.5 -1 -1.5 L 0 2 3 5

(II) How to trade bias and variance with the scenario approach

(II) Revealing overfitting through FAST

When the IPM order is too large to guarantee ε through the classic scenario approach, split N and use the FAST algorithm

(III) Many a-priori reliability levels: ε_0 , ε_1 ,..., ε_{N-1} instead of just one ε

