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ROBOTICS EXAMPLE
Two robots run their return-to-base program

Goal: monitor the robots and predict collisions
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V4 0 0.012 0 0
0 0 0.042 0
p$A,t 2
p— 0 0 0 0.04
YAt = { D } + WA ¢
yA,t Wa = 0.05%1
Assumptions: white processes,
zero-mean,

known covariance matrices,

uncorrelated with each other and the initial state,
jointly Gaussian
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KALMAN FILTER

KF provides an estimate Z; of the system state variables xy

data-independent
size and shape

In the Gaussian setup,
we can construct a 95% probability region

Is KF effective for our purpose? =
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ANOTHER RUN
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DYNAMIC CASE { = Fot o

yr = Hxy + wy
STATE CONDITIONAL ELLIPSOID

XN ={x eR": (z —2)“") I (2 — 2797) < x*(aym)},

ASCF
(UtAt) KALMAN-RELATED

Ht — (UtAt)_lpt QUANT|T|ES
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| Pseudocode: SCF initialization

e Set the probability level o € (0,1)
e Let
* UpAp <0
#KF 0, Py « T (KF initialization)
* Fob « TFTT~! (backward matrix)

| Pseudocode: computation of XY

Fort=1,2,...

e Read new measurement yt
« Update KF:

* Kt (FP_ FT+VYHT(W +H(FPt_1FT+I YH 7)1
* i‘fF — F“KF —I—I\t(yt HF?:t 1)
* Pr + FPt_lF +V K (W —l—jrf(FPr_1Iﬂ——|—‘»-")jrirT)Kt
o Update the ratio matrix:
x UpAp + F(Up—1 A1) F? + K¢(H — HF(Up—1A¢—1)F?)
o lft>n
— Compute!?
* Tt ({-rt,4f) L3 KF
*x I « (U Ag)™ 1Pf

where \?(c,n) is the quantile at probability o of the
Chi-square distribution with n degrees of freedom
— Output: XPCF

* XSS o e R (2= 20) TI (0 — 30) < xPavm) |,
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| Pseudocode: SCF initialization

e Set the probability level o € (0,1)
e Let

R

" .%;‘F‘ £°0. P + T (KF initialization)
x FP+— TFTT—1 (backward matrix)

‘ Pseudocode: computation of Xfcp

Fort=1,2,...

e Read new measurement yt
« Update KF:

* Kt (FP_ FT+VYHT(W4+H(FP_1FT4+V)HT)~1

* .i{(F — F:?gi_Fl + Ke(yr — HF.%?_Fl)

* Pr + FPt_lFT+V—Kt(I»‘1-’—|—H(FPt_lFT+V)HT)Kg—
o Update the ratio matrix:

— Compute!?
* Ty — (L‘rtflt)_l;f??F
* Ht — (L."pqt)—lpt
* XT_SCF<— reR™: (x— .ﬁt)THt_l(r — &) < x3(a, n)},
where \?(cv,n) is the quantile at probability o of the
Chi-square distribution with n degrees of freedom
— Output: XPCF
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DYNAMIC CASE

1

Tiy1 = Fay + vy
Yy = Hxy + wy

STATE CONDITIONAL ELLIPSOID

XP ={z e R": (

ASCF)THt_l(

e DATA-INDEPENDENT

MATRIX GOCL
t

« CAN BE COMPUTED

RECURSIVELY 1, :é(UtAt)_lépt

L — :%ECF) S XQ(Oé7n)} ’

KALMAN-RELATED
QUANTITIES

(U;Ay) ™! depends on data richness
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DYNAMIC CASE { = Fot o

yr = Hxy + wy
STATE CONDITIONAL ELLIPSOID

AP = {x cR": (z — 229 (2 — 2997) < XQ(&,n)},

e DATA-INDEPENDENT

MATRIX ~SCF A
. CANBE COMPUTED "t = (U Ay~ KALMAN-RELATED
RECURSIVELY - QUANTITIES
[T = (UsAr) " By

(U;Ay) ™! depends on data richness

MAIN INGREDIENTS FOR THE DERIVATION:
e Hilbert Projection Theorem + constraints
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DYNAMIC CASE { = Fot o

yr = Hxy + wy
STATE CONDITIONAL ELLIPSOID

AP = {az cR": (z — 229 (2 — 2997) < XQ(oz,n)},

e DATA-INDEPENDENT

MATRIX SCF A
« CAN BE COMPUTED Ly = (U t) KALMAN-RELATED
RECURSIVELY . QUANTITIES
I, = (U Ay) " By

(U;Ay) ™! depends on data richness

MAIN INGREDIENTS FOR THE DERIVATION:
e Hilbert Projection Theorem + constraints
Tiy1 = Faoy + vy

e Reformulating {yt - R as Backward Markov Process 92
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CRITICAL CASE

Two robots run their return-to-base program

LET US ZOOM IN

-2 -1.5 -1 -0.5 0 0.5

2.64

8.04

o DAt
¢} Kalman region

+ pat

1 (O SCF region

. SCF
e DAy

-085 -0.84 -0.83 -0.82 -0.81 -0.8 -0.79 -0.78 -0.77 -0.786

263

2.62

2611

26

258

257

2.56

255+
-0.5

L L
-0.49 -0.48 -0

1

I 1 I I L 1

47 -0.46 -0.45 -0.44 -0.43 -0.42 -0.41 -0.4 -0.39 -0.38 -0.37 -0.36



TAKE-HOME MESSAGE

98



TAKE-HOME MESSAGE

e In many filtering (or prediction or smoothing problems)
some values of the states are more important than others.

99



TAKE-HOME MESSAGE

e In many filtering (or prediction or smoothing problems)
some values of the states are more important than others.

e In these cases, a desirable property is that the true state is included

in the constructed regions with the desired probability, regardless of its value
(STATE CONDITIONAL PROPERTY).

100



TAKE-HOME MESSAGE

e In many filtering (or prediction or smoothing problems)
some values of the states are more important than others.

e In these cases, a desirable property is that the true state is included
in the constructed regions with the desired probability, regardless of its value

(STATE CONDITIONAL PROPERTY).

e Kalman regions do not satisfy the STATE CONDITIONAL PROPERTY.

101



TAKE-HOME MESSAGE

e In many filtering (or prediction or smoothing problems)
some values of the states are more important than others.

e In these cases, a desirable property is that the true state is included
in the constructed regions with the desired probability, regardless of its value
(STATE CONDITIONAL PROPERTY).

e Kalman regions do not satisfy the STATE CONDITIONAL PROPERTY.

e The STATE CONDITIONAL PROPERTY is secured by a new technique,
here called the “State Conditional Filter”.

102



TAKE-HOME MESSAGE

e In many filtering (or prediction or smoothing problems)
some values of the states are more important than others.

e In these cases, a desirable property is that the true state is included
in the constructed regions with the desired probability, regardless of its value
(STATE CONDITIONAL PROPERTY).

e Kalman regions do not satisfy the STATE CONDITIONAL PROPERTY.

e The STATE CONDITIONAL PROPERTY is secured by a new technique,
here called the “State Conditional Filter”.

There are several open problems and pending questions... 103



Open problems and pending questions:

OPTIMALITY

104



Open problems and pending questions:

OPTIMALITY

» We know that there is no algorithm with the STATE CONDITIONAL PROPERTY
that delivers regions that are always strictly smaller than those that we deliver.
(Proof in the paper)

105



Open problems and pending questions:

OPTIMALITY

» We know that there is no algorithm with the STATE CONDITIONAL PROPERTY
that delivers regions that are always strictly smaller than those that we deliver.
(Proof in the paper)

GENERALITY AND ROBUSTNESS

e The paradigm is general, but the working assumptions are limiting.

106



Open problems and pending questions:

OPTIMALITY

» We know that there is no algorithm with the STATE CONDITIONAL PROPERTY
that delivers regions that are always strictly smaller than those that we deliver.
(Proof in the paper)

GENERALITY AND ROBUSTNESS

e The paradigm is general, but the working assumptions are limiting.
e There are some preliminary (unpublished) studies results regarding robustness
against misspecifications.

107



Open problems and pending questions:

OPTIMALITY

» We know that there is no algorithm with the STATE CONDITIONAL PROPERTY
that delivers regions that are always strictly smaller than those that we deliver.
(Proof in the paper)

GENERALITY AND ROBUSTNESS

e The paradigm is general, but the working assumptions are limiting.
e There are some preliminary (unpublished) studies results regarding robustness
against misspecifications.

APPLICATION-DRIVEN TAILORING

e Sometimes you know a priori which states are important/unimportant/impossible.

108



Open problems and pending questions:

OPTIMALITY

» We know that there is no algorithm with the STATE CONDITIONAL PROPERTY
that delivers regions that are always strictly smaller than those that we deliver.
(Proof in the paper)

GENERALITY AND ROBUSTNESS

e The paradigm is general, but the working assumptions are limiting.
e There are some preliminary (unpublished) studies results regarding robustness
against misspecifications.

APPLICATION-DRIVEN TAILORING

e Sometimes you know a priori which states are important/unimportant/impossible.

OTHER DIRECTIONS

e Distributed setup, adversarial setup, ... 109



THANK YOU
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* We know that there is no algorithm with the STATE CONDITIONAL PROPERTY
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(Proof in the paper)
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against misspecifications.

APPLICATION-DRIVEN TAILORING

« Sometimes you know a priori which states are important/unimportant/impossible.

OTHER DIRECTIONS

« Distributed setup, adversarial setup, ...

ALGO.CARE@UNIBS.IT
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