An introduction to THE STATE CONDITIONAL FILTERING PARADIGM

Speaker: Algo Carè (University of Brescia, IT)

In collaboration with:

Marco C. Campi (University of Brescia, IT)

Erik Weyer (The University of Melbourne, VIC, AU)

ERNSI workshop 2024 September 30 - October 2

An introduction to THE STATE CONDITIONAL FILTERING PARADIGM

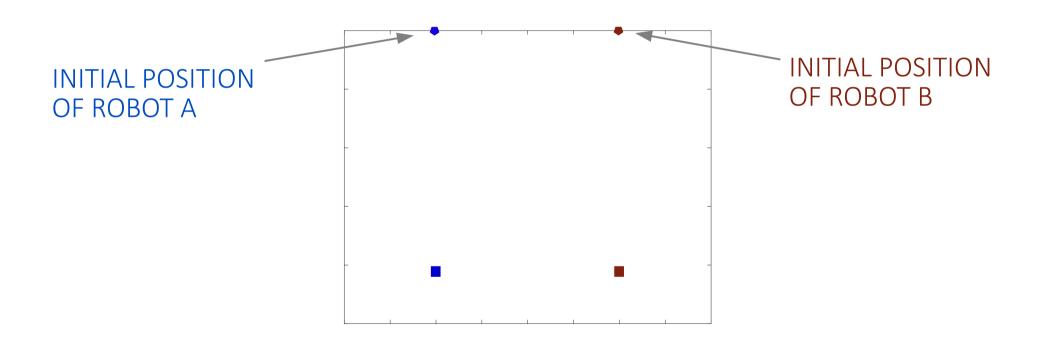
Main reference:

"State Conditional Filtering,"

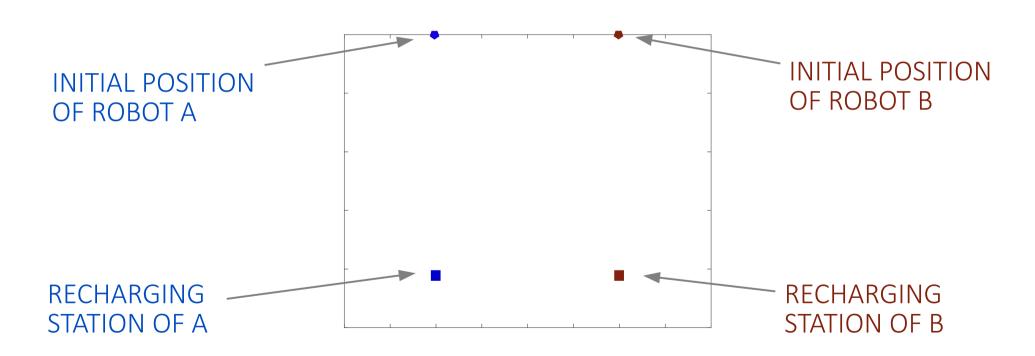
IEEE Transactions on Automatic Control, 67(7):3381-3395, 2022 A. Carè, M.C. Campi, E. Weyer

...and some work in progress.

ROBOTICS EXAMPLE Two robots run their **return-to-base** program

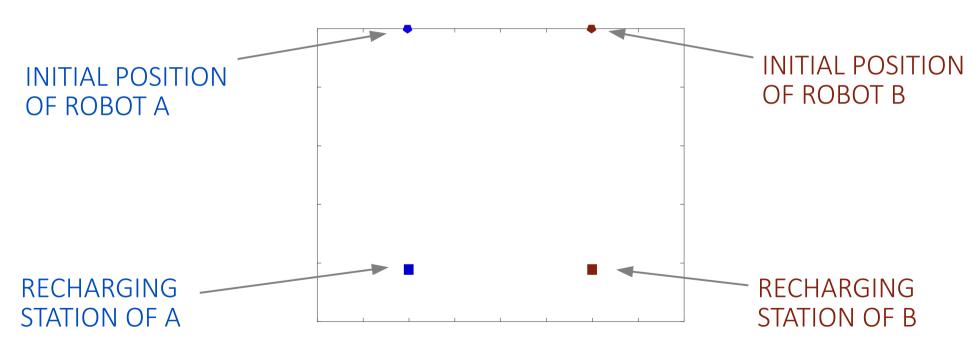


ROBOTICS EXAMPLE Two robots run their **return-to-base** program

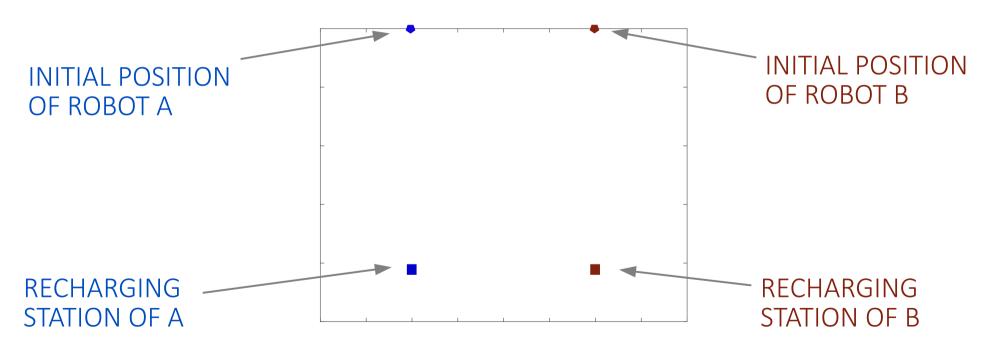


ROBOTICS EXAMPLE Two robots run their **return-to-base** program

Goal:



ROBOTICS EXAMPLE Two robots run their **return-to-base** program **Goal:** monitor the robots and predict collisions



$$\begin{bmatrix} p_{xA,t+1} \\ p_{yA,t+1} \\ u_{xA,t+1} \\ u_{yA,t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta & 0 \\ 0 & 1 & 0 & \Delta \\ -K_p \cdot \Delta & 0 & 1 - K_u \cdot \Delta & 0 \\ 0 & -K_p \cdot \Delta & 0 & 1 - K_u \cdot \Delta \end{bmatrix} \begin{bmatrix} p_{xA,t} \\ p_{yA,t} \\ u_{xA,t} \\ u_{yA,t} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ K_p \bar{p}_{xA} \\ K_p \bar{p}_{yA} \end{bmatrix} \Delta + v_{A,t} \cdot \Delta,$$

$$y_{A,t} = \begin{bmatrix} p_{xA,t} \\ p_{yA,t} \end{bmatrix} + w_{A,t}$$

$$\begin{bmatrix} p_{xA,t+1} \\ p_{yA,t+1} \\ u_{xA,t+1} \\ u_{yA,t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta & 0 \\ 0 & 1 & 0 & \Delta \\ -K_p \cdot \Delta & 0 & 1 - K_u \cdot \Delta & 0 \\ 0 & -K_p \cdot \Delta & 0 & 1 - K_u \cdot \Delta \end{bmatrix} \begin{bmatrix} p_{xA,t} \\ p_{yA,t} \\ u_{xA,t} \\ u_{yA,t} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ K_p \bar{p}_{xA} \\ K_p \bar{p}_{yA} \end{bmatrix} \Delta + \underbrace{v_{A,t} \cdot \Delta}_{A,t} ,$$

$$y_{A,t}=\left[egin{array}{c} p_{xA,t} \ p_{yA,t} \end{array}
ight]+w_{A,t} \qquad ext{noise process} \qquad egin{array}{c} ext{stochastic input process} \ V_{A}=\left[egin{array}{c} 0.01^2 & 0 & 0 & 0 \ 0 & 0.01^2 & 0 & 0 \ 0 & 0 & 0.04^2 & 0 \ 0 & 0 & 0 & 0.04^2 \end{array}
ight] \ W_{A}=0.05^2I \end{array}$$

$$\begin{bmatrix} p_{xA,t+1} \\ p_{yA,t+1} \\ u_{xA,t+1} \\ u_{yA,t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta & 0 \\ 0 & 1 & 0 & \Delta \\ -K_p \cdot \Delta & 0 & 1 - K_u \cdot \Delta & 0 \\ 0 & -K_p \cdot \Delta & 0 & 1 - K_u \cdot \Delta \end{bmatrix} \begin{bmatrix} p_{xA,t} \\ p_{yA,t} \\ u_{xA,t} \\ u_{yA,t} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ K_p \bar{p}_{xA} \\ K_p \bar{p}_{yA} \end{bmatrix} \Delta + v_{A,t} \Delta,$$

$$y_{A,t}=\left[egin{array}{c} p_{xA,t} \ p_{yA,t} \end{array}
ight]+w_{A,t} \qquad ext{noise process} \qquad egin{array}{c} ext{stochastic input process} \ V_{A}=\left[egin{array}{c} 0.01^2 & 0 & 0 & 0 \ 0 & 0.01^2 & 0 & 0 \ 0 & 0 & 0.04^2 & 0 \ 0 & 0 & 0 & 0.04^2 \end{array}
ight] \ W_{A}=0.05^2I \end{array}$$

Assumptions: white processes,

zero-mean,

known covariance matrices,

uncorrelated with each other and the initial state,

$$\begin{bmatrix} p_{xA,t+1} \\ p_{yA,t+1} \\ u_{xA,t+1} \\ u_{yA,t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta & 0 \\ 0 & 1 & 0 & \Delta \\ -K_p \cdot \Delta & 0 & 1 - K_u \cdot \Delta & 0 \\ 0 & -K_p \cdot \Delta & 0 & 1 - K_u \cdot \Delta \end{bmatrix} \begin{bmatrix} p_{xA,t} \\ p_{yA,t} \\ u_{xA,t} \\ u_{yA,t} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ K_p \bar{p}_{xA} \\ K_p \bar{p}_{yA} \end{bmatrix} \Delta + v_{A,t} \Delta,$$

$$y_{A,t}=\left[egin{array}{c} p_{xA,t} \ p_{yA,t} \end{array}
ight]+w_{A,t} \qquad ext{noise process} \qquad egin{array}{c} ext{stochastic input process} \ V_{A}=\left[egin{array}{c} 0.01^2 & 0 & 0 & 0 \ 0 & 0.01^2 & 0 & 0 \ 0 & 0 & 0.04^2 & 0 \ 0 & 0 & 0 & 0.04^2 \end{array}
ight] \ W_{A}=0.05^2I \end{array}$$

Assumptions: white processes,
zero-mean,
known covariance matrices,

uncorrelated with each other and the initial state,

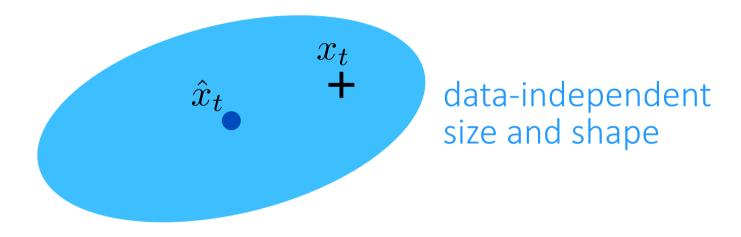
jointly Gaussian

KF provides an estimate \hat{x}_t of the system state variables x_t

KF provides an estimate \hat{x}_t of the system state variables x_t

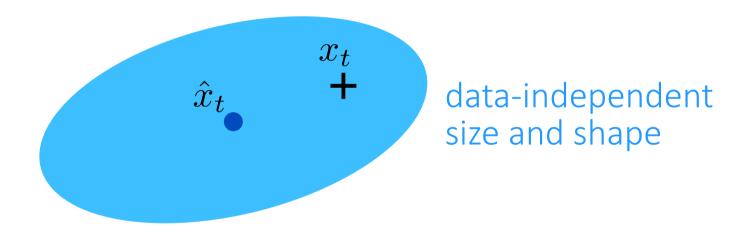
KF provides an estimate \hat{x}_t of the system state variables x_t

KF provides an estimate \hat{x}_t of the system state variables x_t



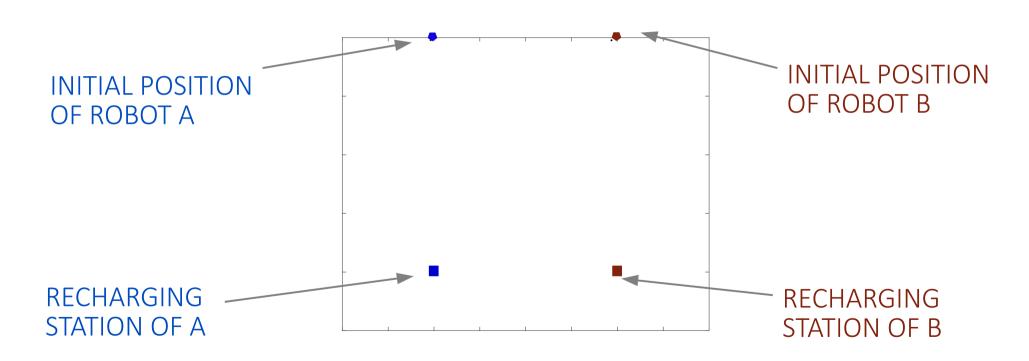
In the Gaussian setup, we can construct a 95% probability region

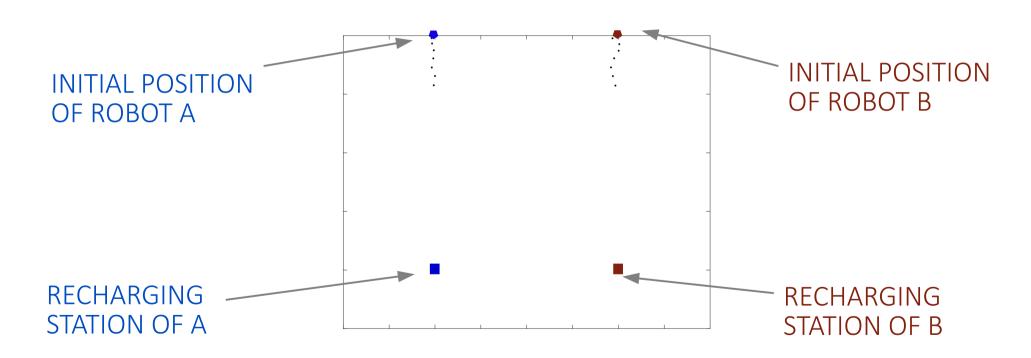
KF provides an estimate \hat{x}_t of the system state variables x_t

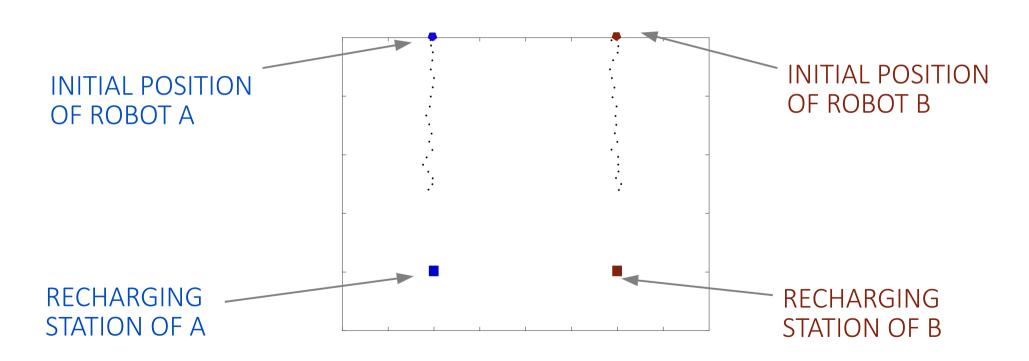


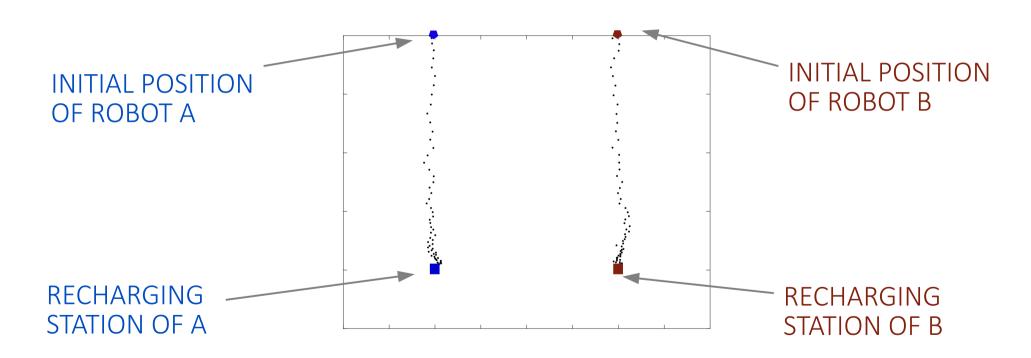
In the Gaussian setup, we can construct a 95% probability region

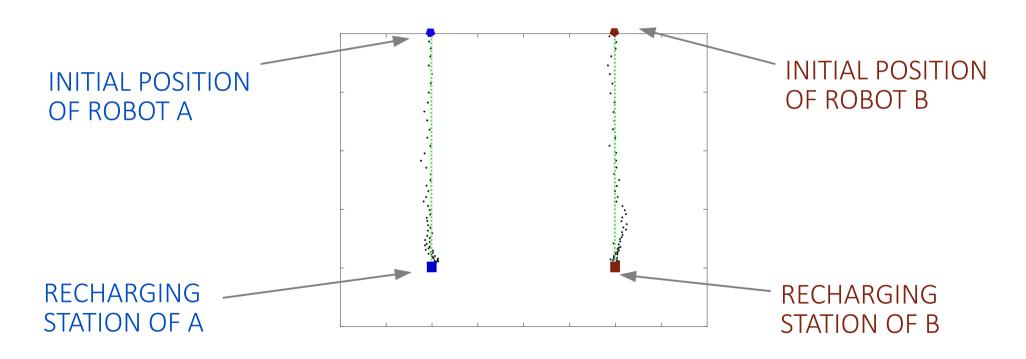
Is KF effective for our purpose?

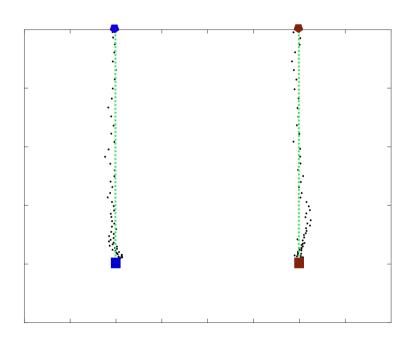


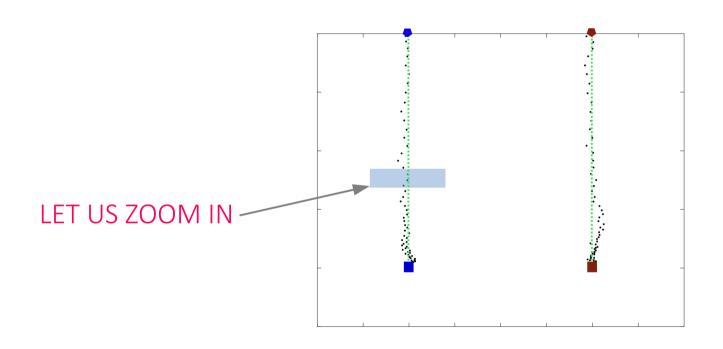




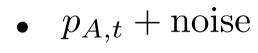




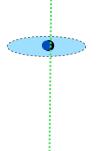


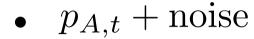


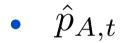
LET US LOOK AT OBSERVATIONS AT t=18, 19, 20



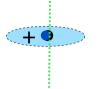
LET US LOOK AT OBSERVATIONS AT t = 18, 19, 20

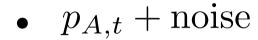


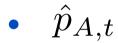


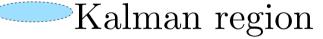


LET US LOOK AT OBSERVATIONS AT t = 18, 19, 20



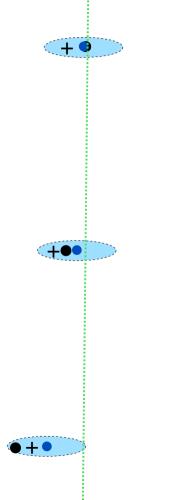


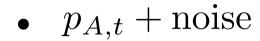




$$_{+}$$
 $p_{A,t}$

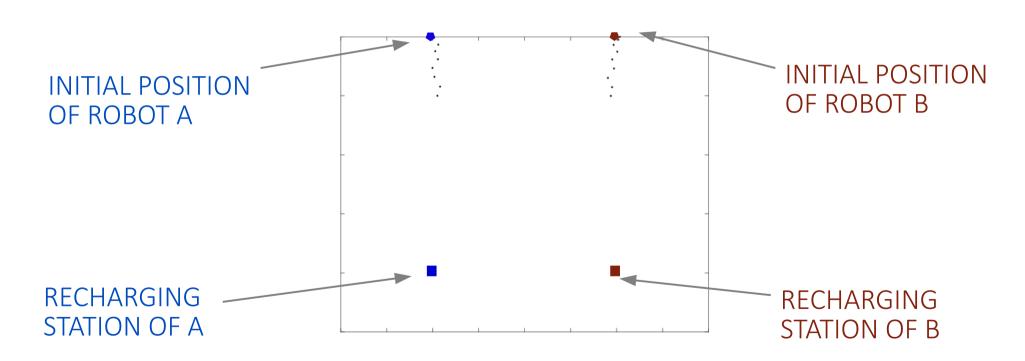
LET US LOOK AT OBSERVATIONS AT t = 18, 19, 20

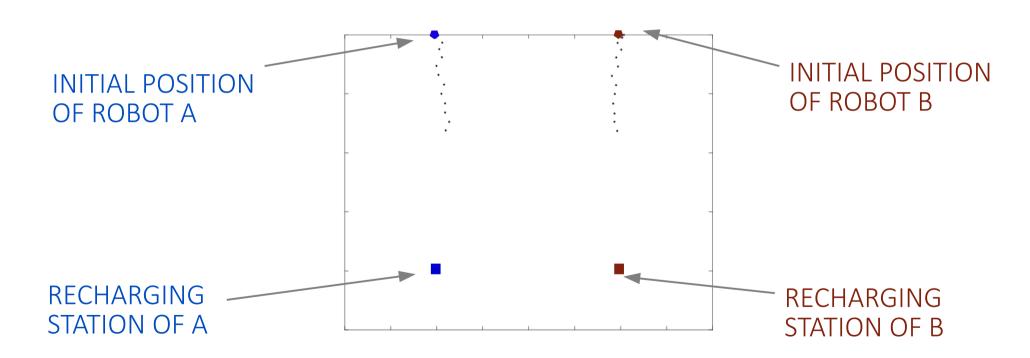


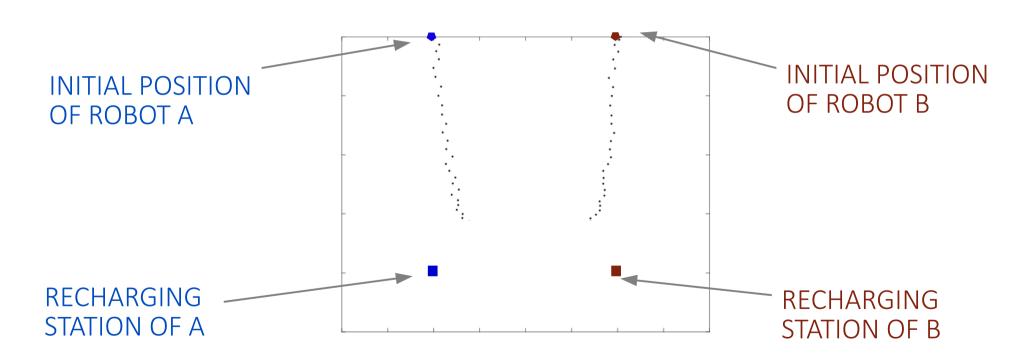


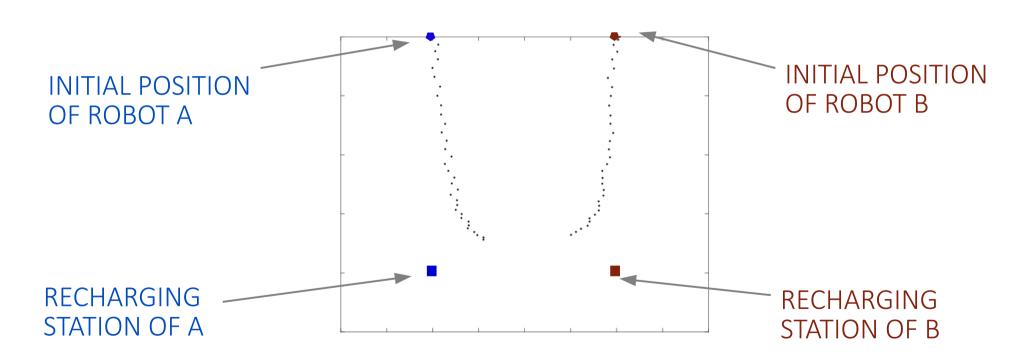
 $\hat{p}_{A,t}$

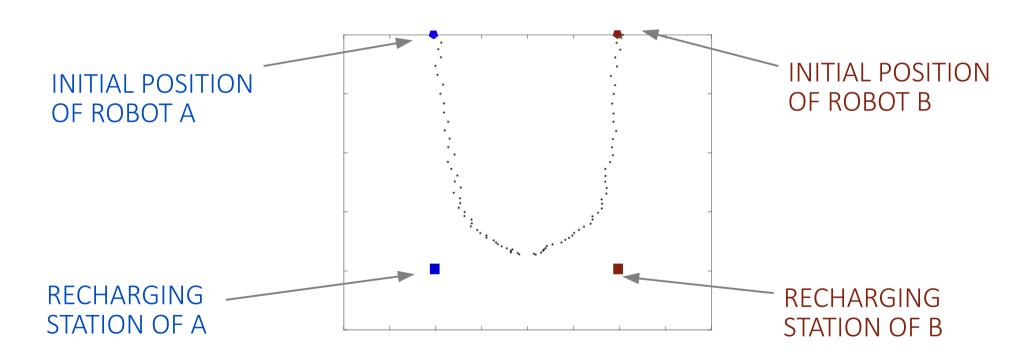
 $_{+}$ $p_{A,t}$

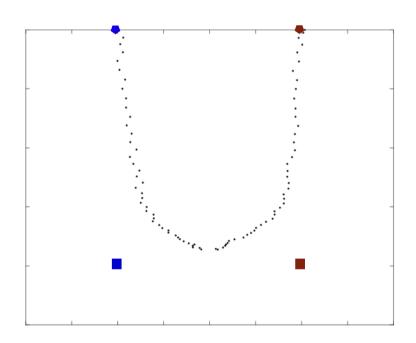




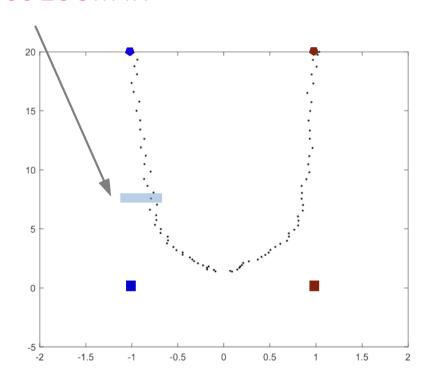


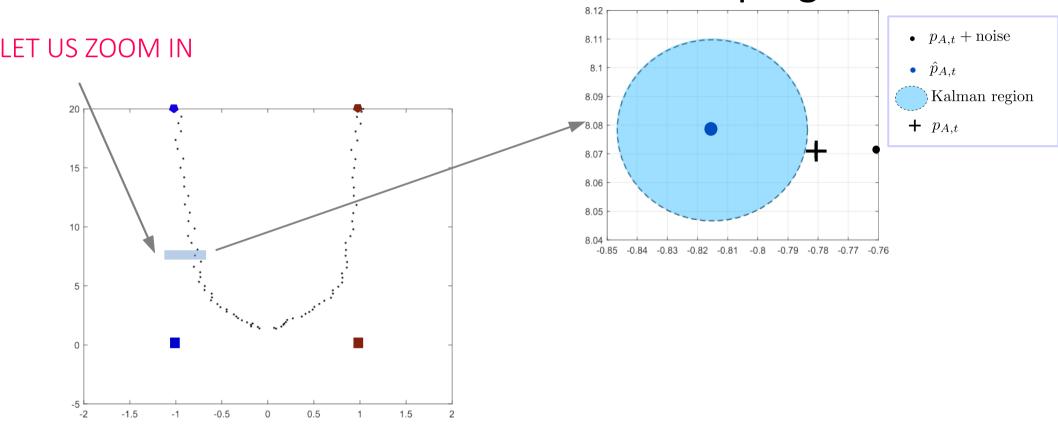


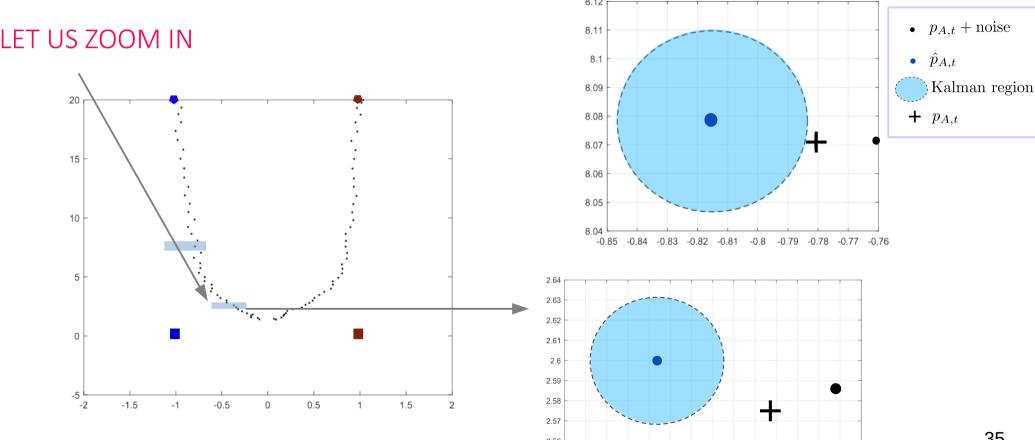




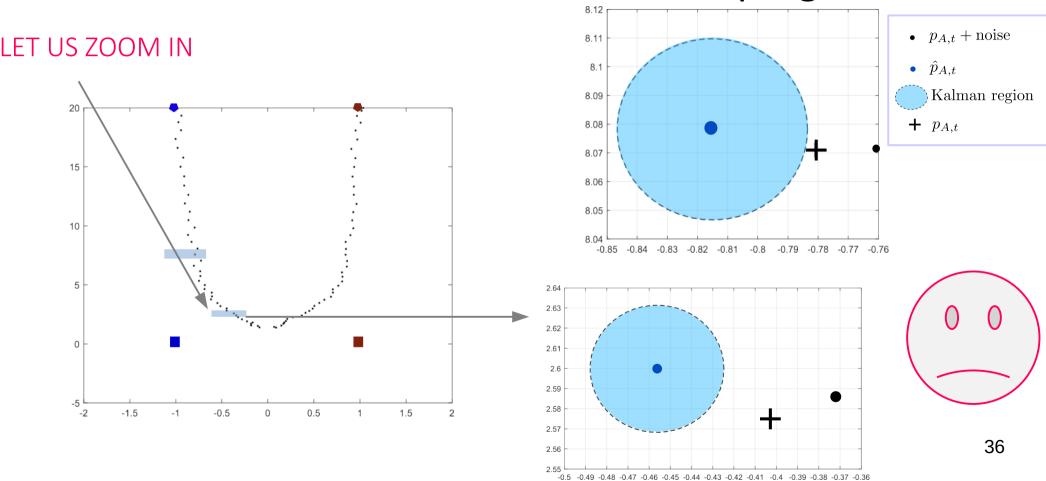
LET US ZOOM IN







-0.5 -0.49 -0.48 -0.47 -0.46 -0.45 -0.44 -0.43 -0.42 -0.41 -0.4 -0.39 -0.38 -0.37 -0.36



$$Y = X + W$$

$$Y = X + W$$

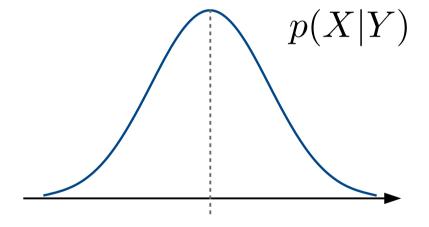
$$\mathcal{N}(0, \sigma_x^2) \mathcal{N}(0, \sigma_w^2)$$

$$Y = X + W$$

$$\mathcal{N}(0, \sigma_x^2) \mathcal{N}(0, \sigma_w^2)$$

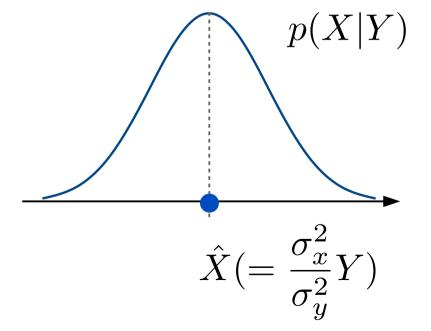
$$Y = X + W$$

$$\mathcal{N}(0, \sigma_x^2) \mathcal{N}(0, \sigma_w^2)$$



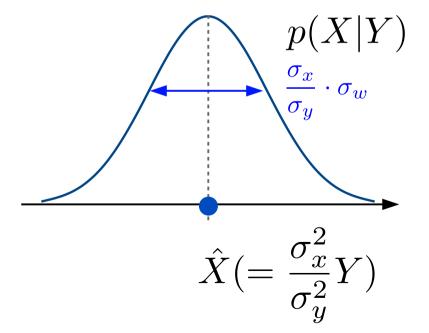
$$Y = X + W$$

$$\mathcal{N}(0, \sigma_x^2) \mathcal{N}(0, \sigma_w^2)$$



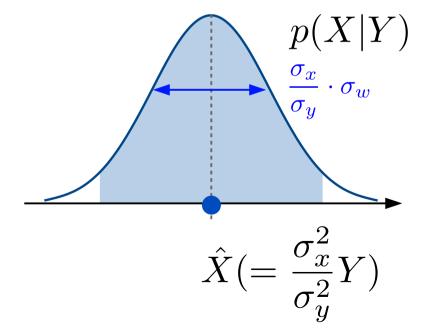
$$Y = X + W$$

$$\mathcal{N}(0, \sigma_x^2) \mathcal{N}(0, \sigma_w^2)$$

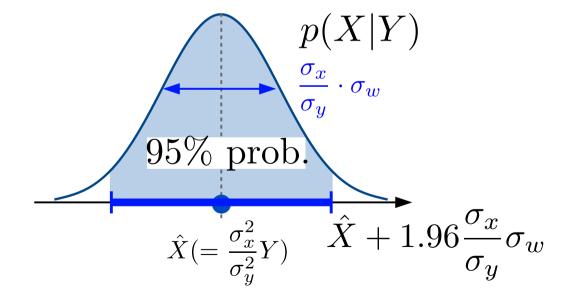


$$Y = X + W$$

$$\mathcal{N}(0, \sigma_x^2) \mathcal{N}(0, \sigma_w^2)$$

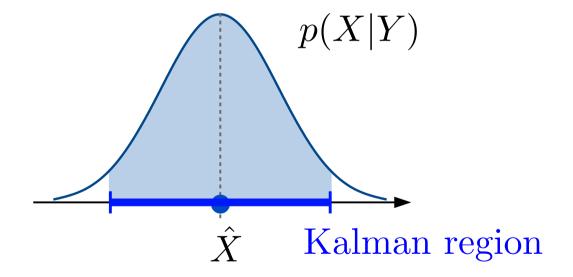


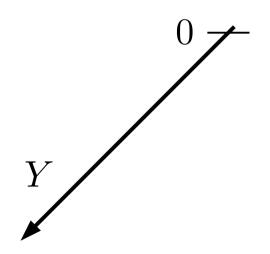
$$Y = X + W \\ \mathcal{N}(0, \sigma_x^2) \mathcal{N}(0, \sigma_w^2)$$

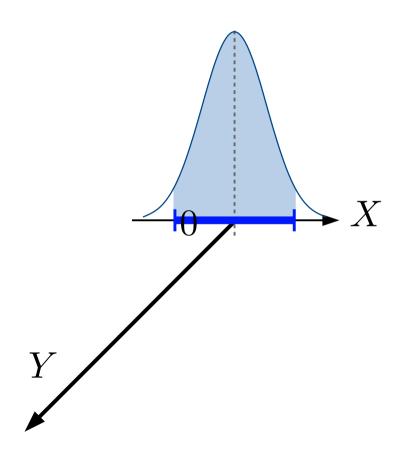


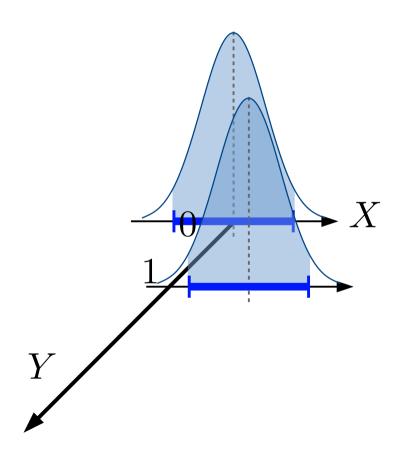
$$Y = X + W$$

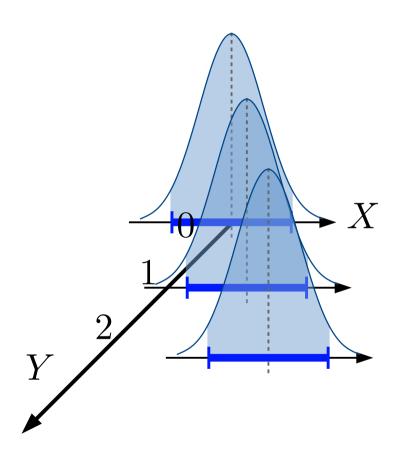
$$\mathcal{N}(0, \sigma_x^2) \mathcal{N}(0, \sigma_w^2)$$

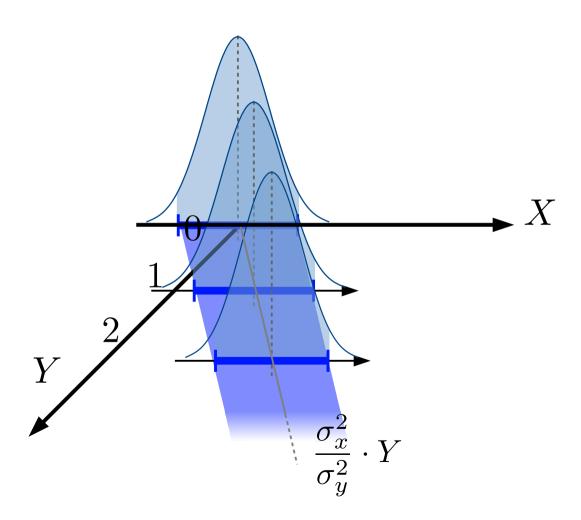


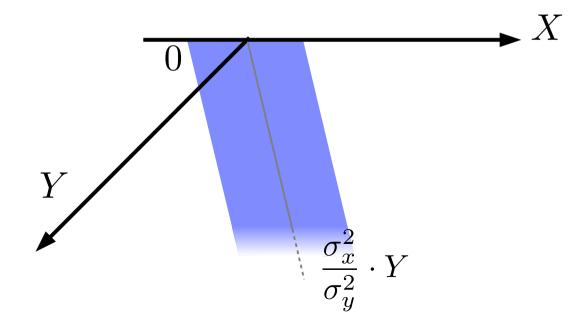


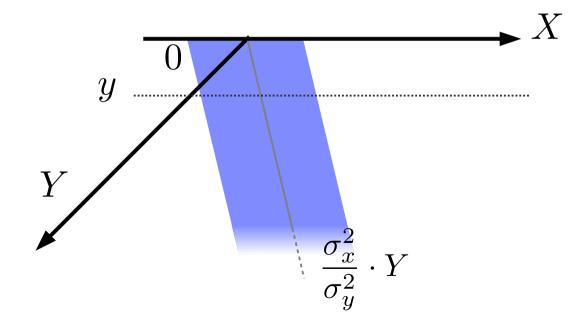


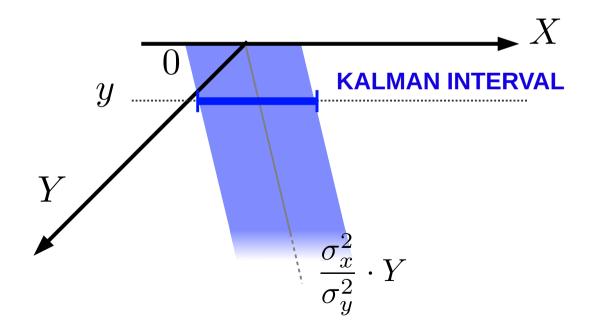


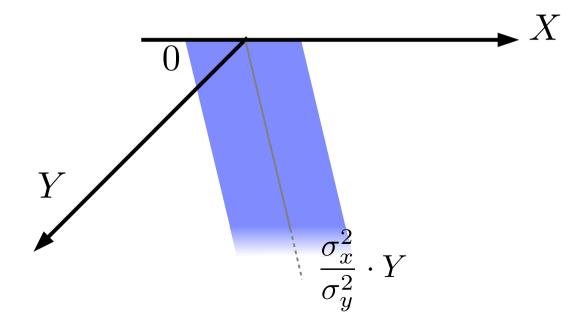


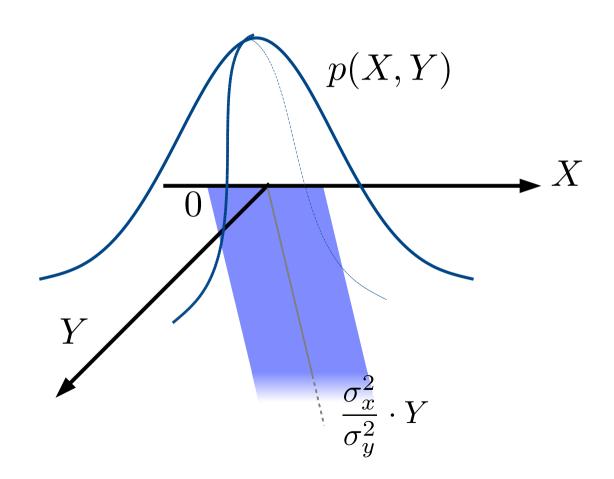


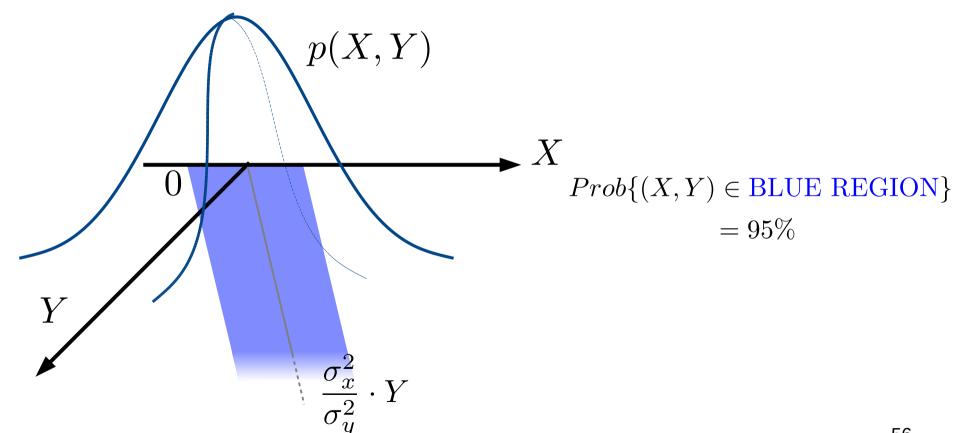


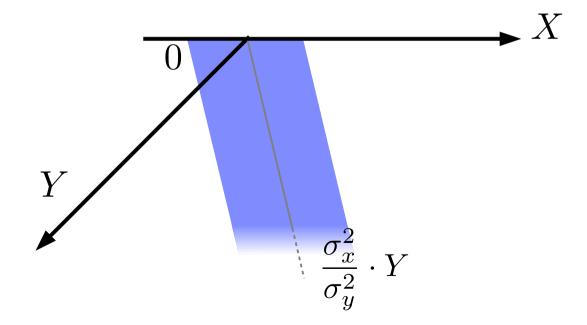


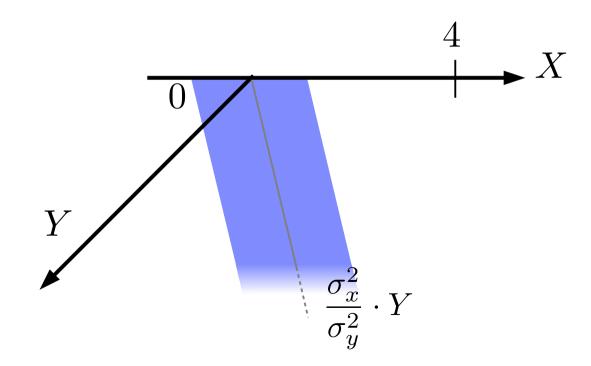


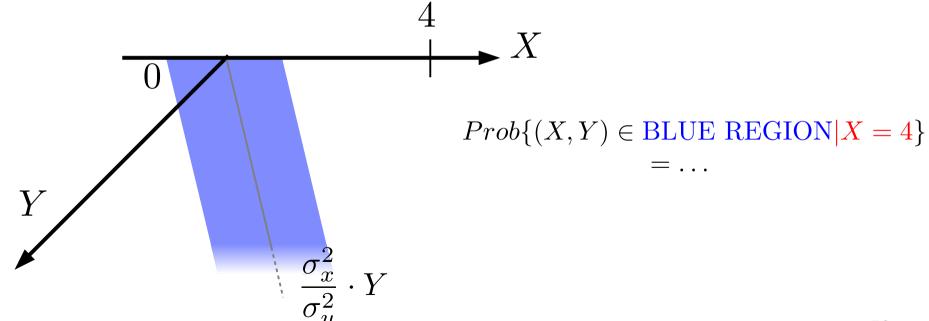


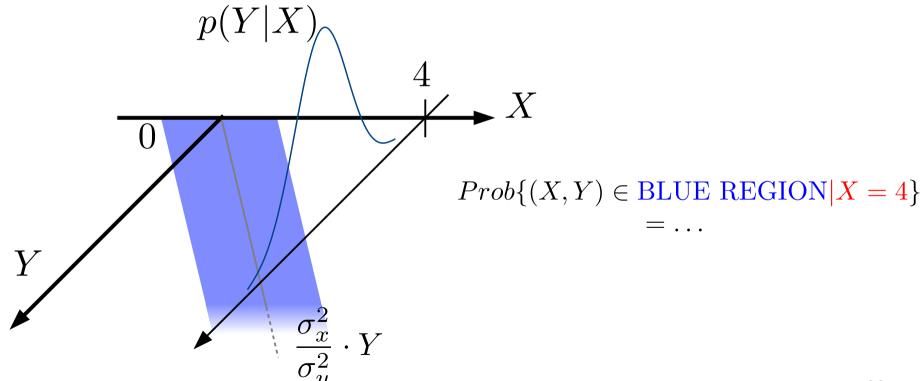


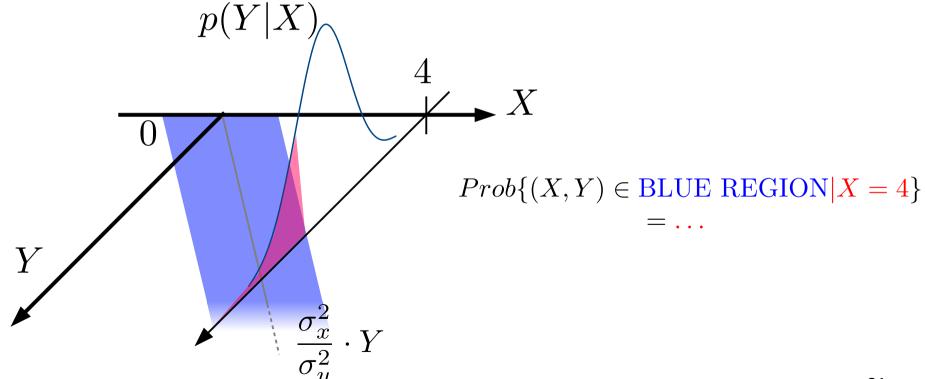


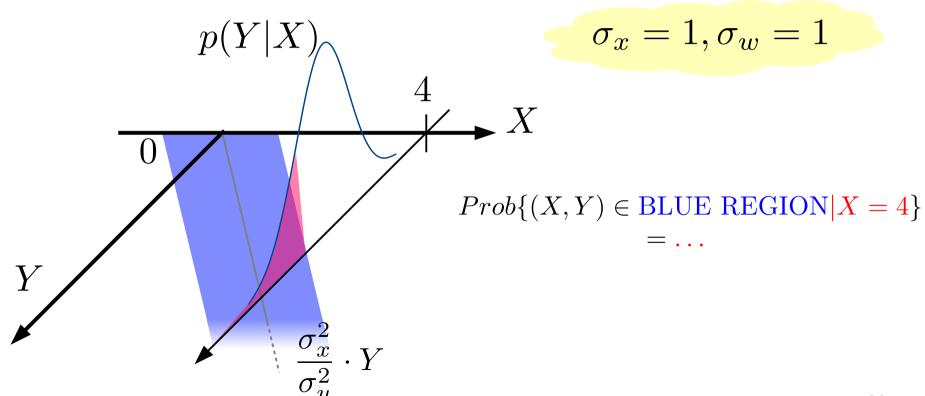


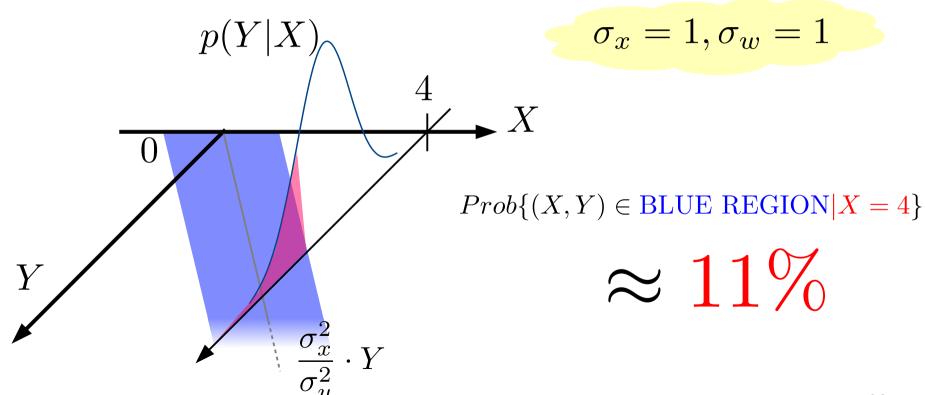


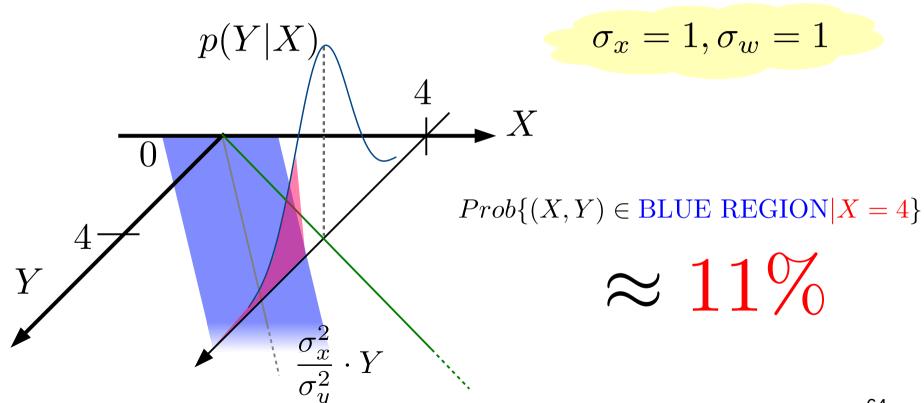




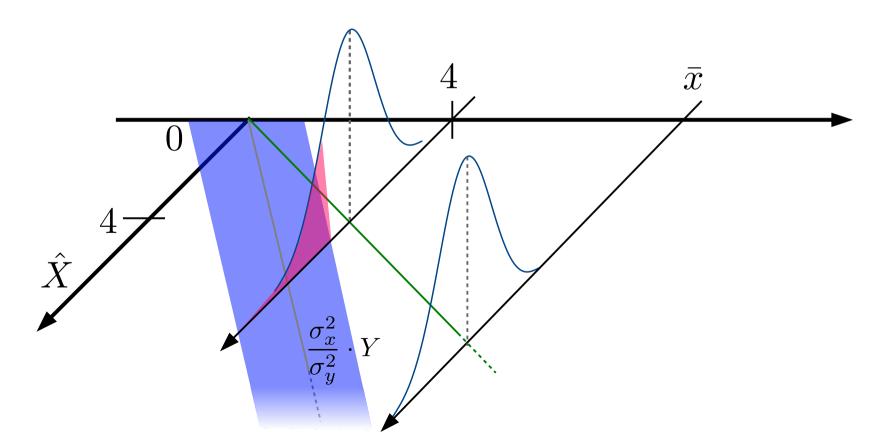




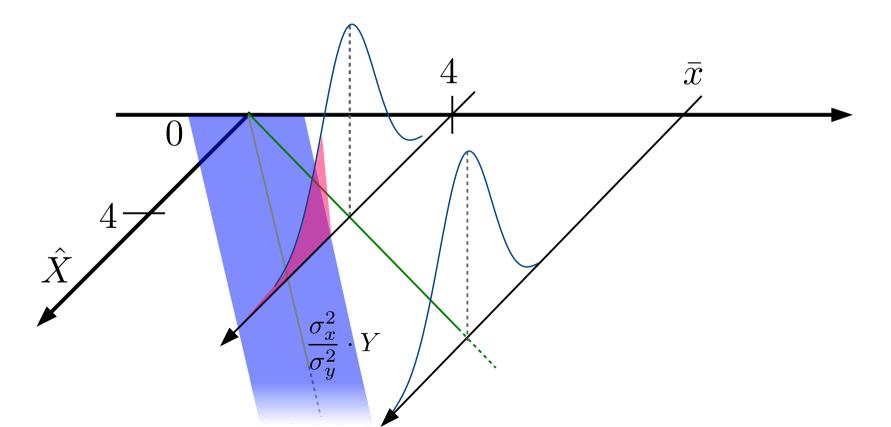




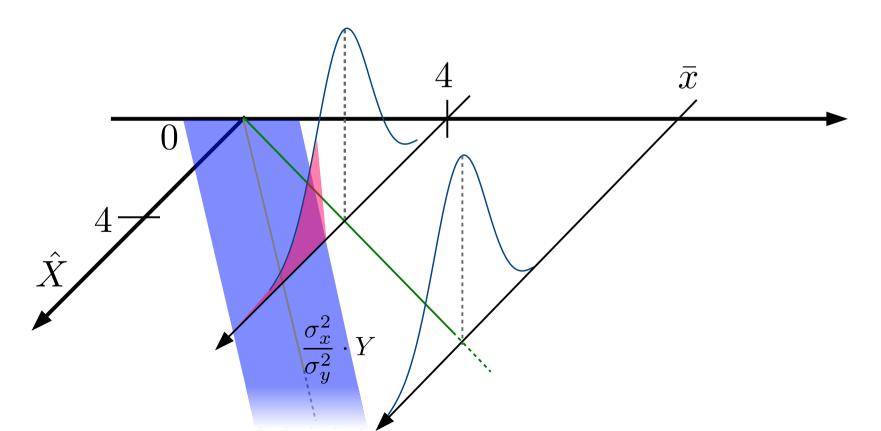
 $Prob\{(X,Y) \in \text{BLUE REGION}| X = \bar{x}\}$



 $\lim_{\bar{x}\to\infty} Prob\{(X,Y)\in \text{BLUE REGION}|\boldsymbol{X}=\bar{\boldsymbol{x}}\}$

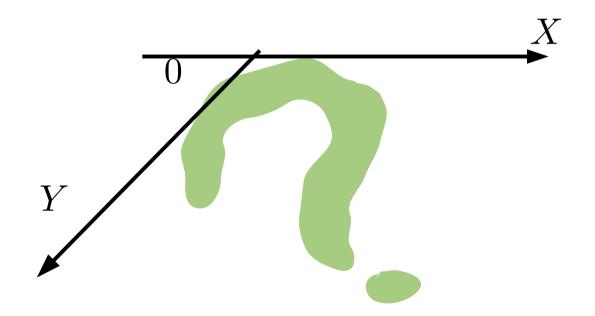


$$\lim_{\bar{x}\to\infty} Prob\{(X,Y)\in \text{BLUE REGION}|X=\bar{x}\}=0$$

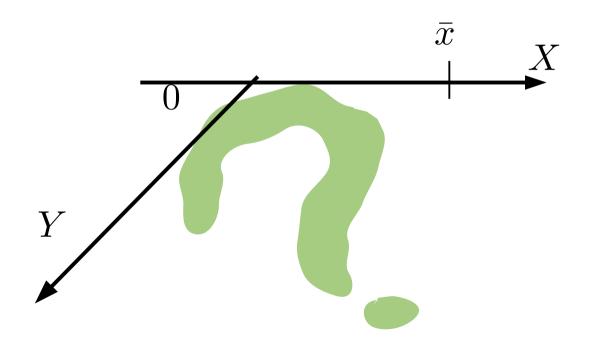


REGION

GREEN REGION

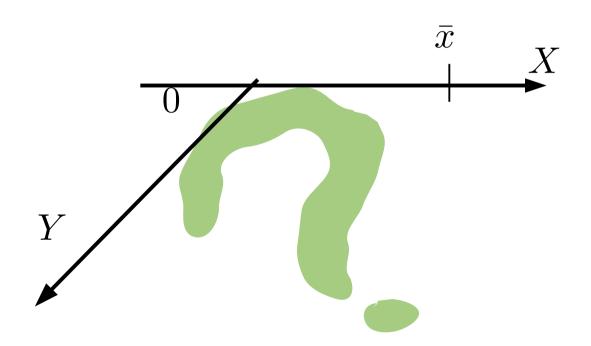


 $Prob\{(X,Y) \in GREEN \ REGION | X = \bar{x}\} = CONSTANT \ for all \ \bar{x}$



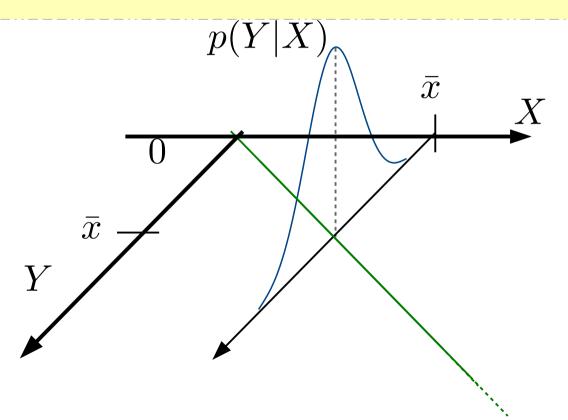
"STATE CONDITIONAL PROPERTY"

 $Prob\{(X,Y) \in GREEN \ REGION | X = \bar{x}\} = CONSTANT \ for all \ \bar{x}$

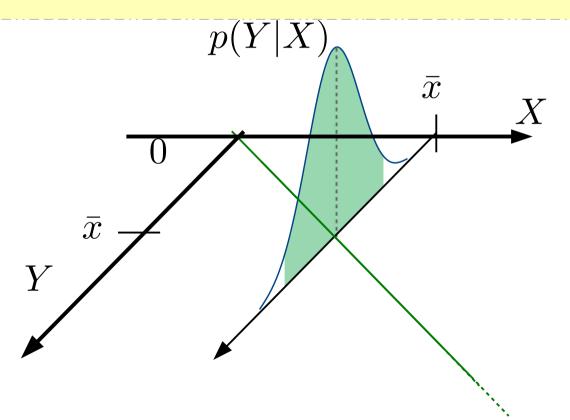


"STATE CONDITIONAL PROPERTY"

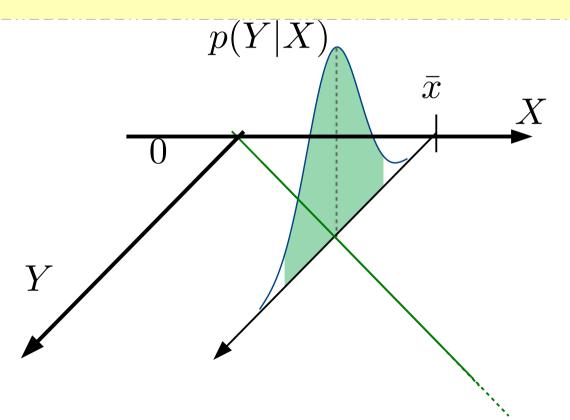
 $Prob\{(X,Y) \in GREEN \ REGION | X = \bar{x}\} = CONSTANT \ for all \ \bar{x}$



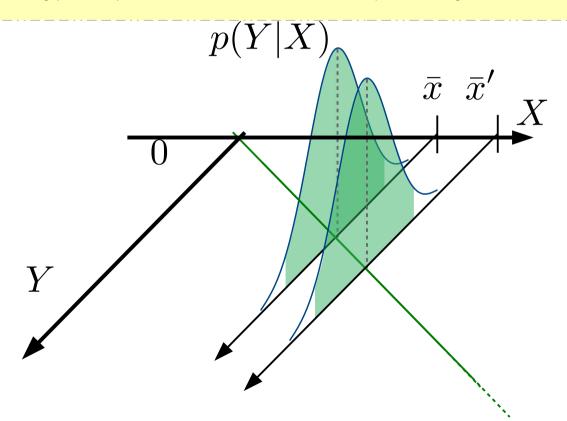
"STATE CONDITIONAL PROPERTY"



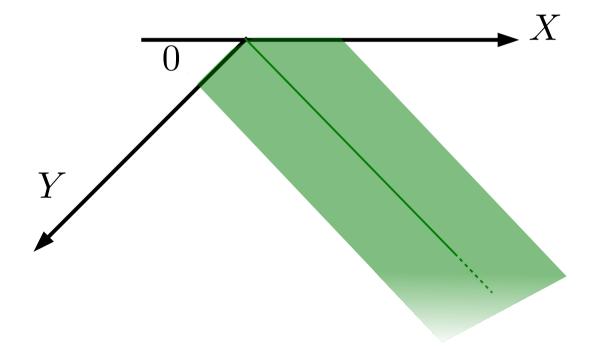
"STATE CONDITIONAL PROPERTY"



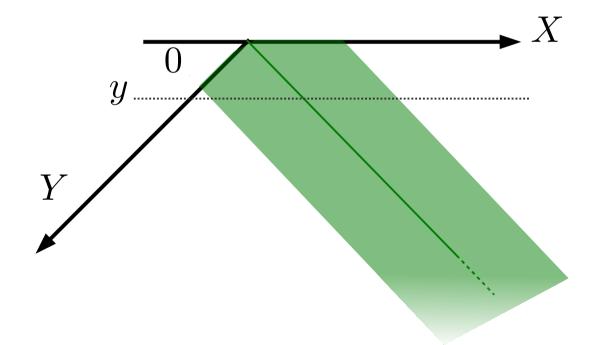
"STATE CONDITIONAL PROPERTY"



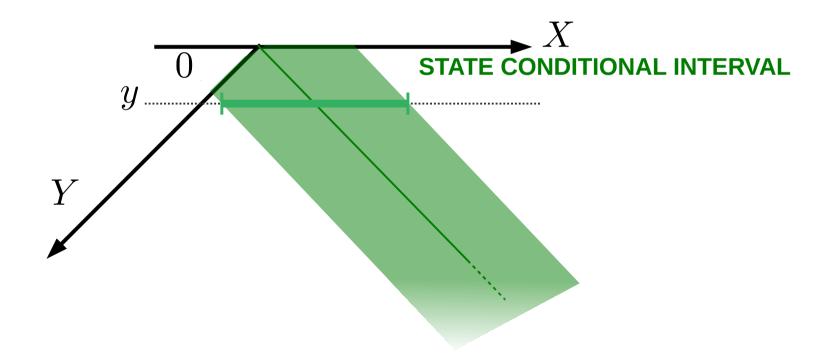
"STATE CONDITIONAL PROPERTY"

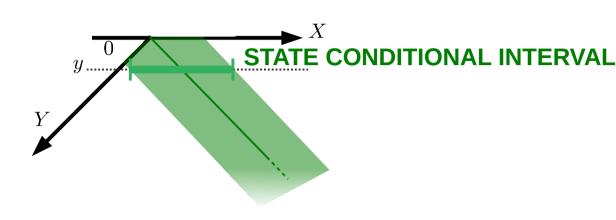


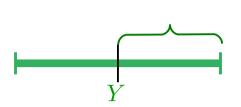
"STATE CONDITIONAL PROPERTY"



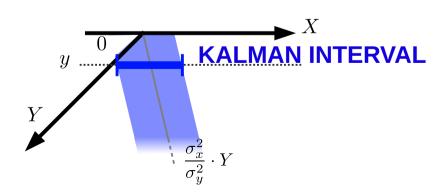
"STATE CONDITIONAL PROPERTY"

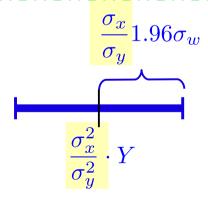






 $1.96\sigma_w$





DYNAMIC CASE
$$\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$$

DYNAMIC CASE
$$\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$$

DYNAMIC CASE
$$\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$$

$$\mathcal{X}_{t}^{SCF} = \left\{ x \in \mathbb{R}^{n} : (x - \hat{x}_{t}^{SCF})^{T} \Pi_{t}^{-1} (x - \hat{x}_{t}^{SCF}) \le \chi^{2}(\alpha, n) \right\},\,$$

DYNAMIC CASE
$$\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$$

$$\mathcal{X}_{t}^{SCF} = \left\{ x \in \mathbb{R}^{n} : (x - \hat{x}_{t}^{SCF})^{T} \Pi_{t}^{-1} (x - \hat{x}_{t}^{SCF}) \le \chi^{2}(\alpha, n) \right\},\,$$

$$\hat{x}_t^{SCF}$$

DYNAMIC CASE
$$\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$$

$$\mathcal{X}_{t}^{\text{SCF}} = \left\{ x \in \mathbb{R}^{n} : (x - \hat{x}_{t}^{SCF})^{T} \Pi_{t}^{-1} (x - \hat{x}_{t}^{SCF}) \le \chi^{2}(\alpha, n) \right\},$$

$$\hat{x}_t^{SCF}$$

$$\Pi_t$$

DYNAMIC CASE
$$\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$$

$$\mathcal{X}_{t}^{\text{SCF}} = \left\{ x \in \mathbb{R}^{n} : (x - \hat{x}_{t}^{SCF})^{T} \Pi_{t}^{-1} (x - \hat{x}_{t}^{SCF}) \le \chi^{2}(\alpha, n) \right\},$$

$$\hat{x}_t^{SCF} = (U_t A_t)^{-1} \hat{x}_t$$
 KALMAN-RELATED QUANTITIES QUANTITIES

$$\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$$

STATE CONDITIONAL ELLIPSOID

$$\mathcal{X}_{t}^{\text{SCF}} = \left\{ x \in \mathbb{R}^{n} : (x - \hat{x}_{t}^{SCF})^{T} \Pi_{t}^{-1} (x - \hat{x}_{t}^{SCF}) \le \chi^{2}(\alpha, n) \right\},$$

 DATA-INDEPENDENT MATRIX

$$\hat{x}_t^{SCF} = (U_t A_t)^{-1} \hat{x}_t$$

$$\Pi_t = (U_t A_t)^{-1} P_t$$

KALMAN-RELATED QUANTITIES

$$\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$$

STATE CONDITIONAL ELLIPSOID

$$\mathcal{X}_{t}^{\text{SCF}} = \left\{ x \in \mathbb{R}^{n} : (x - \hat{x}_{t}^{SCF})^{T} \Pi_{t}^{-1} (x - \hat{x}_{t}^{SCF}) \le \chi^{2}(\alpha, n) \right\},$$

- DATA-INDEPENDENT MATRIX
- CAN BE COMPUTED RECURSIVELY

$$\hat{x}_t^{SCF} = (U_t A_t)^{-1} \hat{x}_t$$

$$\Pi_t = (U_t A_t)^{-1} P_t$$

KALMAN-RELATED QUANTITIES

Pseudocode: SCF initialization

- Set the probability level $\alpha \in (0,1)$
- Let
 - $\star U_0 A_0 \leftarrow 0$
 - $\star \hat{x}_0^{\text{KF}} \leftarrow 0, P_0 \leftarrow \Gamma \text{ (KF initialization)}$ $\star F^b \leftarrow \Gamma F^\top \Gamma^{-1} \text{ (backward matrix)}$

Pseudocode: computation of $\mathcal{X}_{r}^{\text{SCF}}$

For t = 1, 2, ...

- Read new measurement y_t
- Update KF:

$$\begin{array}{l}
\star \ K_{t} \leftarrow (FP_{t-1}F^{\top} + V)H^{\top}(W + H(FP_{t-1}F^{\top} + V)H^{\top})^{-1} \\
\star \ \hat{x}_{t}^{KF} \leftarrow F\hat{x}_{t-1}^{KF} + K_{t}(y_{t} - HF\hat{x}_{t-1}^{KF})
\end{array}$$

$$\star \hat{x}_{t-1}^{KF} \leftarrow F \hat{x}_{t-1}^{KF} + K_t (y_t - HF \hat{x}_{t-1}^{KF})$$

$$\star P_t \leftarrow FP_{t-1}F^\top + V - K_t(W + H(FP_{t-1}F^\top + V)H^\top)K_t^\top$$

• Update the ratio matrix:

$$\star U_t A_t \leftarrow F(U_{t-1} A_{t-1}) F^b + K_t (H - HF(U_{t-1} A_{t-1}) F^b)$$

- If t > n
 - Compute¹³

$$\star \hat{x}_t \leftarrow (U_t A_t)^{-1} \hat{x}_t^{KF}$$

$$\star \hat{x}_t \leftarrow (U_t A_t)^{-1} \hat{x}_t^{KF}$$

$$\star \Pi_t \leftarrow (U_t A_t)^{-1} P_t$$

*
$$\mathcal{X}_t^{\text{SCF}} \leftarrow \left\{ x \in \mathbb{R}^n : (x - \hat{x}_t)^\top \Pi_t^{-1}(x - \hat{x}_t) \leq \chi^2(\alpha, n) \right\}$$
, where $\chi^2(\alpha, n)$ is the quantile at probability α of the Chi-square distribution with n degrees of freedom

- Output: $\mathcal{X}_t^{\text{SCF}}$

Pseudocode: SCF initialization

- Set the probability level $\alpha \in (0,1)$
- Let

- * $U_0A_0 \leftarrow 0$ * $\hat{x}_0^{\text{KF}} \leftarrow 0, P_0 \leftarrow \Gamma$ (KF initialization) * $F^b \leftarrow \Gamma F^\top \Gamma^{-1}$ (backward matrix)

Pseudocode: computation of $\mathcal{X}_{r}^{\text{SCF}}$

For t = 1, 2, ...

- Read new measurement y_t
- Update KF:

$$\begin{array}{l}
\star \ K_{t} \leftarrow (FP_{t-1}F^{\top} + V)H^{\top}(W + H(FP_{t-1}F^{\top} + V)H^{\top})^{-1} \\
\star \ \hat{x}_{t}^{KF} \leftarrow F\hat{x}_{t-1}^{KF} + K_{t}(y_{t} - HF\hat{x}_{t-1}^{KF})
\end{array}$$

$$\hat{x}_{t}^{KF} \leftarrow F\hat{x}_{t-1}^{KF} + K_{t}(y_{t} - HF\hat{x}_{t-1}^{KF})$$

$$\star \ P_{t} \leftarrow FP_{t-1}F^{\top} + V - K_{t}(W + H(FP_{t-1}F^{\top} + V)H^{\top})K_{t}^{\top}$$

• Update the ratio matrix:

*
$$U_t A_t \leftarrow F(U_{t-1} A_{t-1}) F^b + K_t (H - HF(U_{t-1} A_{t-1}) F^b)$$

- If t > n
 - Compute¹³

$$\star \hat{x}_t \leftarrow (U_t A_t)^{-1} \hat{x}_t^{KI}$$

$$\star \hat{x}_t \leftarrow (U_t A_t)^{-1} \hat{x}_t^{KF}$$

$$\star \Pi_t \leftarrow (U_t A_t)^{-1} P_t$$

*
$$\mathcal{X}_t^{\text{SCF}} \leftarrow \left\{ x \in \mathbb{R}^n : (x - \hat{x}_t)^\top \Pi_t^{-1}(x - \hat{x}_t) \leq \chi^2(\alpha, n) \right\}$$
, where $\chi^2(\alpha, n)$ is the quantile at probability α of the Chi-square distribution with n degrees of freedom

- Output: $\mathcal{X}_t^{\text{SCF}}$

$$\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$$

STATE CONDITIONAL ELLIPSOID

$$\mathcal{X}_{t}^{\text{SCF}} = \left\{ x \in \mathbb{R}^{n} : (x - \hat{x}_{t}^{SCF})^{T} \Pi_{t}^{-1} (x - \hat{x}_{t}^{SCF}) \le \chi^{2}(\alpha, n) \right\},$$

- DATA-INDEPENDENT MATRIX
- CAN BE COMPUTED RECURSIVELY

$$\hat{x}_t^{SCF} = (U_t A_t)^{-1} \hat{x}_t$$

$$\Pi_t = (U_t A_t)^{-1} P_t$$

KALMAN-RELATED QUANTITIES

 $(U_t A_t)^{-1}$ depends on data richness

$$\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$$

STATE CONDITIONAL ELLIPSOID

$$\mathcal{X}_{t}^{\text{SCF}} = \left\{ x \in \mathbb{R}^{n} : (x - \hat{x}_{t}^{SCF})^{T} \Pi_{t}^{-1} (x - \hat{x}_{t}^{SCF}) \le \chi^{2}(\alpha, n) \right\},$$

- DATA-INDEPENDENT MATRIX
- CAN BE COMPUTED RECURSIVELY

$$\hat{x}_t^{SCF} = (U_t A_t)^{-1} \hat{x}_t$$

$$\Pi_t = (U_t A_t)^{-1} P_t$$

KALMAN-RELATED QUANTITIES

 $(U_t A_t)^{-1}$ depends on data richness

MAIN INGREDIENTS FOR THE DERIVATION:

• Hilbert Projection Theorem + constraints

$$\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$$

STATE CONDITIONAL ELLIPSOID

$$\mathcal{X}_{t}^{\text{SCF}} = \left\{ x \in \mathbb{R}^{n} : (x - \hat{x}_{t}^{SCF})^{T} \Pi_{t}^{-1} (x - \hat{x}_{t}^{SCF}) \le \chi^{2}(\alpha, n) \right\},$$

- DATA-INDEPENDENT MATRIX
- CAN BE COMPUTED RECURSIVELY

$$\hat{x}_t^{SCF} = (U_t A_t)^{-1} \hat{x}_t$$

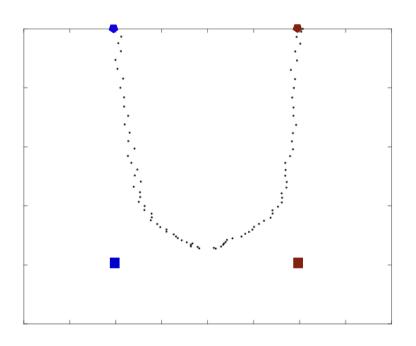
$$\Pi_t = (U_t A_t)^{-1} P_t$$

KALMAN-RELATED QUANTITIES

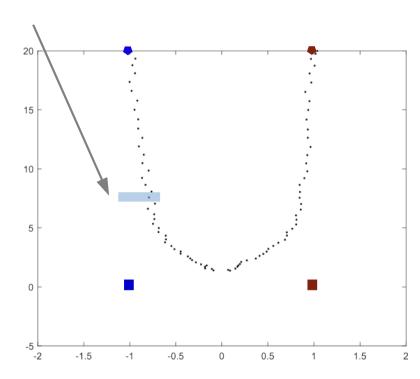
 $(U_t A_t)^{-1}$ depends on data richness

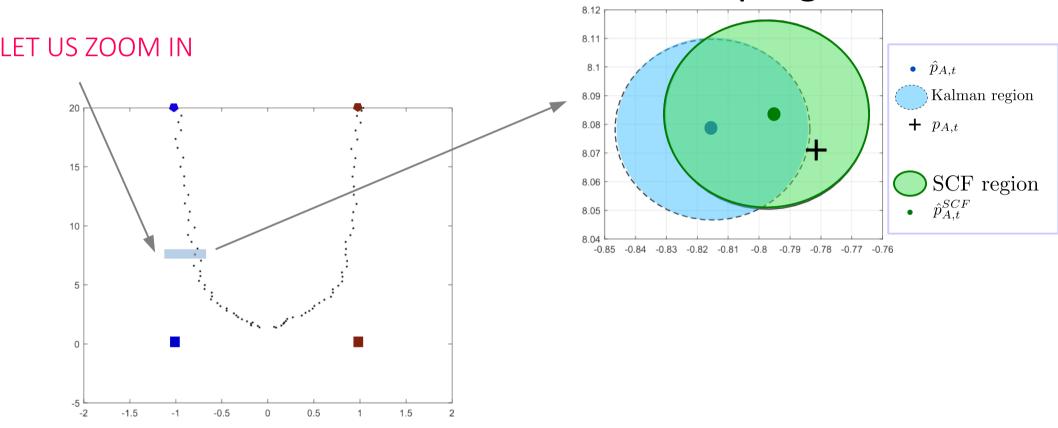
MAIN INGREDIENTS FOR THE DERIVATION:

- Hilbert Projection Theorem + constraints
- Reformulating $\begin{cases} x_{t+1} = Fx_t + v_t \\ y_t = Hx_t + w_t \end{cases}$ as Backward Markov Process

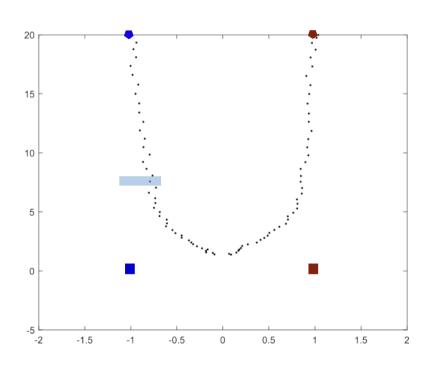


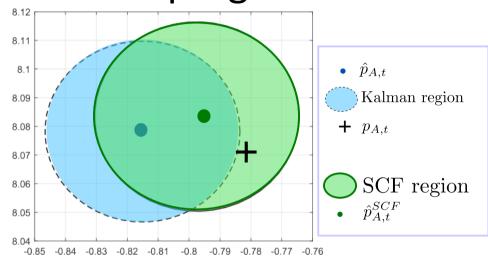
LET US ZOOM IN

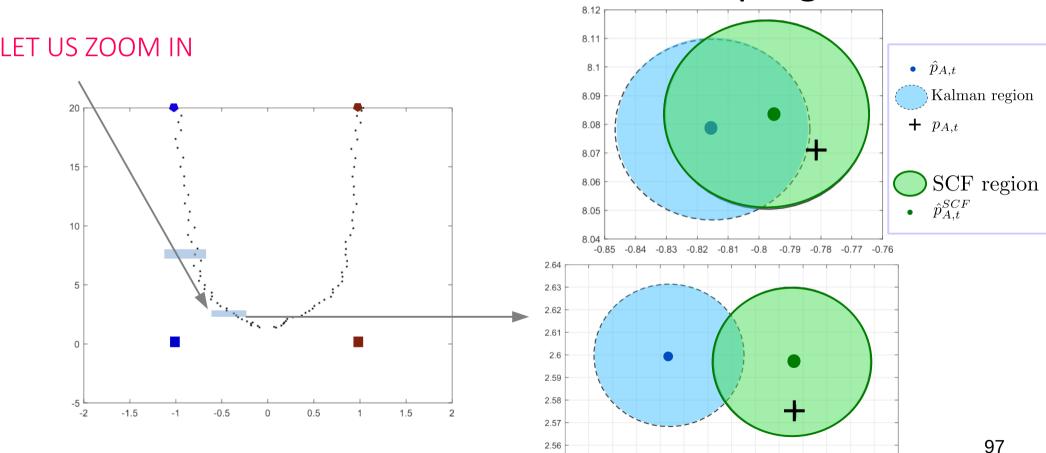




LET US ZOOM IN







-0.5 -0.49 -0.48 -0.47 -0.46 -0.45 -0.44 -0.43 -0.42 -0.41 -0.4 -0.39 -0.38 -0.37 -0.36

• In many filtering (or prediction or smoothing problems) some values of the states are more important than others.

- In many filtering (or prediction or smoothing problems) some values of the states are more important than others.
- In these cases, a desirable property is that the true state is included in the constructed regions with the desired probability, regardless of its value (STATE CONDITIONAL PROPERTY).

- In many filtering (or prediction or smoothing problems)
 some values of the states are more important than others.
- In these cases, a desirable property is that the true state is included in the constructed regions with the desired probability, regardless of its value (STATE CONDITIONAL PROPERTY).
- Kalman regions do not satisfy the STATE CONDITIONAL PROPERTY.

- In many filtering (or prediction or smoothing problems)
 some values of the states are more important than others.
- In these cases, a desirable property is that the true state is included in the constructed regions with the desired probability, regardless of its value (STATE CONDITIONAL PROPERTY).
- Kalman regions do not satisfy the STATE CONDITIONAL PROPERTY.
- The STATE CONDITIONAL PROPERTY is secured by a new technique, here called the "State Conditional Filter".

- In many filtering (or prediction or smoothing problems) some values of the states are more important than others.
- In these cases, a desirable property is that the true state is included in the constructed regions with the desired probability, regardless of its value (STATE CONDITIONAL PROPERTY).
- Kalman regions do not satisfy the STATE CONDITIONAL PROPERTY.
- The STATE CONDITIONAL PROPERTY is secured by a new technique, here called the "State Conditional Filter".

OPTIMALITY

OPTIMALITY

• We know that there is no algorithm with the STATE CONDITIONAL PROPERTY that delivers regions that are **always strictly** smaller than those that we deliver. (Proof in the paper)

OPTIMALITY

 We know that there is no algorithm with the STATE CONDITIONAL PROPERTY that delivers regions that are always strictly smaller than those that we deliver. (Proof in the paper)

GENERALITY AND ROBUSTNESS

• The paradigm is general, but the working assumptions are limiting.

OPTIMALITY

 We know that there is no algorithm with the STATE CONDITIONAL PROPERTY that delivers regions that are always strictly smaller than those that we deliver. (Proof in the paper)

GENERALITY AND ROBUSTNESS

- The paradigm is general, but the working assumptions are limiting.
- There are some preliminary (unpublished) studies results regarding robustness against misspecifications.

OPTIMALITY

• We know that there is no algorithm with the STATE CONDITIONAL PROPERTY that delivers regions that are **always strictly** smaller than those that we deliver. (Proof in the paper)

GENERALITY AND ROBUSTNESS

- The paradigm is general, but the working assumptions are limiting.
- There are some preliminary (unpublished) studies results regarding robustness against misspecifications.

APPLICATION-DRIVEN TAILORING

• Sometimes you know a priori which states are important/unimportant/impossible.

OPTIMALITY

• We know that there is no algorithm with the STATE CONDITIONAL PROPERTY that delivers regions that are **always strictly** smaller than those that we deliver. (Proof in the paper)

GENERALITY AND ROBUSTNESS

- The paradigm is general, but the working assumptions are limiting.
- There are some preliminary (unpublished) studies results regarding robustness against misspecifications.

APPLICATION-DRIVEN TAILORING

• Sometimes you know a priori which states are important/unimportant/impossible.

OTHER DIRECTIONS

Distributed setup, adversarial setup, ...

THANK YOU

Open problems and pending questions:

OPTIMALITY

• We know that there is no algorithm with the STATE CONDITIONAL PROPERTY that delivers regions that are **always strictly** smaller than those that we deliver. (Proof in the paper)

GENERALITY AND ROBUSTNESS

- The paradigm is general, but the working assumptions are limiting.
- There are some preliminary (unpublished) studies results regarding robustness against misspecifications.

APPLICATION-DRIVEN TAILORING

• Sometimes you know a priori which states are important/unimportant/impossible.

OTHER DIRECTIONS

• Distributed setup, adversarial setup, ...