
An introduction to 
THE STATE CONDITIONAL FILTERING

PARADIGM
Speaker: Algo CarèAlgo Carè (University of Brescia, IT)

In collaboration with:
Marco C. CampiMarco C. Campi (University of Brescia, IT)
Erik WeyerErik Weyer (The University of Melbourne, VIC, AU)

ERNSI workshop 2024
September 30 - October 2



  2

An introduction to 
THE STATE CONDITIONAL FILTERING

PARADIGM

““State Conditional FilteringState Conditional Filtering,” ,” 
IEEE Transactions on Automatic Control, 67(7):3381-3395, 2022 
A. Carè, M.C. Campi, E. Weyer

...and some work in progress...and some work in progress..

Main reference:Main reference:

https://www.algocare.it/docs/State_Conditional_Filtering.pdf
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Is KF effective for our purpose?Is KF effective for our purpose?
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● CAN BE COMPUTED
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MAIN INGREDIENTS FOR THE DERIVATION:
● Hilbert Projection Theorem + constraints 

● Reformulating                                         as  Backward Markov Process  
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TAKE-HOME MESSAGE

● In many filtering (or prediction or smoothing problems) 
some values of the states are more important than others. 

● In these cases, a desirable property is that the true state is included
in the constructed regions with the desired probability, regardless of its value 
(STATE CONDITIONAL PROPERTY).

● Kalman regions do not satisfy the STATE CONDITIONAL PROPERTY

but

the “State Conditional Filter” satisfies the STATE CONDITIONAL PROPERTY 
(recursive, and the price to pay in terms of size is often acceptable).

There are several open problems and pending questions... There are several open problems and pending questions... 
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● We know that there is no algorithm with the STATE CONDITIONAL PROPERTY 
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● The paradigm is general, but the working assumptions are limiting. 
● There are some preliminary (unpublished) studies results regarding robustness 

against misspecifications. 

● Sometimes (not always!) you know a priori which states are important.
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THANK YOU

ALGO.CARE@UNIBS.IT
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