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Summary

This article reviews some kernel-based approaches for
system identification and learning-based control. In the

first part, the presentation moves from classic linear system
identification, to nonlinear system identification in Repro-
ducing Kernel Hilbert Spaces. The kernel-based regulariza-
tion methods are illustrated in a tutorial manner. Moreover,
the probabilistic (Bayesian) interpretation of kernels is also
introduced, with focus on the Gaussian processes (GPs)
framework, a special case of great practical interest. The
second part touches upon the problem of quantifying the
uncertainty of the estimated dynamic systems from different
points of views (deterministic, probabilistic, probabilistic and
robust). The final part of the article surveys the applications
of GPs in robust control, adaptive control, model predictive
control, feedback linearization, and reinforcement learning.
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Three GP-based algorithms (PILCO, Black-Drops, and MC-
PILCO) are tested on the swing-up task for a simulated cart-
pole and experiments on a real Furuta pendulum conclude
the article.

T
he commonly adopted route to control a dynamic
system, and make it follow the desired behavior,
consists of two steps. First, a model of the system
is learned from input-output data, a task known
as system identification in the engineering liter-

ature. Here, an important point is not only to derive a
nominal model of the plant but also confidence bounds
around it. The information coming from the first step is
then exploited to design a controller that should guarantee
a certain performance also under the uncertainty affecting
the model. This classical way to control dynamic systems
has recently been the subject of new intense research,
thanks to an interesting cross-fertilization with the field of
machine learning. New system identification and control
techniques have been developed with links to function
estimation and mathematical foundations in Reproducing
Kernel Hilbert Spaces and GPs. This has become known
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as the Gaussian regression (kernel-based) approach to system
identification and control. It is the purpose of this article to
give an overview of this development.
The goal of system identification is to build mathematical
models of dynamic systems from input-output measure-
ments. This term was introduced in 1953 by Lotfi Zadeh
and, starting from the seminal article [1], the discipline
has become a fundamental subfield of automatic control
with many years of theoretical achievements and a re-
markable impact on engineering applications. There are
many textbooks available on the subject [2], [3] that de-
scribe identification techniques based on paradigms from
mathematical statistics. In particular, the classical approach
relies on prediction error methods (PEM) [4] and the
concept of discrete model order. Different architectures are
postulated, each of them parametrized by an unknown
finite-dimensional parameter vector θ. If the true system
has the postulated model structure and the noise is Gaus-
sian, this procedure is asymptotically optimal: it cannot
be outperformed by any other unbiased estimator as the
number of measurements grows to infinity [5]. However,
a crucial point here is the selection of the most adequate
model structure. In this classical framework, complexity
of the different structures is typically connected with the
number of their unknown parameters. Determining the
dimension of θ then involves a tradeoff between bias and
variance: the model should be flexible enough to describe
the experimental data, but not too complex to be fooled
by noise. This can be carried out by using complexity
measures, such as Akaike’s information criterion (AIC) [6],
the Bayesian formulation (BIC) [7], minimum description
lenght (MDL) [8], [9] or cross validation (CV) [10], [11].
A graphical illustration is in the left part of Fig. 1. In the
linear and time-invariant setting, the model structures M
depicted could, for example, represent finite-dimensional
impulse response (FIR) models. Each FIR of length d is
associated to a d-dimensional parameter vector θ whose
components are the IR coefficients. Other fundamental
structures are the rational transfer functions where the
Laplace transform of the IR is modeled as the ratio of
two polynomials with unknown coefficients contained in
θ. In both of these examples, as the dimension of θ goes
to infinity, the model becomes so complex that it can
approximate any kind of IR [12].
The alternative route to system identification overviewed
in this article is illustrated in the right part of Fig. 1.
Instead of postulating finite-dimensional models of in-
creasing complexity, the system is directly searched for in
a high-dimensional space. In the linear setting, the space
H can, for example, contain all the FIR models of fixed and
large dimension d. One could also set d = ∞ to obtain the
space with all the possible IRs. In this way, system identi-
fication becomes an ill-posed inverse problem in the sense
of Hadamard [13]: an infinite-dimensional object has to be

inferred from a finite set of input-output measurements.
The challenge is now to control model complexity without
necessarily reducing the model dimension. A powerful
way to restore well-posedness is to regularize the problem
by introducing a suitable ranking of possible solutions
over H. Among many different systems able to describe
the experimental data in a similar way, the one that most
reflects our expectations is selected. For instance, in the
estimation of linear and bounded-input bounded-output
(BIBO) systems, IRs that smoothly decay to zero should
be privileged. In the nonlinear setting, where stability
is a more delicate concept with several facets [14], [15],
[16], one could promote input-output relationships that
are smooth (similar inputs provide similar outputs) and
embed fading memory concepts (as the lag increases, past
inputs are expected to be less influent on the output).
Regularization techniques can be used to introduce the
desired ordering of solutions for inverse problems. In
particular, the scope of the regularizers is to include in
the estimation process useful information on the func-
tion/dynamic system to be reconstructed. In this survey,
we focus on Kernel-based methods, and their Bayesian
interpretation leading to GPs [17]. A fundamental feature
of this approach is that the space H and the ranking over it
(assigned by means of function norms) can be defined by
specifying a positive-semidefinite kernel. This is a map that
enjoys the same properties of the covariance function in
probability theory [18]. It induces a particular space, called
reproducing kernel Hilbert space (RKHS) [19], containing
functions whose properties are strictly related to those of
the kernel. For instance, absolutely integrable kernels are
especially useful for linear and BIBO dynamic systems,
since they induce RKHSs that are stable, that is, that
contain only absolutely integrable IRs [20].
Once the kernel is assigned, the system estimate can be ob-
tained as the solution of an optimization problem contain-
ing two competing terms: adherence to experimental data
and a penalty term accounting for the ranking induced by
the kernel. These two components have to be balanced by
the so-called hyperparameters that need to be tuned using
data. An important example is the regularization param-
eter (a positive scalar denoted by γ in the optimization
problem reported in the right part of Fig. 1), which can be
tuned in a continuous manner. Hence, it defines (in some
sense) a continuous-model order, enriching the system
identification problem with a whole new dimension. The
automatic selection of such hyperparameters has proved
to be a powerful and versatile approach, compared to the
classical rules of choosing model discrete orders [21], [20].
As already mentioned, kernel-based approaches also enjoy
an important stochastic interpretation where the ranking is
seen as the manifestation of a Bayesian prior placed over
a space of systems [22], [23], [24]. If the system is modeled
a priori as a (often zero-mean) Gaussian random field
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with covariance equal to the kernel, when data become
available, the kernel-based estimator provides its mini-
mum variance estimate. We will see that this has important
consequences for kernel selection, hyperparameters esti-
mation, and computation of the uncertainty affecting the
system estimate.
The key reason for the renewed interest of control com-
munity towards regularization has been the introduction of
new kernels/covariances that account for dynamic systems
features. A large variety is now available in the linear
setting [25], [26], [27], [28], [29]. They are derived in
deterministic settings, working also over the frequency
domain [30], [31], or in a stochastic framework (for ex-
ample, exploiting maximum entropy concepts [32], [33],
[34]). Furthermore, the theory of RKHSs of stable IRs has
been recently developed [35], [36], [37]. Many open issues
still remain in the nonlinear case, but powerful kernels are
available even in this context, for example, the Gaussian
and Matern kernel (common in machine learning literature
[22]) and the polynomial one, related to classical (trun-
cated) Volterra models [38], [39] which describe systems
through a large set of monomials [40], [41], [42], [43],
[44]. Their applications regarding, for example, mechan-
ical systems can be found in [45], [46], [47], [48], [49],
[50]. Kernels encode many basis functions in an implicit
way, maintaining the problem computationally tractable.
Like all the estimators, kernel-based estimators must be
accompanied by a rigorous evaluation of their error. In
general, error bounds can be obtained in deterministic [51]
or probabilistic setups [2], [3]. Probabilistic setups are par-
ticularly suitable to strike a satisfactory balance between
the conservatism of a bound and the risk of it being wrong.
Moreover, thanks to the already mentioned link between
kernels and Bayesian priors, it is possible to study the
error bounds in a fully Bayesian framework, where the
uncertain model is itself treated as a stochastic quantity
[52]. For Gaussian probabilities, such a Bayesian approach
is not only theoretically sound but also computationally
tractable, with a large impact on applications [22]. It should
however be noticed that the ensuing error bounds are
sensitive to the choice of the probabilistic description of
the uncertainty, a choice that is largely left to the user’s
discretion (not to say whim). Hence, a present challenge is
developing probabilistic approaches that are robust,in the
sense that they remain valid for large classes of probability
distributions (for example, all the distribution indexed by
some hyperparameters [53], [54]) and yet are informative
in spite of the large dimension of H. As we shall see, both
classic and recent system identification literature can be
a source of inspiration in the pursuit of this goal. The
building of mathematical models and uncertainty bounds
around them described above is an important step to con-
trol dynamic systems. Overall, this leads to the so-called
model-based control methods (they are opposed to direct

data-driven techniques that tune a controller belonging to
a given class, without the need for an identified model
of the system). In the last decade, great effort has been
devoted to the design of learning-based control combining
kernel-based methods/GPs with robust control for linear
systems [55], [56], [57], adaptive control [58], [59], feedback
linearization [60], [61], and model predictive control (MPC)
[62], [63], [64]. The prediction models that are inferred us-
ing machine learning techniques include other approaches
different from GPs, like deep neural networks (DNNs).
The advantage of using deep learning such as feedfor-
ward neural networks, convolutional neural networks, and
long short-term memory networks lies on the ability of
abstracting large volumes of data and enabling real-time
execution in a control loop. On the other hand, Gaussian
regression requires higher computational burden for larger
sets of data but provide uncertainty bounds around the
model that can be naturally incorporated into traditional
control frameworks. GPs are in fact used either to identify
the overall dynamics or to assess a residual model un-
certainty to be added to a known nominal model. More
recently, the GP framework has been adopted in model-
based reinforcement learning (RL) algorithms for control
purposes. It is known that RL is often not data efficient,
that is, it requires many trials to learn a particular task.
This makes RL methods often largely inapplicable to me-
chanical systems that quickly wear out. Typically, model-
based methods (that is, methods that learn a dynamics
model of the environment) are more apt to extract valu-
able information from experimental data than model-free
methods. Hence, they are more promising to increase data
efficiency. In [65], the authors have introduced a model-
based policy search method, called probabilistic inference
for learning control (PILCO), where a GP framework has
been employed to learn a probabilistic dynamical model
and to explicitly incorporate the model uncertainty into
the long-term planning. The predicted distributions are
approximated as Gaussians by using exact moment match-
ing, thus allowing policy evaluation in closed form and
analytic calculations of gradient for policy improvements.
PILCO has been shown to be able to cope efficiently with
little data and to improve learning from scratch in only a
few trials. Extensions of PILCO along different directions
have been provided in [66], [67], [68], [69], [70].
In light of this introduction, this article will be naturally
divided into three main parts. First, we will describe how
modern regularization theory may return accurate models
of linear and nonlinear dynamic systems. Then, we will
discuss how to complement them with informative (non-
asymptotic) uncertainty bounds. Then, we will see that
GPs (kernel technology) can be fruitfully exploited for
robust control purposes. Examples involving simulated
and real data will be included to describe the practical
implications of the methodology described.
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Algo Carè, Ruggero Carli, Alberto Dalla Libera,

Diego Romeres and Gianluigi Pillonetto

POC: G. Pillonetto (giapi@dei.unipd.it)

September 30, 2021

H

The commonly adopted route to control a dynamic system, and make it follow the desired
behaviour, consists of two steps. First, a model of the system is learnt from input-output data,2

a task known as system identification in the engineering literature. Here, an important point
is not only to derive a nominal model of the plant but also confidence bounds around it. The4

information coming from the first step is then exploited to design a controller that should
guarantee a certain performance also under the uncertainty affecting the model. This classical6

way to control dynamic systems has been recently subject of new intense research thanks to
an interesting cross-fertilization with the machine learning field. New system identification and8

control techniques have been developed with links to function estimation and mathematical
foundations in particular Hilbert spaces, known as Reproducing Kernel Hilbert Spaces (RKHSs),10

and in Gaussian processes. This has become known as the kernel-based approach to system
identification and control. It is the purpose of this article to give an overview of this development.12

The goal of System Identification is to build mathematical models of dynamic systems from14

input-output measurements. Starting from the seminal paper [10], such discipline has become a
fundamental subfield of Automatic Control with many years of theoretical developments and a16

great impact on engineering applications. Many textbooks on the subject are available like [5],
[8]. They describe identification techniques based on paradigms from mathematical statistics. In18

particular, the classical approach relies on prediction error methods (PEM) [2] and the concept of
discrete model order. Different structures are postulated, each of them depending on an unknown20

finite-dimensional parameter vector ✓. If the true system is contained in the model, and the noise

1

Kernel-based approach: 
complexity controlled by 

regularization parameters like g

Kernel-based approaches to system
identification and control

A road map on kernel-based learning for control
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Algo Carè, Ruggero Carli, Alberto Dalla Libera,

Diego Romeres and Gianluigi Pillonetto

POC: G. Pillonetto (giapi@dei.unipd.it)

September 30, 2021

✓̂ = arg min
✓2H

X

k

(yk � ŷ✓(tk))
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Figure 1 Classical approach to system identification (left). Different
finite-dimensional model structures Mi are postulated, each of
them inducing a different output predictor ŷ parameterized by θ.
Complexity is regulated by a term J that may depend on the data
set size n and by the discrete model-order, typically established
by the dimension of the vector θ. Commonly used criteria are
AIC or BIC. Kernel-based approach to system identification (right).
The unknown system is searched for in a high-dimensional space
space, for example, a reproducing kernel Hilbert space, whose
dimension can be also infinite. Complexity is tuned in a continuous
way by means of hyperparameters like the regularization parameter
γ, which has to balance adherence to experimental data and a
penalty P assigned to θ. The penalty can, for example, include
information on smoothness of the input-output map and on system
stability.

KERNELS AND GAUSSIAN REGRESSION: AN
INTRODUCTION TO SOME KEY CONCEPTS
Consider the problem of estimating an unknown function
f from direct and noisy samples. The measurements model
is

yi = f (xi) + ei, i = 1, . . . , n (1)

where the xi are often called input locations, while ei
are stochastic additive noises. One classical approach to
estimate the function is to assume that f is the linear com-
bination of known basis functions ϕi through unknown
coefficients αi. The model of dimension d is so given by

f (x) =
d

∑
i=1

αiϕi(x)

where d has to be learned from data. This is a crucial aspect
of the regression problem: good estimates of f require
a tradeoff between adherence to experimental data and
model complexity. Note that any subspace spanned by
{ϕi}d

i=1 may represent the model structure Md depicted
in Fig. 1 (left panel).
For illustrative purposes, a numerical experiment is now
introduced. The unknown function is defined over the unit
interval [0, 1] and reported in Fig. 2 (top left), together with
100 measurements corrupted by white Gaussian noise. We
adopt the following sinusoidal basis functions

ϕi(x) =
√

2 sin(x(iπ − π/2)). (2)

For any d, the archetypical approach to determine {αi}d
i=1

is least squares, that is, the one that minimizes the squared

error between the observed outputs and those predicted
by the model:

arg min
{αi}

n

∑
j=1

(
yj −

d

∑
i=1

αiϕi(xj)
)2.

To determine d, in this experiment, we will use an oracle
that knows the true function. Among the different least-
squares estimates obtained (one for any different choice of
d), it selects that estimate that maximizes the fit

100
(

1 − ∥f̂ − f ∥
∥f ∥

)
, ∥ · ∥ = Euclidean norm. (3)

For this data set, the oracle selects d = 9 basis functions,
leading to a fit of approximately 80%. The estimate is re-
ported in Fig. 2 (top right) and appears quite close to truth.
However, we will try to improve such results through the
different approach illustrated in Fig. 1 (right panel), which
suggests to directly start from a high-dimensional space.
For this purpose, we fix d = 100, a dimension that equals
the number of available measurements. The challenge now
is to control complexity without using d and making use
of regularization. This means that, among solutions that
describe the data in a similar way, the regularizer should
favor those that mostly agree with our expectations on f .
One of the first regularized approaches proposed in liter-
ature is ridge regression [71], [72]. In our context, it de-
termines the unknown function obtaining the expansions
coefficients as

arg min
{αi}

n

∑
j=1

(
yj −

d

∑
i=1

αiϕi(xj)
)2

+ γ
d

∑
i=1

α2
i (4)

with n = d = 100. In (4), the additional term ∑i α2
i that

complements least squares is the regularizer while the
positive scalar γ is the so-called regularization parameter.
It has to tradeoff the data fit and the penalty term and can
be seen as the (continuous) counterpart of (the discrete
order) d in the regularized setting. In our experiment, we
tune γ still using the oracle: the fit (3) is now a function of
γ, and the oracle maximizes it. The oracle-based estimate
is reported in Fig. 2 (bottom left) and appears worse than
that returned by the classical approach. Indeed, the fit is
only 57%. It would seem that the idea to start from a
high-dimensional space has no advantages. However, the
crucial point is that we need to improve the regularizer. To
this regard, note from (2) that as i increases, the power of
the basis functions ϕi is concentrated at higher frequencies.
Many functions (systems) encountered in nature have,
however, some regularity properties: one expects that their
energy decays at higher frequencies. This information can
be encoded by introducing in the regularizer some weights
ζi that decay to zero. Specifically, generalized ridge regression
determines the expansion coefficients as

α̂ = arg min
{αi}

n

∑
j=1

(
yj −

d

∑
i=1

αiϕi(xj)
)2

+ γ
d

∑
i=1

α2
i

ζi
. (5)
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The meaning of the new regularizer ∑i α2
i /ζi is that not all

the basis functions should be treated in the same way: as i
increases, more penalty has to be assigned to αi and, hence,
to ϕi. For our specific example, we still set n = d = 100
and use

ζi = (iπ − π/2)−2 (6)

(the rationale underlying this choice will be clear a few
lines below). In addition, we now estimate γ using only
the data yi (no oracle is used) with an approach that will
be revealed at the end of this section. The estimate is
reported in Fig. 2 (bottom right) and appears close to truth,
leading to a fit of approximately 94%: the new estimator
(without the use of the oracle) outperforms the (oracle-
based) classical approach.

Generalized ridge regression as kernel-based regularization
The key to interpret (5) as a regularized kernel-based
estimator is to build a (positive-definite) kernel: it embeds
basis functions ϕi and weights ζi as

K(x, x′) =
d

∑
i=1

ζiϕi(x)ϕi(x′). (7)

Fixing x and seeing the kernel as function of x′, the kernel
section centred on x is obtained. As explained in this
survey, the theory based on reproducing kernel Hilbert
spaces [19], coupled with the famous representer theorem
[73], then ensures that the estimate (5) can be equivalently
written in terms of n kernel sections, where n is the data
set size. In other words, if α̂i come from (5),

f̂ (x) =
d

∑
i=1

α̂iϕi(x)

=
n

∑
i=1

ĉiK(x, xi)

where the coefficients ĉi solve a linear system. This leads
to some fundamental facts:

» instead of formulating basis functions and weights, it
can be convenient to formulate directly a kernel that
implicitly encodes them;

» the modeling process thus finds a new dimension
since kernel properties encode our expectations on f .
For instance, smooth kernels promote smooth func-
tion estimates, and integrable kernels ensure inte-
grable function estimates.

To further appreciate these points, it is now useful to reveal
the rationale underlying the choice of the basis function
and weights adopted to solve our regression problem.
Using (2) and (6), then letting the dimension d go to
infinity, the associated kernel becomes [74]

K(x, y) =
+∞

∑
i=1

2 sin(x(iπ − π/2)) sin(y(iπ − π/2))
(iπ − π/2)2

= min(x, y). (8)

This is the famous spline kernel [73] and reformulates the
estimator (5) as optimization over a function (Sobolev)

space, obtaining the smoothing spline estimator:

f̂ (x) = arg min
f

n

∑
i=1

(
yi − f (xi)

)2
+ γ

∫ 1

0
ḟ 2(x)dx. (9)

We can now give the estimate reported in Fig. 2 (bottom
right) a different and important interpretation: it describes
the experimental evidence trying also to minimize the
energy of the first-order derivative of f . One can now
wonder which model could be used if the unknown func-
tion is expected to be more regular. Instead of introducing
new complicated/mysterious basis functions and weights,
one can just increase kernel regularity. For example, the
second-order spline kernel is smoother than (8) and pe-
nalizes the energy of the second-order derivative [73]. The
Gaussian kernel (introduced later on) is the most used in
machine learning: it is very smooth and returns estimates
differentiable for all degrees [75].

Kernel-based regularization as Gaussian regression
The estimate obtained by ridge regression and reported in
Fig. 2 (bottom left) appears unsatisfactory, since it contains
oscillations perceived as unrealistic. Before seeing the data,
more regularity is expected. Under the deterministic set-
ting so far adopted, where f is an unknown deterministic
function, the spline kernel K(x, y) = min(x, y) improves
the result, since it induces the penalty term

∫
ḟ 2(x)dx,

hence favoring smoother profiles. This same penalty can
be also given a stochastic interpretation. In fact, it is inter-
esting now to note that the spline kernel (8) corresponds
exactly to the covariance of an important stochastic process
known as Brownian motion (integrated white Gaussian
noise) [18]. To establish a connection with the kernel-based
estimator (9), it is needed now to think of f as a zero-
mean Gaussian process over the unit interval of covariance
min(x, y). This means that for any integer m, the function
f evaluated over any set [x1 x2 . . . xm] is a zero-mean
Gaussian vector with E(f (xi)f (xj)) = min(xi, xj) (E indi-
cates mathematical expectation). This stochastic descrip-
tion of the unknown f includes smoothness information:
the Brownian motion is continuous with probability one.
Such information is encoded in the probability density
function p of any random variable f (x). It is called prior
since it describes the uncertainty affecting the function
before seeing any measurement. After seeing the output
data contained in the vector Y, such probability density
can be updated according to the Bayes’ rule, becoming the
posterior density

p(f (x)|Y) ∝ p(Y|f (x))p(f (x))
where p(Y|f (x)) is the likelihood function. This defines
the posterior mean E(f (x)|Y), which corresponds to the
minimum variance estimate of f (x) given Y [76]. The link
with the kernel-based estimator f̂ in (9) now arises. If
the data Y are corrupted by white Gaussian noise, for a
suitable choice of γ, one has E

[
f (x)|Y

]
= f̂ (x) ∀x. As we
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will see, this fact is not related to the particular (spline)
kernel illustrated in this introductory example. It holds for
any kernel, over any possible domain, once K is seen as
the covariance of a zero-mean Gaussian random field f . Two
important advantages arise:

» the regularization parameter, as well as variables like
noise variances and kernel parameters, are often un-
known. The stochastic interpretation of kernel-based
regularization uses statistical criteria to tune them.
We can now reveal that the estimate in Fig. 2 (bottom
right) was obtained by estimating γ via maximization
of the so-called marginal likelihood given by p(Y|γ)
and widely described later on;

» after setting the regularization parameters to their
estimates, Gaussian uncertainty bounds around the
estimates can be easily computed in closed-form.
This point will be especially important for robust
control purposes.

The unknown functions encountered in this survey
Unknown functions appear in several problems related
to identification of dynamical systems. In particular, in
nonlinear system identification, f can represent the unknown
input-output map with the input locations xi that contain
past input (and possibly also output) data. The dimension
of xi is related to the system memory. A special case arises
in the linear setting, where each f is linear in x, so that
we can write f (x) = θTx. Here, θ is a vector that contains
unknown IR coefficients. Regularizers introduced in this
setting rely on linear kernels K(x, y) = xTPy, where P
is a symmetric semidefinite positive matrix. Assuming P
invertible, such kernels lead to penalty terms of the form
θTP−1θ.
Other unknown functions encountered in the survey arise
in state-space models and are related to state transitions
and output measurements equations. Just focusing, for
example, on state transitions, in discrete-time, one has

xt+1 = f(xt) + noise (10)

where t now denotes time. So, each component of f is an
unknown scalar function f evaluated at input locations xt
defined sequentially by the evolution of the states.
We start describing the linear and time-invariant case in
the following section.

FROM CLASSICAL TO KERNEL-BASED LINEAR
SYSTEM IDENTIFICATION
We consider a single-input single-output (SISO) linear and
time-invariant discrete-time dynamic system. Its unknown
IR is denoted by g with components {gk}+∞

k=1. The noisy
outputs are

yi =
+∞

∑
k=1

ui−kgk + ei, i = 1, . . . , n (11)

where u is the known input and ei are the measurement
noises. The latter are assumed independent, zero-mean
with variance σ2. Our goal is to estimate g from knowledge
of u and the n measurements yi.
It is apparent that linear system identification corresponds
to inverting a convolution operator. This problem is also
known as deconvolution and is ubiquitous in biology,
physics, and engineering [77], [78]. It is difficult, since
convolution in discrete- and also continuous-time is a well-
behaved operator but its inverse may not exist or may be
unbounded [79]. Indeed, IR estimation is an intrinsically
ill-posed problem because (11) requires reconstructing an
infinite number of coefficients gk from a finite number of
observations.
In this section, we will briefly overview some IR estimators
that restore well-posedness within the setting of classical
and kernel-based system identification. In general, it will
be useful to measure the estimation performance in terms
of mean squared error (MSE) and IR fit. In this regard, let
∥ · ∥ be the Euclidean or ℓ2 norm, for example,

∥g∥2 =
+∞

∑
k=1

g2
k .

An estimator ĝ of g is a random object, since it depends on
the input-output measurements (the outputs yi are random
variables, since they are affected by stochastic noise). One
has

MSEĝ = E∥ĝ − g∥2

=
+∞

∑
k=1

E(ĝk − E ĝk)
2

︸ ︷︷ ︸
Variance

+
+∞

∑
k=1

(gk − E ĝk)
2

︸ ︷︷ ︸
Bias2

(12)

where the error has been decomposed in the last passage
into two components. The first one is the variance, while
the difference between the mean and the true IR defines
the bias. Often, complex models of dynamic systems lead
to estimators with low bias but large variance. If the mean
coincides with g, the estimator is said to be unbiased.
When data become available, the realization of ĝ becomes
our IR estimate. We will then define the fit as

FITĝ = 100
(

1 − ∥ĝ − g∥
∥g∥

)
. (13)

Hence, values close to 100 indicate that the ĝ is a very
accurate reconstruction of the linear system.

Classical approach
As already anticipated, the classical approach relies on the
introduction of a family of model structures of different
complexity, see the left part of Fig. 1. In this linear setting,
each structure is a collection of IRs that we indicate with
gθ . They are parametrized by a deterministic vector θ

and may contain a different number dim(θ) of parame-
ters. The simplest example is given by the FIR models,
where well-posedness is restored by assuming that the
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Numerical example
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Figure 2 Function regression problem True function and noisy samples (top left), estimate from least squares with sinuosidal basis
functions and an oracle to select their number (top right), from ridge regression with oracle to select the regularization parameter (bottom
left) and from kernel-based spline regression with regularization parameter estimated via marginal likelihood (bottom right).

Linear and time-invariant dynamic systems
Any discrete-time dynamic system can be seen as a map-

ping from an input sequence to an output sequence. The system
is linear and time-invariant if the such mapping is linear and
does not depend on actual time. A sequence of zeros with only
one element different from zero is an Impulse and defines an
output called the IR. IR determines the output for any input since
any sequence decomposes as a linear combination of impulses
happening at different time instants. A linear and time-invariant
dynamic system is BIBO stable if any bounded input produces a
bounded output. This property is equivalent to requiring that the
IR be absolutely summable. In discrete-time, this means that
the IR should decay to zero sufficiently fast.
For a single-input single-output (SISO) time-invariant linear
systems, a general model structure depending on an unknown
parameter vector θ is defined by the transfer functions F map-
ping inputs contained in u to outputs and the transfer function
G mapping a white noise e to an output additive disturbance.
Let us consider one time unit as sampling interval and use q
to indicate the shift operator qu(t ) = u(t + 1) (one could also
use the complex variable z in place of q to formulate the next
equations using the z -transform). Then, it holds that

y (t ) = F (q , θ)u(t ) + G(q , θ)e(t ) (S14a)

Ee2(t ) = σ2; Ee(t )e(k ) = 0 if k ̸= t (S14b)

where E indicates mathematical expectation. The IRs of the

system are then given by the expansion of F (q , θ) and G(q , θ)

in the inverse (backwards) shift operator:

F (q , θ) =
∞

∑
j=1

f (j , θ)q−j (S15)

G(q , θ) = 1 +
∞

∑
j=1

g(j , θ)q−j . (S16)

If G = 1, an output error (OE) model is obtained, as in (11).
Popular black-box linear models (no physical insight) use
parametrizations with F and G rational in the shift operator:

F (q , θ) =
B(q , θ)

H(q , θ)
; G(q , θ) =

C(q , θ)

D(q , θ)
(S17)

where B , H , C , D are all polynomials of q−1 with the (unknown)
polynomial coefficients contained in the parameter vector θ.
Typically, the dimension of θ, that is, the polynomials order, need
to be estimated from data.
Letting H = D, the important ARMAX models are obtained [2].
Another fundamental case is H = D and C = 1, which gives
the ARX model :

y (t ) = B(q)uk + (1 − D(q))y + e(t ) (S18)

Finally, C = D leads to G = 1, that is, the (already mentioned)
OE model, now with rational deterministic transfer function F
(as in (23) in terms of z -transform). Furthermore, if H = 1, F
reduces to a single polynomial in q−1: the IR has a finite number
of nonzero coefficients and one obtains the FIR models (19).
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IR contains only a finite number of nonzero coefficients.
For different dimensions d, each FIR is characterized by
the d-dimensional vector θ containing the unknown IR
coefficients, that is,

gθ = θ1, dim(θ) = 1 (19a)

gθ =
(

θ1 θ2

)T
, dim(θ) = 2 (19b)

... (19c)

Hence, (11) can be rewritten in matrix form in terms of the
following linear regression problem

Y = Φθ + E (20)

where Y and E are n-dimensional (column) vectors whose
i-th components are, respectively, yi and ei. Furthermore,
Φ is the n × d regression matrix whose i-th row is(

ui−1 ui−2 . . . ui−d

)
.

The least squares estimate of θ is

θ∗ = arg min
θ

∥Y − Φθ∥2 = (ΦTΦ)−1ΦTY (21)

where, for simplicity, Φ is assumed of full column rank.
However, this usually leads to an ill-conditioned problem:
even small errors in the measurements can lead to a large
estimation error. Ill-conditioning may be severe when d
is just set to that value to capture system dynamics. As
an example, if the system is stable and d is sufficiently
large, in practice, (20) holds exactly if θ contains the first
d components of the true f . Hence, the least-squares esti-
mator is virtually unbiased, and the MSE in (12) reduces
to the trace of the matrix σ2(ΦTΦ)−1. In the presence of
ill-conditioning, the matrix ΦTΦ is close to singularity so
that the trace of the inverse can be very large. This shows
that FIR models are easy to fit to data but can suffer of
large variance. In addition, the variance worsens when
the system input is a low-pass signal. This is a situation
often encountered in real applications that, when data are
realizations from stationary stochastic processes, admits
a spectral characterization via the Szegő theorem (which
studies the asymptotic behavior of large Toeplitz matrices)
[80], [81].
Structures gθ can be defined by using other building
blocks, for example, the Laguerre basis functions [82]
defined in the z-transfer domain by

Hi(z) =
(1 − αz)i−1

(z − α)i , −1 < α < 1, i = 1, 2, . . . (22)

where α regulates the decay rate of the IR. Note that the
case α = 0 makes us come back to FIR models. Other
important descriptions used to better balance the variance
and bias components illustrated in (12) are the rational
transfer functions where the z-transform of the IR is the
ratio of two polynomials:

ad1
zd1 + ad1−1zd1−1 + . . . + a0

zd2 + bd2−1zd2−1 + . . . + b0
, d1 ≤ d2. (23)

In any case, assigned the dimension d, we can first intro-
duce the loss function

V(θ) =
n

∑
i=1

(
yi −

+∞

∑
k=1

ui−kgθ,k

)2

(24)

and then we can obtain θ through PEM, that is, solving
the following nonlinear least-squares problem

θ∗ = arg min
θ

V(θ) (25)

that generalizes (21). Problem (25) coincides with the max-
imum likelihood procedure if the noises are Gaussian,
independent and with the same variance. In many real-
world problems, the dimension d of θ is unknown and
must be determined from data. This problem is key, since
the choice of model complexity will have a major effect on
the quality of the final model.
Cross validation (CV) is widely used for model order
selection [10]. Once IR estimates of different dimension are
obtained by (25), CV tries to select the one with the largest
prediction capability on future data. Holdout validation is
the simplest version of CV: the available measurements
are split into two sets. The first one is the training set and
is used to train the model. The other one is the validation
set and is exploited to evaluate the prediction capability.
Thanks to its nature, CV may be applied to the most varied
situations.
The so-called Akaike-like criteria are also popular to de-
termine model complexity and do not divide the data
into different partitions. To illustrate them, for the sake
of simplicity, let the measurement noise be white and
Gaussian of variance σ2. Then, for known σ2, the “optimal”
model minimizes[

V(θ∗)
σ2 + J(dim(θ), n)

]
known σ2 (26)

while, if σ2 is unknown and included in θ, the objective
becomes

[n log(V(θ∗)) + J(dim(θ), n)] unknown σ2. (27)

The penalty

J(dim(θ), n) = 2dim(θ) AIC (28)

leads to the well-known Akaike’s criterion (AIC) [6],
which, for large samples, gives an approximately unbi-
ased estimator of the Kullback-Leibler divergence (the
distance of a model from the true data generator). A larger
penalty on model flexibility, derived following Bayesian
arguments, is instead defined by

J(dim(θ), n) = log(n)dim(θ) BIC (29)

and is called Akaike’s criterion-type B, BIC, or Rissanen’s
minimum description length (MDL) criterion [8], [7], [2].
One limitation of AIC and BIC is that all of these criteria
are based on an approximation of the likelihood that is
only asymptotically exact. This undermines the applica-
bility of the theory when the ratio n/dim(θ) is not large
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enough, see [20] for illustrations of these phenomena in
linear system identification.

Numerical experiment using the classical
approach with an oracle
Let us consider the following system identification prob-
lem. The unknown transfer function is

z2 + 2z + 1
(z − 0.8)(z − 0.6)

+
z2 + 2z + 1

z2 − 0.7z + 0.7
. (30)

The system, initially at rest, is fed with a low-pass input
u given by the realization of white Gaussian noise of
unit variance filtered by 1/(z − 0.9). Note that the pole
0.9 is quite close to the unit circle, hence decreasing the
power of the signal at high-frequencies and increasing the
ill-conditioning affecting the identification problem. The
impulse response has to be estimated from 1000 output
measurements corrupted by white Gaussian noise. The
signal-to-noise ratio (SNR) (that is, the ratio between the
variances of the noiseless output and the noise is 20) and
the input-output data are plotted in Fig. 3. We assume
that the system identification procedure is equipped with
an oracle, which is an estimator with access to the test
data. This means that structures of different dimensions
are fitted to test data using, for example, PEM, and then
the oracle selects the one maximizing the fit (13), which is
computed using the first 50 IR coefficients. This procedure
is ideal, not implementable in practice but useful, since it
provides an upper bound on the performance.
First, FIR models are used. The choice of the FIR length is a
tradeoff between bias (a large d can be needed to represent
slowly decaying impulse responses without large error)
and variance (large d leads to estimation of many param-
eters, hence increasing the variance). To balance these two
components, (21) is computed for different dimensions of
θ, and then the oracle selects d = 17 to optimize the fit,
which is 81.2%. The true IR and the FIR estimate are visible
in Fig. 4 (left panel). The size of the training data is quite
large, and the SNR is not small, but the FIR estimate is not
so satisfactory. This is due to the low-pass input that gives
poor excitation and makes the problem ill-conditioned.
To improve the results, we can now resort to rational
transfer functions (23). (25) is now computed for different
orders, and the oracle determines 4 as the optimal order
of the rational transfer function. The fit increases to 87.3%,
and the IR estimate is displayed in Fig. 4 (right panel).

Regularized least squares
The result reported in Fig. 4 (left panel) would seem to
suggest that, at least in the presence of ill-conditioning, FIR
models are not useful, even when an oracle is used to select
their dimension. Now let us consider a different approach
where, inspired by the right part of Fig. 1, the estimate
is directly searched for in a high-dimensional space, for
example, given by high-order FIR models in the linear
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Figure 3 Input-output data generated using system (30).

setting. For large d, we have seen that system identification
is often an ill-conditioned (and possibly ill-posed) problem.
So, how can we control the variance without discrete
tuning of d? For this purpose, one important approach is
to add a regularization term to the least-squares criterion.
As already recalled in the previous introductory section on
kernel methods to illustrate (4), the first method proposed
in the literature to deal with numerical stability problems
in the inversion of some operators is ridge regression [71],
[72]. The estimate is given by

θ̂ = arg min
θ

∥Y − Φθ∥2 + γ∥θ∥2 (31)

and thus optimizes an objective, which is the sum of
two terms. The first one is a quadratic loss function that
measures adherence to experimental data. Without any
other term, the objective would correspond to (21). The
second term is a penalty given by the squared Euclidean
norm whose aim is to reduce the oscillations that can
affect the least-squares estimate. There is also a third very
important ingredient, which is a positive scalar γ, the
so-called regularization parameter already encountered in
(5). It has to trade off experimental evidence and the
regularizer, hence balancing bias and variance. It can be
seen as the counterpart of the dimension d of θ. We can
now reconsider the previous numerical experiment using
d = 50 and adopting (31) with an oracle to optimize γ.
The best possible ridge estimate is reported in Fig. 5 (top-
left panel), and the fit is 65.5%. The reconstructed IR is
not so satisfactory, due to the presence of some unrealistic
oscillations, which suggest data overfitting. This drives us
to generalize (31) by introducing the more sophisticated
penalty θTP−1θ that depends on a design regularization
(symmetric and positive-definitive) matrix P. The follow-
ing regularized least- squares (ReLS) problem is obtained:

θ̂ = arg min
θ

∥Y − Φθ∥2 + γθTP−1θ (32a)

= PΦT(ΦPΦT + γIn)
−1Y; or (32b)

= (PΦTΦ + γId)
−1PΦTY. (32c)
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Figure 4 Classical approach to linear system identification. True IR (thick red line) and estimates using FIR models (left) and rational
transfer function (right) with model order selected by an oracle

ReLS can be also implemented using non-invertible P. In
(32a), one has to replace P−1 with the pseudo-inverse and
add the constraint that the solution be orthogonal to the
null space of P. In any case, the solution coincides with
that reported in (32b) or (32c).
Beyond γ, the performance of ReLS crucially depends on
the choice of the regularizer induced by P, as already seen
in the introductory example of Fig. 2. When a signal is
known just to be smooth, beyond the spline kernels, one of
the most used regularizers P used in the machine learning
is related to the so-called Gaussian kernel. The (ij)-entry
of P becomes

Pij = exp
(−(i − j)2

ω

)
(33)

where ω is the kernel width. One can think of γ and ω

as knobs that may control the regularity of the impulse
response. We can ask the oracle to tune them and the
best possible estimate based on the Gaussian kernel is
in Fig. 5 (second panel), with the fit being 83.8%. The
profile is now smoother, and we have improved over ridge
regression. However, the peak of our IR is underestimated,
and some oscillations still affect the reconstructed profile.
The Gaussian kernel does not seem to be the breakthrough
we were hoping for. To understand the reasons, it is now
useful to reconsider the MSE introduced in (12).
Assume that data are generated according to the linear
regression (20) for a certain dimension d, with the true
value of θ denoted by θ0. Then, after some calculations,
one obtains the following expression for the MSE of ReLS

E [(θ̂ − θ0)(θ̂ − θ0)
T ] =

σ2
(

PΦTΦ
γ

+ Im

)−1(PΦTΦP
γ2 +

θ0θT
0

σ2

)(
ΦTΦP

γ
+ Im

)−1

.

(34)

Now, we can find values of P and γ that minimize (34) in
matrix sense. One obtains γ = σ2 (the noise variance) with
the optimal regularization matrix being [83]

P = θ0θT
0 . (35)

As expected, the answer depends on the unknown θ0.
Hence, (35) cannot be used in practice but can give some
important insights on the problem. In fact, it shows that the
regularization matrix P should synthesize our expectations
on the IR. When the system is exponentially stable, the
components of θ0 will exponentially decay to zero so that
also the components of P (both along and outside the diag-
onal) should mimic such behavior. The first regularization
matrix satisfying such requirements derives from the so-
called stable spline kernel [84], [21], also called TC kernel
in [83]. It is defined by

Pij = αmax(i,j), 0 ≤ α < 1 (36)

where α is a stability parameter that regulates how fast
the IR is expected to decay to zero. Generalizations are
also given by the second-order stable spline kernel [21]
(which increases the level of expected smoothness) and
the DC kernel [83] (where an additional hyperparameter
is introduced to regulate the level of correlation among the
samples). Many other kernels then appeared in the litera-
ture to describe linear systems and have been mentioned
in the introduction. An in-depth comparison between the
classical and the kernel-based approach was proposed in
[85]. The authors compared the two approaches in terms of
point estimators and confidence intervals, also determin-
ing that the kernel-based approach may outperform the
classical approach.
We now come back to our illustrative example and ask the
oracle to tune γ and α to solve our system identification
problem. The resulting stable spline estimate is reported
in Fig. 5 (third panel), with the fit being 93.4%. The
result is now really satisfactory and outperforms alo the
oracle-based classical approach exploiting rational transfer
functions as structures.

Linear state-space models
Several control strategies are based on state-space rep-
resentations of the system evolution. In control applica-
tions, the case of linear- and time-invariant systems with
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Figure 5 Regularized linear system identification. True IR (thick red line) and estimates using ridge regression with oracle (top left),
Gaussian kernel with oracle (top right), and stable spline with oracle (bottom left) and with hyperparameters estimated via marginal
likelihood (bottom right).

discrete-time evolution is particularly common. In this
setup, the system output at time t, hereafter denoted
yt ∈ Rp, is a linear combination of the input ut ∈ Rm and
the system state xt ∈ Rn. In turn, a system of n first-order
linear difference equations describes the evolution of xt as

xt+1 = Fxt + Gut + wt (37)

yt = Hxt + Dut + vt

where F ∈ Rn×n, G ∈ Rn×m, H ∈ Rp×n, and D ∈ Rp×m

are constant matrices; wt ∈ Rn and vt ∈ Rp are zero-mean
Gaussian variables with covariance matrices Rw and Rv,
which account for the process and measurement noise,
respectively. Equation (37) proved particularly useful for
advanced control applications. For instance, remarkable
results have been achieved in the case where the control
objective consists of minimizing a cost function ct(xt, ut)

quadratic w.r.t. xt and ut, the so-called linear quadratic
regulator (LQR), [86], [87], also known as linear quadratic
Gaussian (LQG) control problem in the stochastic setup
[88], [89]. As regards the identification of state-space mod-
els of the kind in (37), it is appropriate to distinguish be-
tween the case that the state xt is measurable or not. If the
system state is directly observed, F and G can be estimated
by solving a linear LS problem, possibly regularized as
in (31), starting from N + 1 system observations collected
at time t = 0 . . . N. Specifically, with reference to (31),
θ ∈ Rn(n+m) collects the F and G elements, and Y ∈ RnN

concatenates the observed states at time t = 1 . . . N, while

the entries of the regression matrix Φ are states and inputs
at time t = 0 . . . N − 1, disposed in accordance with θ

and Y. The covariance of the process and measurement
noise, that is, Rw and Rv, can be estimated from the LS
residuals. If some insights on F and G are available, they
can be included in the estimation process through proper
parametrization or regularizers. For instance, by using the
L1 norm as regularization in (31) instead of the L2 norm,
sparsity of F and G is promoted. LS identification of the
state-space model cannot be performed if the states are
not observable and only input-output data are available.
In this case, an alternative route consists of estimating an
input-output transfer function, then obtaining a state-space
realization. ARX models are particularly suitable for this
task. Compared to the FIR models introduced before, they
include an autoregressive part, with past outputs seen as
additional inputs. For the sake of simplicity, we consider
the SISO case, described by

yi =− a1yi−1 − . . . − ana yi−na + b1ui−1 + . . .

+ bnb ui−nb + ei = φT
y (i)θa + φT

u (i)θb + ei (38)

with θa =
[
a1 · · · ana

]T
, θb =

[
b1 · · · bnb

]T
, while

the column vectors φy(i) and φu(i) are built using y and u
in an obvious way. As the orders na and nb grow to infinity,
ARX models can approximate any linear system [2].
Also (38) is a linear regression model involving two re-
gression matrices Φa, Φb whose i-th row is given by φT

y (i)
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and φT
u (i), respectively. In matrix form, we can thus write

Y = Φaθa + Φbθb + E := Φθ + E (39)

where θ = [θT
a θT

b ]
T . The same regularization ideas il-

lustrated above can be now applied by partitioning the
regularization matrix P as

P(η) =

[
Pa(η1) 0

0 Pb(η2).

]
(40)

where Pa and Pb are, for example, the stable spline/TC
kernels (36). After estimating the ARX model in (39), one
can obtain a state-space realization. For instance, consid-
ering the controllable canonical form and na = nb = n in
(39), the deterministic part of the system is defined by

F =




0 1
1

. . .
1

−an −an−1 −an−2 . . . −a1




G =
[
0 . . . 0 1

]T

H =
[
bn . . . b2 b1

]

D = 0.

If the model dimension is too large, hence complicating
the control design, n can be reduced using standard re-
duction techniques (for example, the algorithms in [90],
[91] implemented by the MATLAB function balred).

Bayesian interpretation: Gaussian regression
The Bayesian interpretation of ReLS is now introduced.
To simplify exposition, the FIR case is treated, but the
same results here exposed hold also for the ARX models
introduced in the previous section (see, for example [92]).
The fact that an estimate like the one reported in the top-
left panel of Fig. 5 is perceived as unsatisfactory suggests
that there is some form of prior knowledge on the level
of acceptability of candidate solutions. We have seen that
this knowledge (for example, given by system stability)
guides the choice of the regularizer added to the usual
sum of squared residuals. Such a design process has been
described by assuming that the unknown IR is a deter-
ministic vector. All the randomness of our estimators then
come from the random nature of the noise. We will now
see that an alternative formalization of prior information
can be given by adopting a subjective/Bayesian estimation
paradigm. In particular, kernel-based regularization enjoys
a stochastic interpretation where a Gaussian distribution is
assigned to the IR. The regularization quadratic term then
becomes a consequence of this prior.
Let us assume that data come from the linear regression
model (20) for a certain dimension d but with θ now
given by a zero-mean Gaussian random vector. Its definite

positive covariance is proportional to the matrix P, that is,

θ ∼ N (0, λP) (41)

where λ is a positive scale factor. Let θ be independent of
the measurement noise, which is white and Gaussian of
variance σ2. Now, we can compute the minimum variance
estimate of the IR, that is, the mean of the posterior of
θ conditional on Y. Recall that, in view of (20), Y and θ

are jointly Gaussian variables and θ conditional of Y is
Gaussian too, see [76]. Hence, the mean of the a posteriori
density function coincides with the maximum a posteriori
estimate (the maximizer of the posterior), and a simple
application of Bayes’ rule allows us to obtain

E(θ|Y) = arg min
θ

∥Y − Φθ∥2 +
σ2

λ
θTP−1θ. (42)

This is exactly the kernel-based estimate θ̂ in (32a) once
the regularization parameter γ is set to σ2/λ. This also
indicates that only the ratio between the scaling factors is
relevant to the computation of a point estimate. Such a
Bayesian view is important under several aspects. First,
many times, the stochastic interpretation may provide
useful insights on merit and weakness of a certain model.
For instance, just plotting some realizations from the prior
provides an idea of the expected features incorporated in
our system model. For example, Fig. 6 plots realizations
from zero-mean Gaussian vectors using covariances as-
sociated with ridge regression (white noise assumptions
on the impulse response coefficients), as well as Gaussian
and stable spline kernel. Only the stable spline candidates
include smooth exponential decay information. The other
realizations hardly represent IRs of stable dynamic sys-
tems.

At a higher level, the Bayesian view may inspire the
construction of new priors, for example, by means of
maximum entropy concepts [32]. Within this paradigm,
one can derive a complete a priori density function from
incomplete information, for example, some values regard-
ing expectations and variances. The distribution has to
satisfy some constraints and maximize the entropy, hence
returning, in some sense, the simplest (least committing)
prior compatible with the available information. Interest-
ingly, when the latter is just smooth exponential decay,
the maximum entropy prior for θ is a zero-mean Gaussian
distribution with covariance proportional to the stable
spline matrix (36), see [33] for details. Other advantages
of the stochastic framework are the possibility of comple-
menting the estimates with Bayes regions (as described
later on) and the derivation of statistical guidelines for
hyperparameters tuning (as discussed in the next section).

Hyperparameters tuning
In real applications, the hyperparameters entering the
ReLS estimator reported in (32) cannot be tuned by the
oracle, but have instead to be learned from data. They
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Figure 6 Bayesian interpretation of regularization in the linear setting. IRs realizations from zero-mean Gaussian vectors using
covariances associated to ridge regression (left), corresponding to white noise assumptions on the coefficients, Gaussian (middle), and
stable spline (right) kernel.

include, for example, the regularization parameter γ and
also some variables that define the structure of P (for ex-
ample, the kernel width ω present in (33) or the parameter
α of the stable spline kernel in (36)). In the following, the
vector containing all the unknown hyperparameters will
be denoted by η.
Many options are available to tune η. For instance, the
same cross validation strategies described in the classical
framework can be adopted, with the CV score now op-
timized w.r.t. the continuous vector η. Other important
criteria do not require splitting the data into a training
and a validation set. A first well-known class derived in a
deterministic setting includes generalized cross validation
and Stein’s unbiased risk estimation, see [93], [11]. Another
class uses the Bayesian interpretation of regularization:
since the parameter γ can be seen as an SNR, its estimation
can be reformulated as a statistical estimation problem as
described below.
In the stochastic setting, our tuning problem is due to the
fact that the prior on θ (and possibly on the measurement
noise) is known only if we condition on η. In a fully
Bayesian setting, we could also think of η as random and
assign to it a prior p(η). In such a case, the prior p(θ) can
be computed by marginalization as

∫
p(θ, η)dη. However

in general, this computation is analytically intractable.
One solution is to resort to stochastic simulation to solve
numerically the integral, for example, by Markov chain
Monte Carlo techniques [94]. This leads to full Bayesian
methods. A simpler computational scheme exploits the
so-called marginal likelihood p(Y|η), which derives from
the marginalization of the joint density p(Y, θ|η) w.r.t. θ,
that is, p(Y|η) =

∫
p(Y, θ|η)dθ. The marginal likelihood

estimate of the hyperparameters is

ηML = arg max
η

p(Y|η). (43)

When data are sufficiently informative, one can expect
p(Y|η) to be quite concentrated around ηML. Assuming
the prior on η rather uninformative, the posterior can be
approximated using the prior p∗(θ) = p(θ|ηML). In this
way, the full Bayes approach is replaced by the so-called

empirical Bayes (EB) method [95], [96], [97].
We can now specialize the EB method (43) to our high-
order FIR (20). The key point is that the marginal likelihood
p(Y|η) is available in closed form for any η. In fact, in
view of the Gaussianity and independence of θ and E, the
vector Y is zero-mean Gaussian too. One easily obtains
Y ∼ N (0, Z(η)) with Z(η) = λΦPΦT + σ2In. Using the
minus-log of p(Y|η), (43) in the context of regularized FIR
becomes

η̂ = arg min
η

YT(Z(η))−1Y + log det(Z(η)). (44)

Interestingly, the marginal likelihood may prevent overfit-
ting. In fact, the likelihood p(Y|η) can be approximated
as the product of the full likelihood and an Occam factor
that penalizes unnecessarily complex systems [54], [98].
In (44), the Occam factor is represented by log det(Z(η)).
Hyperparameters online tuning techniques, with new data
arriving in real time, are described in [99], [100].
To test EB, we reconsider for the last time our illustrative
example. Fig. 5 (bottom-right panel) reports the IR estimate
with complexity now tuned by (44). The fit is 91.2%,
close to that of the oracle. EB, implementable in practice,
outperforms the classical approach equipped with rational
transfer functions and the oracle, further outlining the
potentiality of regularization. Other experiments along this
line can be found, for example, in [21], [83], [20].

RKHSS FOR SYSTEM IDENTIFICATION AND
FUNCTION ESTIMATION
It can be tempting to set the FIR dimension to d = ∞,
shifting the task to estimate an IIR model. However, the
matrix P becomes infinite, so that its inverse is undefined.
This makes obscure both the meaning of the regularizer
θTP−1θ and the nature of the space where the optimizer
searches for the unknown IR. It is then needed to general-
ize problem (32) by considering θ no more as a vector,
but as a real-valued function f defined over a generic
domain X . This operation is important, since it solves (in
a unified framework) other relevant problems, including
continuous-time linear system identification and nonlinear
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RKHSs and Gaussian regression: some historical notes
Theory of RKHSs can be found in the fundamental works

[19], [101]. In their simplest formulation, they are defined as
Hilbert spaces where any pointwise evaluation of a function is a
linear and bounded functional. These spaces are in one-to-one
correspondence with positive-definite kernels that are called
reproducing since, for any function f and any input location,
the inner product between K (x , ·) and f returns f (x ) (that is,
⟨K (x , ·), f ⟩H = f (x )).
Regularization theory traces back to Tikhonov [102], [103]. First
applications of RKHSs can be found in the 1980s regarding
statistics, approximation theory, and computer vision [104],
[105], [73]. They were then introduced in machine learning
by Girosi in [106]. Combination of RKHSs and regularization
theory enabled the introduction of algorithms like regularization
networks/kernel-ridge regression and support vector machines
[107], [17], [108]. In system identification, the concept of stable
RKHSs for IR and predictor estimation was introduced in [21].
For further developments, see also [92], [83], [35], [20], [37].
As also described in [29], the estimators introduced have also

connections with previous works on regularization in system
identification, including distributed lag estimators, smoothness
regularizers for transfer functions, and stochastic embedding
[109], [110], [111], [112], [113].
The link between regularization in RKHSs and Bayesian estima-
tion of Gaussian processes was first described in the context
of smoothing splines in [24], where one can find the link be-
tween Sobolev spaces and integrated white Gaussian noises.
An important incentive to the use of Gaussian regression was
due to [114], where Neal considered a neural network with
weights modeled as i.i.d. random parameters. Using the central
limit theorem, he showed that the input-output map becomes a
Gaussian process as the network’s width grows to infinity. Thus,
the function estimate becomes available in closed-form and
simplifies to manipulation of covariances. See also [115] and
[22]. Recent works generalize [114] by induction and builds new
(compositional) kernels as limits of DNNs with increasing layer
width [116]. These constructions also regard also CNNs [117]
and RNNs [118].

system identification.
To extend (32), it is key to move from positive-definite
matrices P to positive-definite kernels K (called kernels in
what follows), which were first encountered in the intro-
ductory section on kernels and Gaussian regression. Given
any non-empty set X , kernels are symmetric functions
over X × X such that, for any finite natural number p,
one has

p

∑
i=1

p

∑
j=1

aiajK(xi, xj) ≥ 0

for any choice of real numbers ak and xk ∈ X . For example,
in the d-dimensional FIR case, X = {1, . . . , d} and the
kernel associated with (32) is K(i, j) = Pij for i, j = 1, . . . , d.
The Moore-Aronszajn theorem provides a one-to-one cor-
respondence between K and particular Hilbert spaces of
functions H known as RKHSs [19]. It contains all the
finite linear combination of kernel sections (that is, f (x) =
∑

p
i=1 aiKxi (x) with Kxi (x) := K(xi, x)) and some infinite

combinations (that is, the limits of Cauchy sequences w.r.t.
the norm ∥f ∥2

H = ∑
p
i=1 ∑

p
j=1 aiajK(xi, xj)). A consequence of

this construction is that functions in H inherit properties
of the kernel. Continuous kernels (also called Mercer ker-
nels) induce spaces containing only continuous functions.
Kernels that are absolutely integrable belong to the class
of stable kernels that induce the so-called stable RKHSs
that contain only absolutely summable IRs. Their complete
characterization can be found in [36], [37]. For instance,
the stable spline kernel (36), extended to the entire set of

natural numbers, is

K(i, j) = αmax(i,j), i, j = 1, . . . , ∞. (45)

This kernel can be proved to be positive definite and one
also has the property ∑ij |K(i, j)| = ∑ij αmax(i,j) < ∞. The
associated RKHS thus contains (possibly infinite) combina-
tions of exponentially decaying functions, and all of them
are IRs of BIBO stable systems. These examples, like the
estimation results reported in Fig. 2, convey an important
message for modeling. In place of introducing a set of basis
functions to describe f , like those of Laguerre (22), in the
RKHS setting one chooses a kernel that encodes the desired
properties of the function to be estimated. Another key
RKHS feature that was already described in (7) is that a
continuous kernel over X × X admits over any compact
domain the following Mercer expansion

K(x, z) =
d

∑
i=1

ζiρi(x)ρj(z), x, z ∈ X (46)

(if d = ∞, and the ρi are mutually independent, the space
is infinite-dimensional). Then, it can be proved that the
basis functions ρi span all the RKHS and that

f (x) =
d

∑
i=1

aiρi(x) =⇒ ∥f ∥2
H =

d

∑
i=1

a2
i

ζi
.

Many times, the expansion (46) is not even available in
closed form: kernels thus use in an implicit way a possibly
infinite number of basis functions.
This simple introduction to RKHSs already generalizes
(32). Any measurement yi entering (32) is a noisy version of
the linear transformation of the vector θ given by Φ(i, :)θ,
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Kernel-based ranking of impulse responses: not all the regularizers are the same
We have explained that the use of a kernel (matrix) P can

be seen as a way to introduce a ranking of possible solutions:
among impulse responses that fit the data in a similar way, the
simplest one (according to the penalty induced by P ) has to be
chosen. This will be illustrated through an example that will also
show how different kernels can be more or less useful for linear
system identification.
Let us assume that the impulse response has to be chosen
among a finite number of candidates θ, each representing a FIR
of length 100. The truth is one of the candidates, visible in the
left panel of Fig. 7 (red line, obtained by random generation of a
rational transfer function of order 10). The middle panel displays
the known input given by filtered white Gaussian noise. The
other 99 candidates were fabricated for illustrative purposes as
follows. The parameter vector θ of each candidate was obtained
by computing (21) with output data defined as the true system
output perturbed with a very small noise. The 100 candidates
are shown in the left panel: they appear quite different from each
other, but their convolutions with the input (right panel) reveal
that there is no real difference in terms of output fit. This also
points out the severe ill-conditioning affecting the problem.
To select the IR, some prior information is needed. To this pur-
pose, we introduce a kernel-based ranking of IRs by measuring
FIR complexity through P . Specifically, the impulse response θi

precedes θj if it is assigned a smaller penalty by the kernel, that
is,

θi ≺ θj ⇐⇒ (θi )T P−1θi ≺ (θj )T P−1θj .

Hence, P can be seen as a referee that ranks the candidates.
First, let us consider the ridge penalty that corresponds to using
the identity matrix P = I100. The top and middle-left panels of
Fig. 8 report the two highest-rank IRs (black line). One can see
that ridge tends to select IRs quite far from truth and containing

many oscillations. According to the Bayesian interpretation of
regularization described before, these are the two candidates
that (in some sense) are most similar to white noise realizations.
One can then assess that the truth is only in the 87th position.
As a second example, let us use the Gaussian kernel, one of the
most used models in machine learning to include information on
function smoothness. The (i , j )-entry of the kernel is

Pij = e− (i−j )2
ω , ω > 0.

To remove the dependence on the kernel width ω, the penalty
assigned to a generic θ is defined by

min
ω

θT P−1θ.

The first and second selected candidates, reported in the first
two middle panels, are more regular than those chosen by ridge.
In fact, the Bayesian interpretation of regularization reveals that
the Gaussian kernel selects vectors most similar to realizations
from a stationary process with correlated samples. However, the
situation does not improve so much. The true IR is in the 26th
position.
As a third example, consider the TC (first-order stable spline)
kernel, obtained by setting

Pij = αmax (i ,j ), 0 ≤ α < 1.

Similar to the Gaussian kernel case, the dependence on the
hyperparameter is removed by optimizing w.r.t. α, that is, for any
candidate θ, compute

min
α

θT P−1θ.

The right panels of Fig. 8 show that the true IR is in the first
place. The second IR is also close to the truth. The selected
candidates are smooth and decay exponentially to zero, pointing
out the importance of the choice of the regularizer for IR
estimation.
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Figure 7 Kernel-based ranking. Left System impulse response candidates, including also the truth (red line). Middle System input given by
a low-pass filtered white Gaussian noise. Right Outputs generated by the candidates, i.e. convolution of the impulse responses reported
in the top panel with the input in the bottom panel.
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Figure 8 Kernel-based ranking. Ranking of IR candidates using three different kernels: identity (left), associated to ridge regression,
Gaussian (middle), and TC/first-order stable spline (right).

where Φ(i, :) is the i-th row of the regression matrix. In
the RKHS setting, θ is replaced by the function f over X ,
and its transformation is denoted by Li[f ], with Li repre-
senting a linear and continuous functional. For instance,
if f denotes a continuous-time IR, Li[f ] can now represent
the convolution between the input and f evaluated at time
instant ti. Let K be the kernel on X ×X that encodes the
expected features of f . Then, we search for the estimate of
f in the associated RKHS H using the squared norm as
regularizer, hence generalizing the penalty θTP−1θ in (32).
The resulting estimator is called kernel ridge regression (or
regularization network [119]) and turns out to be

f̂ = arg min
f∈H

n

∑
i=1

(yi − Li[f ])2 + γ∥f ∥2
H. (47)

This would seem an intricate variational problem possibly
defined over an infinite-dimensional space H. Instead, the
representer theorem says that the solution to (47) is unique
and is computed as the sum of n basis functions. These
basis functions are defined by the kernel and the operator
Li, and they are scaled with coefficients obtained solving a
simple set of linear equations [73], [75], [120]. More details
on this will be given during the discussion on nonlinear
system identification in the following sections.

FROM CLASSICAL TO KERNEL-BASED
NONLINEAR SYSTEM IDENTIFICATION
The literature on nonlinear system identification is vast
and the reasons are manifold. Nonlinearities arise in
several engineering problems, for example, mechanical
engineering, robotics, telecommunications, biology, and
epidemiology [121], [122], [123]. As a consequence, many
parameterizations of the unknown system have been in-
troduced, along with different estimation methods. Differ-

ent parameterizations introduce different forms of prior
knowledge about the system, leading to grey-box models
with different shades of grey, see the section The Palette
of Nonlinear Models in [123]. Our aim here is to give an
overview of some aspects of this problem, assuming that
no prior physical knowledge on the system is available.
Hence, the building of a black-box model is needed. State-
space models estimation will also be discussed.

Classical nonlinear system identification
In the nonlinear context, the ARX model reported in (39)
can be generalized as follows. First, we can introduce a
vector that contains past input-output data, that is,

xi = [yi−1, ui−1, . . . , yi−m, ui−m] (48)

where m is the system memory. Then, our model for the
noisy output data becomes

yi = f (xi; θ) + ei, i = 1, . . . , n (49)

where the unknown (nonlinear) function f depends on the
vector θ. This defines a nonlinear ARX (NARX) model
of memory m. A nonlinear FIR (NFIR) is obtained if xi
contains only past inputs, that is,

xi = [ui−1 ui−2 . . . ui−m]. (50)

Parametric models linear in θ are widely used. First, d basis
functions (the regressors), denoted by ρk , are introduced.
Then, (49) is rewritten as

yi =
d

∑
k=1

θkρk(xi) + ei, i = 1, . . . , n. (51)

Poor knowledge on system dynamics often introduces a
large number of basis functions to account for different
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inputs-outputs lags and interactions. Hence, in such clas-
sical framework, nonlinear system identification is inter-
preted as an extended parametric regression. To control
complexity, it is essential to choose the relevant model
components, a problem known as regressor selection. This
step is key, due to the so-called curse-of-dimensionality af-
fecting nonlinear system identification. It can be described
via the following simple example. An important model for
f that can approximate arbitrarily well any “reasonable”
system is the (already mentioned) Volterra series [124],
[39], which corresponds to Taylor expansions of the input-
output map in discrete-time. In particular, an NFIR model
of order m obtained by an r-truncated Volterra model
introduces all the monomials up to degree r. If r = 2, the
basis functions ρk in (51) become

{1, uti−1, . . . , uti−m, u2
ti−1, . . . , u2

ti−m, uti−1uti−2, uti−1uti−3, . . .}
(52)

and it is easy to see that the model order d, that is, the
overall number of monomials, is given by the binomial
coefficient (m+r

r ). In Fig. 9, model order is plotted as a
function of m with a small degree r equal to 3. The
number of required basis functions scales exponentially
with the system memory, outlining how control of model
complexity is really an issue.
The previous example thus shows that regressor selection
has a combinatorial nature. For this reason, suboptimal
solutions are often searched, for example, through greedy
approaches like forward orthogonal least squares [125],
[126] and its many variants described, for example, in
[127][Section 3]. Another approach uses variance analysis
(ANOVA) [128] and divide-and-conquer methods [129].
Other strategies include projection pursuit [130] and man-
ifold learning for dimensionality reduction [131], [132],
[133].

Use of regularization
An alternative approach is to use regularization adopting
sparse promoting penalties. This jointly performs estima-
tion and variable selection, trying to automatically set to
zero groups of variables in the regression vector. The use
of the ℓ1-norm as regularizer on θ leads to the famous
LASSO [134] and LARS [135]. More recent variants include
[136], [137], [138]. However in [25], it has been shown
that the ℓ1-norm can lead to unsatisfactory results in
system identification, even in the linear scenario. LASSO
is not so effective to balance bias and variance in dynamic
systems, being sensitive to the initial choice d of the model
dimension. This also holds for other recent regularized
approaches for system identification based on atomic and
Hankel nuclear norms [139], [140], [141], [142].

Main difficulty: curse of dimensionality

5 10 15 20
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10000

Model order d 

System memory m

Figure 9 Curse of dimensionality in nonlinear system identification
Number of basis functions, that is, monomials, contained in a
truncated Volterra (polynomial) model of degree 3. The result is
function of the system memory m assuming that the unknown
system to reconstruct is f (xi), where any input location contains
m past inputs, that is, xi = [ui−1 . . . ui−m].

Kernel-based nonlinear system identification
Let us assume that the nonlinear system f belongs to a
RKHS H. The identification data are the n couples {xi, yi},
with the input location given by (48) in the NARX case.
According to (49), direct noisy output data of the input-
output map are available, so that in (47), the term Li[f ]
corresponds to f (xi). Our regularized NARX (or NFIR)
estimator is thus given by

f̂ = arg min
f∈H

n

∑
i=1

(yi − f (xi))
2 + γ∥f ∥2

H. (53)

The application of the representer theorem cited at the
end of the previous section obtains f̂ in closed form. Let
Y = [y1, . . . , yn]T , while K is the so-called kernel matrix
whose dimension is n × n with (i, j)-entry Kij = K(xi, xj).
The estimate of the nonlinear system has the structure of a
particular neural network with only one layer, where the
weights ĉi solve a linear system of equations. Specifically,

f̂ (x) =
n

∑
i=1

ĉiKxi (x) ∀x (54)

with the weights vector given by

ĉ = (K + γIn)
−1 Y (55)

with In the n × n identity matrix.
From a computational viewpoint, the main drawback to
compute f̂ is the inversion of the matrix K + γIn whose
computational cost is O(n3). This problem has been con-
necting machine learning and convex optimization [143],
[144], [145]. Numerical techniques include approximate
representations of the kernel function [146], [147] based
on the Nyström method or greedy strategies [148], [149],
[150]. Low-order kernel approximations are also employed
by truncating the expansion (46), see [151], [152], [153],
[154], [155]. Other randomized approaches are described
in [156], [157], [45], [47]. See also [158] for a recent survey.
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Bayesian interpretation: Gaussian regression of
random fields
In the linear setting, the kernel-based impulse response
estimator can be seen as a minimum variance estimator if
θ is a zero-mean normal vector of covariance proportional
to the kernel, see (41). A similar relationship holds also in
the nonlinear setting with the IR replaced by the input-
output relationship f seen as a nonlinear random surface,
see [22]. Specifically, we model f as a zero-mean Gaussian
random field, that is, given any finite collection of input
locations {x∗i }

p
i=1, the sampled function [f (x∗1) . . . f (x∗p)]

forms a Gaussian vector. Let the covariance of such vector
be λK, where λ is a positive scale factor and K is the
kernel matrix with (i, j)-entry Kij = K(x∗i , x∗j ). Our system
outputs are

yi = f (xi) + ei, i = 1, . . . , n

where, as usual, the noise is white and Gaussian, of
variance σ2, and independent of f . Now, using basic results
on estimation of jointly Gaussian vectors [76], one can still
assess that the posterior mean E(f (x)|Y) coincides with
(54) and, in turn, with (53) just setting γ = σ2

λ . This
interpretation is also useful for hyperparameter tuning.
Letting Z(η) = λK(η) + σ2In, the marginal likelihood
estimate of η has the same expression obtained in the linear
setting in (44), that is,

η̂ = arg min
η

YT(Z(η))−1Y + log det(Z(η)). (56)

Kernels for nonlinear system identification
In the nonlinear setting, the kernel has to describe the
nonlinear input-output relationship. The associated RKHS
contains functions over X with dimension related to the
system memory m.
Kernels can face the curse of dimensionality by the im-
plicit encoding of functions described by (46). A relevant
example is the polynomial kernel

K(x, z) = (⟨x, z⟩2 + 1)r , r ∈ N (57)

where ⟨·, ·⟩2 indicates the classical Euclidean inner prod-
uct. In the NFIR case, it relates to the truncated Volterra
series, since (57) embeds all the monomials up to the r-
th degree. Hence, one has d = (m+r

r ). From (54) and (55),
one can see that monomials’ encoding has important com-
putational advantages, since estimation complexity (even
if cubic in the number n of output data) is linear in the
system memory m and independent of the degree r of
nonlinearity.
Even if the polynomial kernel may induce a very rich class
of functions depending on the degree r, the expansion
(46) contains a finite number d of monomials. Hence, the
RKHS induced by (57) is always finite-dimensional. It is
also possible to use universal kernels that can approximate
any continuous function [159]. The most notable example
is the Gaussian kernel. It was previously defined over the

set of natural numbers in (33) as a possible description
of an IR. In the nonlinear setting, it is defined over a
multidimensional domain as

K(x, a) = e
−∥x−a∥2

ω (58)

where ω is still the kernel width and ∥ · ∥ is the classical
Euclidean norm. The Gaussian kernel is widely used to de-
scribe input-output relationships just known to be smooth.
According to the Bayesian interpretation, where the kernel
is proportional to the covariance, it is associated with a
stationary random field. Fig. 10 (left) plots a realization
that gives an idea of the model underlying the Gaussian
kernel in the NFIR case, with system memory m = 2.
Enriching the Gaussian kernel with a non-stationary com-
ponent can be useful in many circumstances, for example,
to model linear components present in the dynamic sys-
tem. This point is related to the literature on partial linear
models [160], [161], [162]. One simple approach is to add
to the Gaussian kernel a linear kernel, hence obtaining

R(xi, xj) = λLxT
i Pxj + λNLK(xi, xj) (59)

with the matrix P defined e.g. by the stable spline kernel
(36). The two scale factors λL and λNL balance the relative
power of the linear and nonlinear system part and can be
tuned by marginal likelihood optimization. A realization
from the Gaussian random field that includes the linear
part is in the right panel of Fig. 10.
The use of kernels like (59) may require the tuning of
the system memory forcing the use of grids. This problem
can be circumvented by following stable spline-like ideas,
incorporating fading memory concepts in the classical
Gaussian kernel. One can include the information that
ui−k is expected to have less influence on yi as the lag
k increases. Considering just for simplicity the NFIR case,
this can be obtained by redefining K in (59) as

K(xi, xj) = exp
(
−

m

∑
k=1

αk−1
NL

(ui−k − uj−k)
2

ω

)
, 0 < αNL ≤ 1.

(60)
This model is known as nonlinear stable spline kernel in
the literature [163]. The hyperparameter αNL is to model
the exponential decay of the influence of past inputs’ on
the output. Hence, one can set m to a large value. Then,
the decay hyperparameters α and αNL present in P and K,
respectively, will decide the effective memory of the linear
and nonlinear system’s part.

Kernel-based estimation of state-space models
In many cases, physical phenomena can be more easily
modeled by state-space descriptions given by

xi+1 = f(xi) + ei, i = 1, . . . , n (61)

where xi is the d-dimensional state at instant i, while ei
contains the d random noises. The function f is vector-
valued and encapsulates d transition functions, which we
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Figure 10 Bayesian interpretation of regularization in the nonlinear setting Realization from a zero-mean random Gaussian field with
covariance equal to the Gaussian kernel (left) and to the sum of a Gaussian kernel and a linear kernel (right). In this latter case, a linear
trend is generated to describe the linear part of the system.

denote with fk for k = 1, . . . , d. If the system states are all
observable, each transition function can be estimated by
(53), noting that the states xi define both input locations
and measurements. Specifically, if yik indicates the k-th
component of xi+1, our kernel-based estimators of the fk
are

f̂k = arg min
fk∈H

n

∑
i=1

(yik − fk(xi))
2 + γ∥fk∥2

H, k = 1, . . . , d.

(62)
A closed-form expression for f̂k can be obtained using for-
mulas (54) and (55). The stochastic view on regularization
in RKHS can be exploited also to identify more complex
state-space models, in particular, when some of the states
are not measurable. In this context, (61) is coupled with
the output equation

yi = g(xi) + vi

where the function g needs to be estimated. In [164], the
state transition function f is modeled as a GP, while g
as a parametric likelihood of the form p(yi|xi, θy), that is,
the observation model g is assumed to be parameterized
by the finite-dimensional parameter θy. Through sophis-
ticated estimation tools, the authors developed strategies
to estimate the posterior p(x[0,T]|y[0,T]), where y[0,T], x[0,T]
denote, respectively, the time-series of measurements and
states from time 0 up to T. Inferring the distribution over
the state trajectory p(x[0,T]|y[0,T]) is an important problem
in itself known as smoothing. In particular, in [164], a
tailored particle Markov Chain Monte Carlo (PMCMC)
algorithm is used to efficiently sample from the smoothing
distribution, while marginalizing over the state transition
function. Once an approximation of the smoothing dis-
tribution is obtained, with the dynamics of the model
marginalized out, learning the function f is straightfor-
ward, since its posterior is available in closed form, given
the state trajectory.

BOUNDS FOR SYSTEM IDENTIFICATION -
PART A: THE BAYESIAN & GAUSSIAN SET-UP
This section and the next one address the problem of
quantifying the uncertainty about an identified system.
“Part A” complements the exposition so far with useful
error bounds that are derived based on the Bayesian inter-
pretation of kernels for fixed values of the hyperparame-
ters. These bounds are meaningful in a Gaussian-Bayesian
framework, where the user attaches a (Gaussian) probabil-
ity not only to the noise (which is the typical starting point
in statistical system identification), but also to the possible
candidate system models. This framework is elegant and
effective: a simple inference rule (the Bayes’ rule) leads
to rigorous conclusions, by means of computations that
are eased by the Gaussian assumption. Nonetheless, the
sensitivity of the bounds to the working assumptions
and, specifically, to the postulated probability distribu-
tions, may be a legitimate source of concern, encouraging
both the scientist and the user to step back (at least for
a moment) from the Bayesian-Gaussian framework, and
look for alternative and complementary points of view. In
“Part B,” the interested reader can find a brief overview of
alternative approaches to the computation of error bounds,
including some that are rooted in the tradition of system
identification and some that are the subject of active and
challenging research efforts; “Part B” can be skipped at
first reading without loss of continuity.

Bounds for linear systems
Systems in linear regression form:
The linear regression problem (20) has been formulated
as a Gaussian regression problem in “Bayesian interpreta-
tion: Gaussian regression,” where Φ is treated as a fixed
quantity, while the noise and θ are independent Gaussian.
Consequently, the joint probability distribution of θ and Y
is Gaussian, namely

[
θ

Y

]
∼ N

([
E(θ)
E(Y)

]
,

[
Var(θ) Cov(θ, Y)

Cov(Y, θ) Var(Y)

])
(63)
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with E(θ) = 0, E(Y) = 0, Var(θ) = E(θθT) = λP,
Var(Y) = (λΦPΦT + σ2In), and Cov(θ, Y) = λPΦT . The
posterior distribution, which is denoted by p(θ|Y), is the
conditional distribution of θ given Y and is a complete
descriptor of the remaining user’s uncertainty about the
latent θ after that θ has (partially) revealed itself through
the observed data Y. The posterior distribution is obtained
from (63) by the Bayes’ rule, and turns out to be Gaussian
as well:

p(θ|Y) = N (E(θ|Y), Var(θ|Y))

where E(θ|Y) is the conditional expectation and Var(θ|Y)

the conditional variance; E(θ|Y) and Var(θ|Y), which to-
gether specify completely the posterior, can be explicitly
computed by using well-known identities for Gaussian
distributions, that is,

E(θ|Y) = Cov(θ, Y)(Var(Y))−1Y

Var(θ|Y) = Var(θ)− Cov(θ, Y)(Var(Y))−1Cov(Y, θ)

which, by simple substitutions, lead to expressing E(θ|Y)

as in (32) with γ = σ2

λ (thus, as already noticed, E(θ|Y)

coincides with the kernel estimate θ̂ when γ = σ2

λ ) and to

Var(θ|Y) =λP − λPΦT(λΦPΦT + σ2In)
−1ΦλPor

=

(
1

σ2 ΦTΦ +
1
λ

P−1
)−1

. (64)

The distribution p(θ|Y) can then be used at will to evaluate
the uncertainty about θ after observing Y. It is rather
natural to summarize the uncertainty by means of re-
gions around the kernel estimate θ̂. For example, the
uncertainty on the component θi is fully described by the
marginal Gaussian distribution with mean θ̂i = [E(θ|Y)]i
(i-th component of E(θ|Y)) and standard deviation equal
to σi =

√
[Var(θ|Y)]i,i (square root of the i-th diagonal

element of the matrix Var(θ|Y)), and a 95% probability
interval for θi can then be computed as

[θ̂i − 1.96σi, θ̂i + 1.96σi].

Such an interval is said to be a credible interval at level 1− ϵ,
with ϵ = 5%. Similarly, a credible region ΘBayes at level
1− ϵ for the whole θ can be constructed by considering the
smallest volume d-dimensional region that has probability
1− ϵ according to p(θ|Y). Such a minumum volume region
is an ellipsoid, centred at θ̂ = E(θ|Y), that can be written
as ΘBayes ={

θ : (θ − θ̂)T
(

1
σ2 ΦTΦ +

1
λ

P−1
)
(θ − θ̂) ≤ Fχ2

d
(1 − ϵ)

}

where Fχ2
d
(·) is the cumulative distribution function of

the chi-squared distribution with d = dim(θ) degrees of
freedom.
Systems in linear regression form with autoregressive part:
In the setup of (39) and (40), (32) and (64) are still valid,
see [92] for a complete study. This fact can be illustrated
on the simple autoregressive system

yi = θyi−1 + ei (65)

where θ and the noise are independent Gaussian, and
the initial condition y0 is given. First, let us assume that
only y1 has been observed. With Φ = y0 and Y = [y1],
θ and Y are jointly Gaussian for any fixed value of Φ,
so the reasoning leading to (63) applies verbatim. Let us
assume, instead, that the observations are y1, y2; then, the
components of the regressor Φ = [y0, y1, y2] and of the
observation vector Y = [y1, y2] overlap, which calls for
extra care. Nonetheless, the sought distribution p(θ|Y) is
as in the non-autoregressive case: in fact, p(θ|y2, y1, y0) can
be factored as p(θ|y2, y1, y0) ∝ p(y2|y1, θ)p(y1|y0, θ)p(θ) (we
used that y0 is independent of θ).
Linear systems in state-space form:
The uncertainty on the identified system matrices can be
fully described by means of the posterior p(θ|Y) of the
identified parameters, regardless of whether the matrices
are obtained directly by least squares or by computing a
state-state space realization of the identified input-output
transfer function, as discussed in “Linear state-space mod-
els.” Computing uncertainty regions for the unknown
matrix elements is just one of the many possible usages
of the posterior p(θ|Y), which is useful to target a multi-
tude of problems. When these problems require complex
transformation of the identified parameters, a precious ally
for the actual computation of the results is Monte Carlo
sampling. Two examples follow: (example 1) to evaluate
the probability that an unknown system is unstable, it is
sufficient to sample many independent instances of the
identified parameter vector according to p(θ|Y), use these
samples to build many instances of the unknown system
matrix F (for example, F̂(1), F̂(2), . . . , F̂(m)), and count how
many of these matrices have unstable eigenvalues; (ex-
ample 2) a control policy can be chosen as the one that
performs better on a sample of systems obtained according
to p(θ|Y) (see [165], [57], [166]).

Bounds for nonlinear system identification
The formulas for linear systems can be generalized to the
nonlinear case. First, let us consider the setup already
discussed in “Bayesian interpretation: Gaussian regression
of random fields,”

yi = f (xi) + ei (66)

where the input values xi are fixed, f is modeled as a
Gaussian random field, and ei is an independent Gaus-
sian noise. Here, the conditional probability of the ran-
dom field f given the data Y = [y1, . . . , yn]T is still
Gaussian, and the uncertainty about f can be evaluated
at any sequence of user-chosen inputs x∗1 , x∗2 , . . . , x∗m by
computing the distribution of the random vector fx∗ :=
[f (x∗1), f (x∗2), . . . , f (x∗m)]T , which is (see [22], Chapter 2)

p(fx∗ |Y) = N (E(fx∗ |Y), Var(fx∗ |Y))
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with

E(fx∗ |Y) =λKx∗ ,x(λKx,x + σ2In)
−1Y (67)

where Kx∗ ,x is the m × n matrix with (i, j)-entry K(x∗i , xj)

and Kx,x the n × n matrix with (i, j)-entry K(xi, xj), and
with

Var(fx∗ |Y) =λKx∗ ,x∗ − λKT
x∗ ,x(λKx,x + σ2In)

−1λKx∗ ,x.
(68)

As usual, the formula of the conditional expectation
E(fx∗ |Y) coincides with that of the kernel estimate f̂ eval-
uated at the input points x∗ = [x∗1 , x∗2 , . . . , x∗m]T (pro-
vided that γ = σ2

λ ). Notably, (67) and (68) generalize
(32) and (64), which are recovered when f (z) = zTθ

and K(z, z′) = zT(λP)z′. Then, the uncertainty of f at
a given input point x∗i , that is, of fx∗i = f (x∗i ) can be
described by the Gaussian posterior with mean f̂ (x∗i ) =

λKx∗i ,x(λKx,x + σ2In)−1Y and conditional standard devi-

ation σx∗i =
√

λK(x∗i , x∗i )− λKT
x∗i ,x(λKx,x + σ2In)−1λKx∗i ,x.

The corresponding credible interval at level 95% for f (x∗i )
is

[f̂ (x∗i )− 1.96σx∗i , f̂ (x∗i ) + 1.96σx∗i ].

Analogously, the minimum-volume credible region of
probability 1 − ϵ for fx∗ is the ellipsoid

{
fx∗ : (fx∗ − f̂x∗ )TC−1

x∗ (fx∗ − f̂x∗ ) ≤ Fχ2
m
(1 − ϵ)

}
,

where f̂x∗ = E(fx∗ |Y) and Cx∗ is short for Var(fx∗ |Y). In
nonlinear system identification, xi can be defined as a
vector of system inputs, as in (50). Importantly, like in
the linear case, the same formulas (67) and (68) apply to
systems with an autoregressive part, that is, to situations
where xi includes both system input and output values,
as in (48) or in state-space system identification. In this latter
case, valid bounds are obtained by establishing a mapping
between the terms in (66) and the relevant state-space
variables according to the discussion in “Kernel-based
estimation of state-space models,” that is:

» the input xi is the system state at time i,
» the unknown function f is the k-th component of the

system transition function,
» the observation yi is the k-th component of the sys-

tem state at time i + 1.
This forms the basis of the estimation part of the algo-
rithm PILCO [65], which will be discussed in more detail
in the section “Model-Based Reinforcement Learning.” A
generalization to multi-step prediction is available in [167],
while the case of states that are not directly observable is
studied in [164].

BOUNDS FOR SYSTEM IDENTIFICATION -
PART B: BEYOND THE BAYESIAN & GAUSSIAN
SETUP
In this part, approaches outside the Bayesian & Gaussian
setup are considered. For the sake of space constraints,

the discussion will be focused on estimating the impulse
response vector g in (11), and limited to a subset of tech-
niques (for example, system identification in the frequency
domain, [168], will not be discussed). Nonetheless, many
of the concepts here revisited are general enough to be
applicable to more complex linear or nonlinear systems
such as (39) and (49). In fact, more general systems than
(11) are typically addressed in the literature that will be
referenced throughout this section. To begin with, it is
assumed that d, the length of g, be known and sufficiently
small. At least three approaches for the construction of
bounds on the estimation error can then be distinguished
based on the mathematical description of the uncertainty.

I) Uncertainty as a set of possibilities
If the noise sequence (e1, e2, . . . , en) is known to belong
to a set of possible sequences Eposs, then the observed
input-output sequence {(ui, yi)} can be used, together
with a candidate IR {g̃k}d

k=1, to compute the residuals
ẽi = yi − ∑d

k=1 ui−k g̃k , i = 1, . . . , n, which coincide with the
actual noise variables e1, e2, . . . , en when g = g̃. Thus, given
certain input-output measurements, we say that g̃ belongs
to the set of compatible impulse responses, which we de-
note by Θposs, if and only if (ẽ1, ẽ2, . . . , ẽn) ∈ Eposs. This idea
is at the core of the vast literature on set membership system
identification, see [169], [170], [171], [172], [173], [174], [51],
[175], [176], [177]. If Eposs is correctly specified, the true g
certainly belongs to the uncertainty set Θposs. However, the
definition of Eposs is critical: if all the imaginable noise re-
alizations are included in Eposs, the set Θposs ends up being
conservative and uninformative for practical purposes. On
the other hand, removing some noise realizations from the
set Eposs typically invalidates the claim that Θposs certainly
includes g. In engineering, taking risks is often acceptable,
provided that they are quantified and suitably weighed.
This leads to the probabilistic approach.

II) Uncertainty as probability
A natural way to account for the risk due to neglecting a
subset of Eposs is introducing a probability measure P over
Eposs. In fact, P quantifies how likely or important the various
subsets of realizations are. Along with the probabilistic ap-
proach, a subset Eneglected of Eposs with small probability ϵ

(that is,such that P(Eneglected) = ϵ, where ϵ is, for example,
0.01) can be isolated. Then, given a set of input-output data,
a set of candidate impulse responses Θprob is obtained
according to the following definition.

DEFINITION: Θprob is the set of the IRs {g̃}d
k=1 for

which the residuals ẽ1, ẽ2, . . . , ẽn (with ẽi = yi −
∑d

k=1 ui−k g̃k) belong to the set Eposs \ Eneglected (of
probability 1 − ϵ).

(69)
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It is possible that the set Θprob constructed based on the
observed data does not include the true g. Nonetheless,
by the very definition of Θprob, the user can make the
following claim: “g ∈ Θprob, unless an unlikely event of
probability ϵ has happened.” In a common terminology,
1 − ϵ is a confidence value, and Θprob is said to be a
confidence region at level 1 − ϵ for g (as is clear from
the definition, the terms confidence regions and credible
regions denote different concepts; for more details see “A
Bayesian-frequentist interpretation of the bounds”). Many
elaborations are possible; for example, Eneglected can be
defined in such a way that Θprob is maximally informative,
according to some optimality criteria, see [178]. In the
probabilistic approach, the criticality of defining Eposs gives
way to the criticality of defining P, which can be an even
more difficult task. This difficulty explains why classic sys-
tem identification methods do not usually postulate that a
complete probabilistic description P of the noise process
is available (an exception being the archetypical Gaussian
noise set-up), but only that suitable technical conditions for
the applicability of the central limit theorem are satisfied.
While the reader is referred to classic textbooks such as
[2] and [3] for details, the basic idea in the least-squares
setup is that, as the number of data n tends to infinity, the
rescaled estimation error vector

√
n(g − ĝ) tends to have

a Gaussian distribution with zero mean and finite, known
covariance, no matter what the specific distribution P is.
Thus, a classical way to describe the uncertainty of the
least-squares estimate θ∗ of g (21), uses this asymptotic
Gaussian distribution to shape an uncertainty ellipsoid
ΘGauss around θ∗:

ΘGauss =

{
θ : (θ − θ∗)TΨ(θ − θ∗) ≤ 1

n
σ2Fχ2

d
(1 − ϵ)

}
(70)

where Ψ = limn→∞
1
n ΦTΦ, and σ2 is the variance of the

stationary, zero-mean noise process {ek}+∞
k=1. It is common

practice to replace, Ψ and σ2 with their finite-sample esti-
mates Ψ̂n = 1

n ΦTΦ and σ̂2
n = 1

n−d∥Y − θ∗Φ∥2: interestingly,
since σ̂2

n tends to σ2 as n → ∞, the user does not really
need to know σ2, which can rather be considered as an
estimable parameter of the unknown distribution P. This
classic way of proceeding is attractive because it is simple
and bears a promise of wide applicability and objectivity,
in the following precise sense: two users, Alice and Bob,
who observe the same input-output data but postulate two
different probability distributions for the stationary noise
(say PAlice and PBob) not only get the same uncertainty
ellipsoid, but also agree that, asymptotically, ΘGauss becomes
a valid confidence region at level 1 − ϵ. However, the
word ?asymptotically? cannot be safely omitted in the
previous sentence, and relying on asymptotic results can
be deceiving in real life, where only a finite sample of data
is available (see [180], [181]). In concluding, classic results
have two attractive features: they are (i) probabilistic and

(ii) robust with respect to a large variety of probabilistic
formulations that may be adopted to describe the uncer-
tainty. Unfortunately, they are not valid for finite samples
of data.

III) Probabilistic and robust approach
Remarkably, it is possible to construct finite-sample valid
confidence regions by exploiting only some rather general
statistical features of the noise process, a notable example
of these features being stochastic symmetry (which we call
just symmetry). For example, two independent zero-mean
Gaussian noise variables e1, e2 are symmetric because, con-
ditioning on their absolute values |e1|, |e2|, the four possi-
ble sequences (+|e1|,+|e2|), (+|e1|,−|e2|), (−|e1|,+|e2|),
and (−|e1|,−|e2|) are equally probable. Besides Gaussian,
infinitely many other distributions are symmetric. More-
over, for the symmetry property to hold, a noise sequence
e1, e2, . . . , en need not be identically distributed, and one
can easily see that even independence is not necessary. In
this sense, symmetry is a mild assumption. Nonetheless,
under the symmetry assumption, it is possible to define (i)
valid and (ii) informative confidence regions Θprob:
(i) The possibility to define valid regions is implied by the
existence of statistical tests for symmetry that are valid at
a user-chosen level 1 − ϵ. A simple example of such a test
is the following one: a sequence ẽ1, ẽ2, . . . , ẽ10 passes the
test if and only if ∑10

i=1 sign(ẽi) < 10. Then, a symmetric
sequence fails the test whenever it is all made of positive
values, which happens with probability (1/2)10 = 1

1024
only. Thus, by calling Eneglected the subset of Eposs where
the test fails, a region Θprob constructed according to the
usual definition (69) is necessarily a confidence region at
level 1 − 1

1024 .
(ii) The possibility to construct regions that are really
informative for the purpose of system identification is much
less obvious. Informally, the more a candidate g̃ differs
from the true g, the higher the probability must be that
the corresponding residuals ẽ1, . . . , ẽn belong to Eneglected.
The Sign-Perturbed-Sums (SPS) algorithm, [182], enforces
this property by building a statistical test upon the normal
equations encountered in least-squares estimation. In this
way, testing for symmetry is connected to the system
identification goal and the gap between asymptotic op-
timality and finite-sample validity is filled ([183] contains
the proof that, as n tends to infinity, the uncertainty region
constructed by SPS becomes more and more similar to the
classic region (70)).

For more results about SPS and other methods based on
the principles here briefly outlined, the interested reader is
referred to the overview [184] and the related works [185],
[186], [187], [182], [188], [189], [190], [191], [192], [193],
[194], [195]. See also the sidebar “The limits of learning”.
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A Bayesian-frequentist interpretation of the bounds
To further remark the difference between a credible region

ΘBayes and a confidence region Θprob , confidence regions like
Θprob are sometimes called frequentist confidence regions. This
terminology can be motivated as follows. Let us fix g in system
(11) and then consider M repeated thought experiments: in each
experiment, data are generated by independently resampling
the noise; for each experiment, let us construct the confidence
region at level 1 − ϵ, denoted by Θ(i )

prob , computed using the i -
th experiment data; let us compute the frequency freqM with
which the so-obtained M regions include the fixed g , that is,
freqM = 1

M ∑M
i=1 1{g ∈ Θ(i )

prob} (1{g ∈ Θ(i )
prob} = 1, if g ∈ Θ(i )

prob ;

1{g ∈ Θ(i )
prob} = 0, otherwise); it can be seen that freqM

tends to 1 − ϵ as M → ∞. In general, credible regions are not
valid frequentist confidence regions: in fact, in a similar series
of mental experiments, the credible regions at level 1 − ϵ will
include the fixed g with a frequency that departs from 1 − ϵ

and depends on the specific value of g . The reverse implication
is also false: in general, confidence regions at level 1 − ϵ are
not credible regions at level 1 − ϵ. However, a common ground
for (Bayesian) credible regions and (frequentist) confidence
regions can be found: let us consider again M independent
experiments but assume that, in each experiment, an instance
of the noise sequence and an instance g (i ) of g are drawn
together according to the Bayesian distribution Pg ,noise that
models the uncertainty with respect to both the noise and the
model g . Then, the frequencies 1

M ∑M
i=1 1{g (i ) ∈ Θ(i )

prob} and
1
M ∑M

i=1 1{g (i ) ∈ Θ(i )
Bayes} both converge to 1 − ϵ. Any region

(whether it be a credible region, a confidence region, or none of
the above) that includes g with a 1 − ϵ rate when samples are
repeatedly drawn from the Bayesian prior Pg ,noise is said to be
a valid Bayesian-frequentist region, [179].

The limits of learning
The analysis of finite-sample algorithms offers a constructive

way to show that certain systems can be “learned” from data.
In fact, finite-sample algorithms like the Sign-Perturbed-Sums
(SPS) algorithm, [182], provide a direct, data-oriented approach
to the construction of bounds, which are constructed based on
complex manipulations of the available data, so that informative
data lead to smaller uncertainty regions, while noninformative
data lead to larger regions. In particular, in SPS, the shape
of the region depends on the outcome of suitable symmetry
tests, and some theoretical investigations have been carried
out to study under which conditions the ensuing regions are
well-shaped, [182], bounded, [196], shrink, and at which rate,
[183]. A complementary approach to the learning problem is
offered by the literature that investigates the limits of learning

by connecting learning rates to certain characteristics of the
system (for example, its stability radius, the variance or the sub-
Gaussian norm of the noise, etc.), see e.g. [197], [198], [199],
[200], [201], [202], [203], [204], [205], [206], [207], [87], [208],
[209], [210]. Typically, from these studies, finite-sample bounds
around ĝ can be obtained that depend on certain features of
the data-generating systems. These bounds have a theoretical
value and play a role as a sanity check for uncertainty regions,
like those provided by SPS, which exploit in more complex ways
the observed data. Unlike SPS bounds, these bounds are not
engineered to produce tight confidence regions at level 1 − ϵ.
Nonetheless, the gap with respect to tight approaches like SPS
can be reduced to some extent by estimating some relevant
features of the system from data.

The Bayesian approach revisited
As it was amply discussed, the estimation problem be-
comes quickly ill-posed when d is taken as a large value.
While regularization fixes ill-posedness at a technical level
(variants of SPS that incorporates a regularization term
were proposed in [211], [212], [213], [214]), there are
intrinsic limits on the information that a small amount
of data can carry about a large amount of parameters.
Thus, limitations on the possible model structures are
often introduced, [215], while leaving open the possibility
to detect undesired undermodeling (see [216], [217]). A
more radical approach prescribes to attach a probability
to the set of the infinite many possible candidate system
models, similar to what is normally done with the set of

the possible noise realizations in the standard probabilistic
approach. This idea is at the core of stochastic embedding,
[218], [219], [220], and has been revitalized by the Bayesian
interpretation of kernel methods (see also [221] for the
relationship between Stochastic Embedding and kernel
methods). In this framework, a probability Pg,noise weights
the realizations of both the noise and the unknown g. In
the Gaussian setup, this leads to the bounds in “Part A,”
while in the more difficult non-Gaussian setup, numerical
and randomized methods such as Markov chain Monte
Carlo techniques are particularly helpful to compute the
bounds, see [94], [222].

However, it must always be noted that two users,
Alice and Bob, who use different distributions Pg,noise
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will end up computing different posterior distributions
and, therefore, construct different credible regions ΘBayes.
In particular, they will draw different conclusions about
whether their regions are valid credible regions at level
1 − ϵ or not.

Beyond Bayesian
A first approach, already employed in this article to ro-
bustify the Bayesian prior Pg,noise, is introducing hyper-
parameters in the definition of Pg,noise: if the different
beliefs of Alice and Bob can be reduced to a different
choice of a parameter, which we denote by η, then Alice
and Bob can step back from their beliefs about η and try
to estimate η from the available data, for example, by
considering the most likely value of η given the obser-
vations. This idea is employed in EB methods, [53], [54],
[52], and generalizes the classic trick of replacing σ with
the data-based estimate σ̂n in (70). However, finite-sample
error bounds that are valid for both Alice and Bob are
hardly obtained in the presence of tunable hyperparam-
eters, unless η is, in turn, treated as a random variable,
and Alice and Bob agree on its distribution (in this case,
in fact, the inferences of both Alice and Bob can be carried
out in a fully Bayesian framework). Overall, balancing
between the size and the robustness of error bounds is an
intriguing research challenge. In response to this challenge,
the Bayesian-Frequentist-Bound (BFB) framework of [179]
offers the possibility to modulate the commitment to prior
information, so as to modulate the size of the class of dis-
tributions Pg,noise for which the computed bounds are valid
at least in a Bayesian-frequentist sense, see “A Bayesian-
frequentist interpretation of the bounds” for a definition of
this concept. In this framework, hyperparameters tuning
can also be accommodated to some extent.

KERNEL METHODS AND GAUSSIAN
PROCESSES FOR CONTROL
In this section, we provide a bird’s-eye-view of the most
recent work in learning-based control incorporating the
use of kernel-based methods/GPs within traditional con-
trol techniques. The section is articulated in six paragraphs.
In the first paragraph, a Bayesian kernel-based approach
(see section "Regularized least squares") is exploited to
identify the system response of a discrete-time and BIBO
stable linear system. The model obtained is endowed with
a detailed description of the uncertainty around it (see
section "Bounds for linear systems") that allows to develop
stochastic robust control strategies. In the subsequent four
paragraphs, Gaussian regression is used to derive state-
space models (see "Gaussian processes and regression:
main concepts and formulas" and sections "Kernel-based
estimation of state-space models" and "Bounds for non-
linear system identification"). Within this context, GPs are
exploited to provide probabilistic models predicting either

the overall dynamics or a residual uncertainty quantifying
the model mismatch with respect to a known nominal
description of the system. The confidence of these prob-
abilistic models is important information that can be used
in several ways to properly modify the design of classic
model-based control schemes. Specifically, in these four
paragraphs, we review the combination of GPs with ro-
bust control for linear systems, adaptive control, feedback
linearization, and MPC. Finally, in the last paragraph,
we shortly mention the adoption of GPs in model-based
reinforcement learning algorithms for control purposes
that will be the topic extensively treated in the next section.

Kernel-based stochastic robust control of a SISO
linear system
We describe with some details the stochastic robust con-
troller proposed in [56]. The problem regards a discrete-
time stable and linear SISO system. Its unknown IR is
denoted by g, with the related transfer function (the z-
transform of g) given by G(z). The plant is fed with a
known input and has to be estimated from the output data
collected in the vector Y. These same data are also used to
design a controller C(z) such that the closed-loop system

G(z)C(z)
1 + G(z)C(z)

is close to a target transfer function W(z). The distance can
be measured by the two-norm

∥∥∥∥∥W(z)− G(z)C(z)
1 + G(z)C(z)

∥∥∥∥∥
2

. (72)

This defines the fit performance of the controller C(z)
applied to the true plant G(z) as

100

(
1 −

∥∥∥∥∥W(z)− C(z)G(z)
1 + C(z)G(z)

∥∥∥∥∥

2

2

/∥W∥2
2

)
. (73)

Adopting a high-order FIR model with unknown coeffi-
cients in the vector θ, system identification can be per-
formed via ReLS (32a). We have also seen that, using
its Bayesian interpretation, the obtained model θ̂ can be
complemented with a description of the uncertainty given
by a Gaussian posterior distribution. In particular, after
seeing the data, the IR becomes the following Gaussian
random vector,

θ|Y ∼ N (θ̂, Σ̂) (74)

with posterior covariance Σ̂ given by (64). In (72), we can
now replace G with the z-transform of θ|Y. This makes
the distance (72) a random variable, since it incorporates
the stochastic uncertainty around the nominal plant. For
any choice of the controller C(z), its probability density
can be (in principle) computed using (74). This point is
important, since it designs the controller via statistical
criteria. A significant example is given by minimization of
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Gaussian processes and regression: main concepts and formulas
We have seen the equivalence between kernel-based iden-

tification and Gaussian regression (kernels become covari-
ances), see sections "Kernels and Gaussian regression: an in-
troduction to some key concepts" and "Bayesian interpretation:
Gaussian regression of random fields." It is useful to summarize
the main formulas starting directly in a stochastic framework,
since this is the approach taken in several articles combining
control and state space models, see section "Kernel methods
and Gaussian processes for control." Assume f : Rm → R is
a Gaussian process of zero mean and covariance λK, where
λ is a positive scale factor and K is a positive-definite Kernel
function. This means that, given any finite collection of input lo-
cations {xi }n

i=1, the sampled function [f (x1), . . . , f (xn)] forms a
Gaussian vector of covariance λK, where K is the kernel matrix
with (i , j )-entry Kij = K(xi , xj ). Using a standard notation, we
denote the Gaussian process as

f ∼ N (0, λK).

Assume we have a set of n measurements, over the n inputs
{xi }n

i=1, of the form
yi = f (xi ) + ei

where ei ∼ N (0, σ2) is zero-mean Gaussian noise with vari-
ance σ2. As seen, the posterior distribution p(f |Y) is still
Gaussian and, using Bayes’ rule, one can compute its mean and
covariance, which give all the information needed to implement
an estimator, a predictor, and a control rule. Specifically, the
best prediction in the mean squared sense at x ∗, given the
information Y = {y1, . . . , yn}, is

f̂ (x ∗) = E [f (x ∗)|Y ] =
n

∑
h=1

ch λK(xh , x ∗)

where the coefficients ch ’s are given by



c1
...

cn


=(λK+σ2I)−1




y1
...

yn


 , K=




K(x1,x1) . . . K(x1,xn)

...
...

K(xn,x1) . . . K(xn,xn)


 .

Moreover, the a posteriori variance of the estimate f (x ∗) is
given by

Var [f (x ∗)|Y ] = λK(x ∗, x ∗)−

λ
[
K(x1, x ∗) . . . K (xn , x ∗)

]
(λK + σ2In)−1 λ




K(x1, x ∗)
...

K (x n , x ∗)


 .

The above approach can be easily extended to the case where
the mean of the GP is not zero but equal to a mean function
m(x ), that is, f ∼ N (m(x ), λK). This is useful, since any a
priori insight into the dynamics of the system can be readily
encoded in the mean function. Indeed, it is often possible to
capture the main properties of the dynamics, for example, by
using a simple parametric model or a model based on first
principles. Now, consider the dynamical system

xi+1 = f(xi ) + ei i = 1, . . . , n (S71)

where xi is the d -dimensional state at instant i , ei contains the
d random noises, and the function f is vector-valued and en-
capsulates d transition functions denoted by fk for k = 1, . . . , d .
If the system states are all observable, each transition function
fk can be estimated by modeling it as a GP and by exploiting
the above formulas on the set of pairs {xi , yik }n

i=1, where the
measurement yik is the k -th component of xi+1. It turns out that
the overall state transition function f is estimated employing d
independent GPs. The extension to systems of the form

xi+1 = f(xi , ui ) + ei i = 1, . . . , n

where ui is an input applied to the systems, is easily obtained
rewriting the system as xi+1 = f(x̃i ), i = 1, . . . , n, where the
augmented states x̃i = (xi , ui ), i = 1, . . . , n, are now the
input locations to be considered. If a nominal model fnom of the
system is known a priori, this knowledge can be incorporated
into the mean of the d GPs. Alternatively, rewriting the system
as

xi+1 = fnom(xi , ui ) + f̃(xi , ui ) + ei i = 1, . . . , n

where f̃ represents the model mismatch between the true model
and the nominal model, the previous GP framework can be
applied to directly estimate f̃. In recent years, Gaussian regres-
sion has been widely adopted to derive state-space models for
control purposes. In light of this, in section "Kernel methods and
Gaussian processes for control," we review the use of GPs with
traditional control methods, like MPC, robust control, adaptive
control, feedback linearization, and reinforcement learning.
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the expected value of (72). In general, this leads to a diffi-
cult and nonconvex optimization problem. An interesting
convexification is obtained as follows:

» the controller C(z) is linearly parametrized assuming
that it is the sum of p basis functions ϕi(z) with
unknown coefficients contained in the vector η, i.e.,

Cη(z) =
p

∑
i=1

ηiϕi(z); (75)

» the performance index (72) is so reformulated: for
any plant g it is given by

Errη(g) :=
∥∥∥W(z)(1 + G(z)Cη(z))− G(z)Cη(z)

∥∥∥
2

2
.

(76)
Now, we replace g with the Gaussian vector θ|Y and take
the expectation so that the objective depends only on the
controller parameters η. Hence, our stochastic robust control
problem becomes

η̂ = arg min
η

E [Errη(θ|Y)]. (77)

Interestingly, as shown in [56], the optimization problem
(77) is quadratic in η and thus admits a closed-form
solution. In fact, it is equivalent to solving

arg min
η

Errη(θ̂) + η⊤Aη (78)

where, recalling (74), θ̂ is the estimate of the plant (the pos-
terior mean of θ), while A is a suitable matrix that depends
on the posterior covariance Σ̂ and the basis functions ϕi
that generate the controllers’ space, see [56] for details.
One can see that the optimal coefficients in η tradeoff
two different terms: the error relative to the nominal plant
plus another one that accounts for its uncertainty (with A
that can be interpreted as a regularization matrix). Instead
of minimizing the expectation of the distance (76) as in
(77), other forms of robustness could be pursued. Another
example in [56] regards minimization of the worst-case
distance using a minmax formulation, coupled with the
scenario approach [166].

A numerical experiment
For illustrative purposes, we consider a benchmark exam-
ple taken from [56]. A realistic posterior distribution (74)
of linear dynamic systems is built as follows. The mean
θ̂ is given by the first 200 IR coefficients of the following
rational transfer function

Ḡ(z) =
0.28261z + 0.50666

z4 − 1.41833z3 + 1.58939z2 − 1.31608z + 0.88642
(79)

while the covariance Σ̂ is obtained by an identification
experiment. In particular, 500 output measurements are
obtained by applying to Ḡ an input given by white
noise filtered by a randomly generated second-order stable
transfer function. The outputs are then corrupted by white
Gaussian with a SNR equal to 100. A FIR model of dimen-
sion 200 is obtained by ReLS (32a) using the stable spline
prior (36) with hyperparameters estimated via marginal

likelihood optimization. The posterior covariance Σ̂ is then
computed using (64).
Now, we consider a Monte Carlo study where at any run,
a plant G(z) (represented by a FIR of dimension 200) is
drawn from our Gaussian posterior distribution of mean
θ̂ and covariance Σ̂. The controller C(z) is a FIR of order
5, combined with an integrator:

Cη(z) =
η1 + η2z + . . . + η6z5

z4(z − 1)
(80)

with η obtained using two different algorithms. The first
one, called Nominal, determines the parameter vector η as
the minimizer of Errη(θ̂) with the objective defined in (76).
So, no uncertainty is included in the controller synthesis,
just the posterior mean is used. The second one, called
Robust, achieves η by minimizing (78). Hence, it exploits
the uncertainty around θ̂ and minimizes the expected error.
Fig. 11 (left panel) shows the fits (73) achieved by the
two algorithms after 300 runs. The control performance is
largely improved by exploiting the Gaussian uncertainty
bounds around the nominal model. The right panel of the
same figure shows the results obtained by reducing uncer-
tainty, repeating the Monte Carlo study with Σ̂ divided by
10.

Gaussian Process - based Model Predictive
Control
The combination of MPC and learning techniques is a
research field that is attracting great interest in the control
community because of the opportunity for data-driven
improvement of the closed-loop action, while maintaining
the established guarantees of optimal control [64].
The use of GPs as prediction models in the MPC frame-
work dates back to 2005, when in [223], the authors have
described a general nonlinear MPC (NMPC) algorithm
based on a GP model. In [223], the proposed approach has
been tested on a benchmark pH process control. However
the trend of most recent research (see [62], [63]) is that
of exploiting GPs as an augmentation for a physics-based
model to estimate unexpected disturbances rather than
learning the overall plant dynamics, see [224].
In general, the optimization problem arising in GP-based
MPC can be formulated as a stochastic optimal control
problem (SOCP), where the minimization function is an
expected value, the differential equation constraint (that is,
the dynamics of the system) is subject to uncertainties, and
the system constraints must be satisfied in probability. The
direct solution of SOCP is computationally hard, especially
when dealing with nonlinear systems. In such case, the
main challenge is the uncertainty propagation over the
prediction horizon, since Gaussian uncertainty (obtained
from the GP) is no longer Gaussian when propagated
through the nominal nonlinear dynamics. As a conse-
quence, approximation methods are needed, such as exact
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Figure 11 Robust control of a SISO linear system. Fits of the closed-loop system. Different open-loop systems are drawn from a Gaussian
random vector with posterior covariance defined by the stable spline prior (36) conditional on the available output data. The controller is
then designed using only the mean of the random vector (Nominal) or taking into account the uncertainty by minimizing the average
distance (77) (Robust). Results in the right panel are obtained by reducing the uncertainty around the posterior mean (the posterior
covariance is divided by a factor 10).

moment matching [225], linearization [62], ellipsoidal un-
certainty set propagation [226], or sigma-point transform
[227]. In addition, further approximations are adopted (for
example, only the mean of the process is propagated or
the GP’s covariances are kept constant over the prediction
horizon [62]) to reduce the computational costs and to
achieve real-time implementation. A side effect of all these
approximations is that crucial information on the model is
lost and the probabilistic constraints might be violated.
Recently in [228], an open-source toolbox combining a
MATLAB-based Fast NMPC solver and a Python library
for GP regression has been presented to define an off-
the-shelves framework for implementation of GP-based
learning-based NMPC. Starting from a nominal model and
model mismatch data or input-output measurements, the
toolbox trains the GP either as a model mismatch estimator
or black-box model and automatically get the information
needed for the NMPC problem.

Feedback linearization using Gaussian
Processes
Feedback linearization is a general technique employed
to control nonlinear systems. It consists of transforming a
nonlinear control system into an equivalent linear control
system through a change of variables and a suitable control
input. Consider a system of the form

ẋ = f (x) + G(x)u (81)

where x, u ∈ Rn, f : Rn → R, and G ∈ Rn×n. For
simplicity, assume that G is invertible for any x. Then, by
applying u = G−1(x) (−f (x) + a), where a is an auxiliary
input, the resulting dynamics turns out to be ẋ = a. Now,
depending on the specific task to be accomplished, a can
be efficiently designed (in particular, guaranteeing expo-
nentially fast convergence), resorting to classical feedback
control techniques used for linear systems. Typically, we

refer to the design of u and a as, respectively, the inner loop
and the outer loop of the overall control scheme. Notice
that, the feedback linearization approach above reviewed,
requires the accurate knowledge of the model. In [60], the
authors have considered a system of the type (81) written
in the controllable canonical form (see (1) in [60]) with the
goal of stabilizing it. In [60], both f and G are assumed
to be unknown, and estimates f̂ and Ĝ are obtained using
GPs. In the identification procedure, the knowledge of the
control affine structure of the system is transferred into
the kernel function, identifying the system in closed-loop,
while an arbitrary controller is running the system. Based
on f̂ and Ĝ, the following controller is

u = Ĝ−1(x)
(
−f̂ (x) + a

)
(82)

where the auxiliary input a is designed in such a way to
drive x to 0 exponentially fast if f̂ and Ĝ coincide with f
and G, respectively. As a main contribution, it is proven
that (82) is globally uniformly bounded and that the ulti-
mate bound is reduced as more knowledge (training data)
is available. Interestingly, an upper bound on the size of
the set to which the system converges with a probability
greater than a given threshold is derived depending on the
maximum mutual information that can be extracted from a
training set composed of an assigned number of points and
on the covariance of the estimate obtained on the function
f . In particular, the smaller the mutual information and
the covariance, the smaller the upper bound. A similar
approach has been proposed in [229] in the context of
control of mechanical systems. A robust version of the
learning-based feedback linearization strategy previously
described has been proposed in [61] in the context of
tracking control of Lagrangian systems. In [61], the authors
are assumed to have a nominal knowledge of the system,
and GPs are used to approximate the error between the
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commanded acceleration and the actual acceleration of the
system. The predicted mean and variance of the GP are
used to calculate an upper bound on the uncertainty of
the linearization, which, in turn, is used in the design of a
term to be added to the outer controller a to make robust
the overall feedback linearization scheme. It is proven
that the proposed strategy guarantees that the tracking
error converges to a ball with a radius that can be made
arbitrarily small through appropriate control design.

Integrating Gaussian Processes and Adaptive
Control
Traditionally, adaptive control deals with systems with
parametric uncertainties. Of notable mention are dynamic
models that are affine in the input and in the uncertain
parameters, that is,

ẋ = fx(x) + fu(x)u + fθ(x)θ

where x is the state; fx, fu, and fθ are nominal functions
assumed to be known; u is the input; and θ is the vector
parameters uncertainties. The control input is u(t) =

π(x(t), θ̂(t)), where θ̂(t) is an estimate of θ. Adaptive
control aims at adjusting online the vector θ̂ (and, in turn,
the characteristics of the controller) based on the output
feedback of the system in a way that the tracking error
is reduced while stability is maintained. The vector θ̂ is
typically adapted by using either a Lyapunov function to
guarantee that the closed-loop system is stable or model
reference adaptive control (MRAC) to make the uncertain
controlled system tracking the behavior of a predefined
stable reference model [230]. One of the main challenges
in adaptive control is preventing the estimated model from
overvitting the latest observations, [230], [231]. GP-based
probabilistic models provide a useful tool in this regard
and are exploited by learning-based adaptive control ap-
proaches to achieve cautious adaptation by weighting the
contribution of the learned model based on the model
output uncertainty. An interesting approach has been pro-
posed in [58], where the authors have considered the
system ẋ = f (x, u) + f̃ (x, u), where f (x, u) = fx(x) + fu(x)u
is the known nominal dynamics and f̃ (x, u) is the unknown
dynamics of the same form, that is, f̃ (x, u) = f̃x(x)+ f̃u(x)u.
In the context of MRAC, the adaptive law introduced in
[58] is given by the sum of two suitably weighted terms.
The first term, denoted as πnom(x(t)), is a control policy
derived from the application of a feedback linearization
approach to the nominal model. Due to the unknown
dynamics, πnom(x(t)) introduces feedback linearization
errors that are compensated by the second term, denoted
as πlearn,t(x(t)), which is the adaptive component designed
based on the GP approach. To deal with the uncertainty
of the GP model learning, the two terms are combined as
πt(x(t)) = πnom(x(t)) − γ(x(t), u(t))πlearn,t(x(t)), where
γ(x(t), u(t)) ∈ [0, 1] is a weighting factor, with γ = 0

denoting low confidence in the GP. A stochastic stability
analysis has proven the stability of the overall system. The
effectiveness of the approach has been tested in quadrotor
experiments [58], [59]. Interestingly, in [232], the authors
have proposed an approach to the training of GP models
for MRAC inspired by generative neural networks models.
The architecture introduced in [232] is termed as model
reference generative network (MRGeN). Loosely speaking,
MRGeN is a neural network model for the system un-
certainties that predicts the pair of state-uncertainties for
GP inference. The MRGeN weights are updated such that
network weights are moved in the direction of reducing
the reference model tracking error.

Gaussian Process Models for Robust Linear
Control
Robust control is another design technique that deals
with uncertainty. Its aim is to find a suitable controller
to deal with uncertain model parameters and to account
for all possible disturbances, typically assumed to belong
to a compact set [233]. Consider time-invariant systems
composed by the sum of a known linear nominal model
and an unknown nonlinear component, that is,

xk+1 = Axk + Buk + f̃ (xk , uk , wk) (83)

where wk is a process noise and where f̃ (xk , uk , wk) ∈ F,
with F being known and bounded. Quite often in liter-
ature, it is assumed that f̃ (xk , uk , wk) = Ãxk + B̃uk + wk ,
where Ã, B̃ are unknown matrices. Specific structures of
Ã, B̃ model different types of uncertainties, for exam-
ple, additive, multiplicative and feedback uncertainties.
Design techniques, such as H∞ and H2-control design,
yield controllers that are robustly stable for all f̃ ∈ F. It
is known that classical robust control approaches might
attain conservative performance in particular when the
uncertainty region is quite large. The goal of learning-
based robust control is to improve the performance by
reducing the model uncertainty in (83). In [55], the un-
known nonlinear dynamics f̂ are learned as a GP, which
is then linearized about an operating point. Specifically,
the uncertain linear dynamics in (83) are assumed to be
modeled as (Ã0 + Ã1 ◦ ∆A)xk + (B̃0 + B̃1 ◦ ∆B)uk , where Ã0
and B̃0 are obtained from the linearized GP mean, Ã1 and
B̃1 are obtained from the linearized GP variance (often two
standard deviations), ∆A and ∆B represent matrices with
elements taking any value in the range of [−1,+1], and
◦ is the component-wise multiplication of matrices. The
discrete-time controller is designed by solving a suitable
convex optimization problem in terms of linear matrix
inequalities, where the objective is to minimize an error
signal caused by all the possible uncertainties. Interestingly
the proposed approach has been tested on a quadrotor.
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Reinforcement Learning
Another field where GPs are used in control applica-
tions is reinforcement learning. Reinforcement learning
is based on the the idea of learning a control law to
achieve a task by interaction with the surrounding world.
Reinforcement learning algorithms can be categorized in
multiple subclasses accordingly to which characteristics of
the algorithms we want to focus on. For example, one of
the most common distinctions is between model-free and
model-based algorithms. In the first class of algorithms,
GPs are commonly used to approximate the value function:
[234] used GP to learn the temporal difference of the
value function in GP-TD, then refined in GP-SARSA [235],
and then made more data efficient using delayed GP
updates in DGPQ [236] and by combining demonstrations
and exploration techniques in GPPSTD [237]. In GPQ-
MFRL [238], the authors propose to use incrementally
more difficult simulators to learn the value function with
GPs. In model-based algorithms, GPs are used to build
a model of the system dynamics based on data collected
by interacting with the system. This class of algorithms
has been successfully applied to solve control applications
on the mechanical system, and it will be discussed in the
next section. There are also hybrid approaches that try to
combine both model-based and model-free algorithms like
in [239] or where model-based reinforcement algorithms
are combined with standard control techniques like in [50].

MODEL-BASED REINFORCEMENT LEARNING
Model-based reinforcement learning (MBRL) algorithms
collect data by interacting with the environment to learn a
dynamical model of the system. As in MPC, such a model
is used to simulate the system and update the policy by
optimizing the simulated dynamics. In this way, MBRL
algorithms aim at limiting interaction time with the real
system and improving data efficiency. However, unlike
MPC, which optimizes the future evolution of the system
online, MBRL algorithms perform simulation and control
optimization offline, getting over the computational time
constraints due to real-time control. This difference makes
the usage of more complex model possible and allows
considering stochastic behaviors in a comprehensive way.
MBRL algorithms can be divided into value-based and
policy-search-based algorithms. The first example of MBRL
algorithm can most likely be attributed to [240] under
the name of Dyna. The Dyna architecture proposes a
general scheme for value-based algorithms that use the
accumulated experience to simultaneously build a dynam-
ical model of the system, update the value function, and as
consequence, learn a policy. The Dyna algorithm updates
the value function applying a Q-learning approach (or any
other suitable approach) in the learned dynamical model
instead of the actual system. Some relevant evolution of
this approach are proposed in VAML [241] and IterVAML

[242], where notably, the modeling and planning part of
the algorithm are not independent, and the value function
is considered while learning the model. The second cat-
egory of MBRL, namely policy-search-based algorithms,
is the one we will focus on the most because it has a
successful history of real-world applications to mechanical
systems, and it is explored both in the RL and in the
control community. A pioneer algorithm was proposed in
[65], [243], [244] under the name of PILCO, which inspired
several MBRL algorithms [67], [245], [246], [68], [69], [247].
Given the system state xt ∈ Rd and the system input
ut ∈ Rm, these algorithms model the system dynamics as
a discrete-time system with an unknown one-step-ahead
stochastic transition function f (·). Let x̃t = [xt, ut] be the
augmented state concatenating xt and ut. Then,

xt+1 = f (x̃t).

The applied inputs are selected according to a policy
function πθ(xt) that depends on the state xt and the policy
parameters θ. For instance, a widely used policy in MBRL
is the RBF-network policy, followed by a squashing func-
tion to limit system inputs, if necessary. The parameters of
the RBF-network are centers, lengthscales, and weights of
the Gaussian functions, denoted respectively by a, l, and
w, that is, θ = {a, l, w}. The expression of a RBF-network
policy with ng basis is

πθ(xt) =
ng

∑
i=1

wi exp


−

d

∑
j=1

(
aj

i − xj
t

2lj

)2
. (84)

Other examples of policy functions can be the linear pol-
icy, the PID controller, or general ANN. In this class of
algorithms, a cost function c(xt) encodes the task to be
accomplished. For instance, a widely used cost function
adopted in MBRL is the saturated distances from the target
state x∗, expressed by

c(xt) = 1 − e−(xt−x∗)
T L(xt−x∗) (85)

where L is a diagonal matrix. The diagonal elements of
L allow weighting distances w.r.t. the different state com-
ponents. c(xt) defines the instantaneous cost, the actual
objective function optimized by this class of algorithms is
the expectation of the cumulative cost, that is, the sum of
the costs occurred in T steps, expressed as

J(θ) =
T

∑
t=0

E(c(xt)). (86)

The expectations in (86) are computed w.r.t. the state dis-
tribution induced by the initial distribution p(x0), f (·), and
θ. The general algorithmic structure followed by this class
of algorithms consists of a repetition of several attempts
to solve a desired task, called trials. For each trial, the
following three steps are computed:

» Model Learning: the data collected from all the pre-
vious interactions are used to build/update f (x̃t),
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the stochastic model of the one-step-ahead transition
function (at the first trial, data are collected applying
possibly random exploratory controls);

» Policy Update: the policy parameters θ are optimized
in order to minimize Ĵ(θ), that is, an approximation
of J(θ).

» Policy Execution: the current optimized policy is ap-
plied to the system, and the data are stored for model
improvement.

Figure 12 Illustration of the MBRL main three computational steps
at each trial.

Figure 12 represents one trial of a typical MBRL algorithm,
where the three steps described above are repeated in cycle
to improve the model and the policy of the algorithm.
In the next sections, we detail some of the main policy-
search-based algorithms, dividing them according to how
the state distribution is propagated, either with moment
matching or with particles evolution.

PILCO and Approaches based on Moment
Matching
As mentioned above, PILCO [65] is recognized as one of
the most fundamental and representative algorithms of the
policy-search class of MBRL algorithms. For this reason,
we describe the realization of the above general three
steps proposed by PILCO as baseline. This description
will be helpful in the discussion on the main MBRL
algorithms developed in the wake of PILCO. PILCO relies
on GPR to learn the transition function f (x̃t). Each of the
d components of f (x̃t) (hereafter denoted by f i(x̃t), with
i = 1 . . . d) is modeled with a distinct GP, independent
from the others given the GP input x̃t. The algorithm
assumes that the state is completely observable (that is,
we measure all the components of xt) and derives the
input-ouput dataset used to train GPs starting from the
state-input dataset D = {(xt, ut), t = 1, . . . , Tn} collected
in previous n trials. The prior of each i-th GP is normally
distributed with mean xi

t, that is, the i-th state component
at the current time t for better numerical properties and
covariance matrix defined by a kernel function ki(x̃j, x̃h)

given by the sum of two terms, namely,

ki(x̃p, x̃q) = ki
G(x̃p, x̃q) + δpqσ2 (87)

where ki
G is the Gaussian kernel defined in (58), while

δpqσ2, with δpq = 1 (resp. 0) if p = q (resp. p ̸= q) is the
regularization term needed to account for noise. Then, the
posterior distribution of xt+1 given the dataset D and a
general augmented GP input x̃t is Gaussian distributed,
namely,

p(xt+1|x̃t,D) ∼ N(mf (x̃t), Σf (x̃t)). (88)

In the previous equation, mf (x̃t) and Σf (x̃t) denote, respec-
tively, the posterior mean and variance, and they are given
by

mf (x̃t) = [m1
f (x̃t) . . . md

f (x̃t)]
T ,

Σf (x̃t) = Diag(σ1
f (x̃t) . . . σd

f (x̃t))

where each mi
f (x̃t) and σi

f (x̃t) are computed according to
the formulas reported in "Gaussian processes and regres-
sion: main concepts and formulas." At each optimization
step of the policy update the algorithm has to compute
J(θ). The expectations in (86) require the state distribu-
tions p(x0), . . . p(xT) induced by θ and the one-step-ahead
model f (·). Specifically, starting from the initial distribu-
tion p(x0), for each time step t, the distribution of xt+1 is
obtained by marginalization of (88), namely,

p(xt+1) =
∫

p(xt+1|x̃t,D)p(xt, πθ(xt))dxt. (89)

Unfortunately, the exact computation of the previous in-
tegral is not tractable. PILCO assumes that all the distri-
butions are Gaussians and obtains an analytical approxi-
mation of the integral in (89), relying on moment match-
ing. First, moment matching is applied to approximate
the state-control joint distribution p(xt, πθ(xt)). Then, the
same procedure is applied to (89). Finally, the algorithm
approximates J(θ), computing the expectations in (86)
using the Gaussian approximation of p(x0), . . . p(xT). As
shown in [243], if the cost function has a structure of the
kind reported in (85), the integrals in (86) are analytically
tractable, and the approximation of J(θ), together with
its gradient w.r.t. θ, are derived in closed form. Then,
the control parameters θ are optimized with a gradient-
based optimization. The effectiveness of PILCO has been
demonstrated in several experiments, both in simulated
and real setups, ranging from low-dimensional tasks (such
as the pendulum and cart-pole swing-up, and the throttle
valve control) to higher-dimensional tasks (such as the uni-
cycle stabilization and robotics manipulation). However,
the analytical approximation of J(θ) introduces several
limitations:

» The computation of the moments required to apply
moment matching is tractable only when considering
the Gaussian kernel as in (87), and cost functions for
which the integrals in (86) are analytically tractable.

30 IEEE CONTROL SYSTEMS » JUNE 2020

This article has been accepted for publication in IEEE Control Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCS.2023.3291625

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



» Moment matching forces all the distributions to be
Gaussian. Consequently, the state distributions are
unimodal, which might be too crude an assumption
on the long-term system dynamics for several sys-
tems.

The limitation on the kernel choice might be very stringent
in certain applications, as the Gaussian kernel assumes
that the underlying process is stationary and smooth. Such
properties are not always met in the actual system, for
instance, in mechanical systems. This mismatch might lead
to overfitting, besides limiting generalization properties in
data that have not been seen during training [248], [249],
[45], [46].

A solution to the poor generalization properties of the
Gaussian kernel in unexplored data has been proposed in
[66], where the GP model is trained with data coming from
a simulator before starting the actual reinforcement learn-
ing procedure. The experience on the simulator improves
the performance of PILCO in areas of the state space with
no available data points. However, the effectiveness of this
method depends on the accuracy of the simulator, which
may not always be available.

Another alternative approach developed in the wake
of PILCO is Deep-PILCO [67]. To overcome assumptions
on stationary and smoothness imposed by the Gaussian
kernel, the algorithms relies on Bayesian neural networks
[250] to learn the system dynamics, so that the model
can capture also non-stationary and discontinuous dy-
namics. Long-term distributions are approximated with
moment matching, with the moments computed via Monte
Carlo simulation. Experiments shows that, compared to
PILCO, Deep-PILCO requires a larger number of inter-
actions with the system to learn the tasks, due to the
high-dimensional model parametrization. Similar results
have been highlighted by experiments carried out in [245],
where the authors introduced a more recent NN-based
MBRL algorithm named PETS. In low-dimensional tasks,
GP-based algorithms outperform the ones based on NN.
Instead, when the state dimension and the number of
samples grow, the straightforward application of GP-based
approaches might be critical and less effective than NN-
based approaches.

Particles-based approaches
The algorithms mentioned above approximate the long-
term state distributions relying on moment matching. As
mentioned before, the moment matching approximation
proposed in PILCO imposes the use of the Gaussian kernel
and unimodal state distributions. The unimodal approx-
imation could be a too crude assumption on the long-
term system dynamics. Moreover, it introduces relevant
limitations in case initial conditions or the optimal solution
are multimodal. For instance, in case the initial variance of
the state distribution is high, the optimal solution might

be multimodal, due to dependencies on initial conditions.
An alternative route to moment matching to approx-

imate the long-term state-input distributions relies on
particles-based approach. Given the policy parameters θ

and the transition model f (·), the integral in (86) is approx-
imated simulating the evolution of a batch of m particles.
The process starts by sampling the batch of particles states
Z0 = {z1

0 . . . zm
0 } from the initial state distribution p(x0).

Then, at each simulation step t, the algorithm evaluates
the policy to compute the control input of each particle
and samples Zt+1 = {z1

t+1 . . . zm
t+1} from (88). Once the

Z0 . . .ZT are, given the expectations in (86) are approxi-
mated by the algebraic mean, namely,

Ĵ(θ) =
T

∑
t=0

∑m
i=1 c(zi

t)

m
. (90)

A first attempt based on this approximation has been
proposed in [246]. The authors relied on a gradient-based
optimization strategy to approximate θ. The gradient is
computed using the strategy proposed in PEGASUS [251],
where by fixing the initial random seed, a probabilistic
Markov decision process (MDP) is transformed into an
equivalent partially observable MDP with deterministic
transitions. The authors highlighted several limitations
due to the inability of the gradient-based optimization to
escape from numerous local minima generated by the mul-
timodal distribution. Compared to PILCO, results obtained
were not satisfactory.

An alternative solution to compute the gradient from
particle-based approximation is the reparameterization trick,
successfully introduced in stochastic variational infer-
ence (SVI) [252], [253]. The computation of (90) involves
stochastic operations, consequently ∇θ Ĵ(θ), the gradient
of Ĵ(θ) w.r.t. θ cannot be computed straightforwardly by
back-propagation. The reparameterization trick redefines the
stochastic operations, so that sampling is differentiable
w.r.t. xt, ut, and θ. Given the particle i = 1 . . . m at
simulation step t, instead of sampling zi

t+1 directly from
(88), the reparameterization trick first samples a point ϵ from
a zero-mean and unit-variance normal distribution. Then, ϵ

is mapped into the distribution defined by (88) by applying
the following standard expression,

zi
t+1 = mf (x̃t+1) + Lt+1ϵ

where Lt+1 is the Cholesky decomposition of Σf (x̃t+1),
namely, Σf (x̃t+1) = Lt+1LT

t+1. In this way, ∇θ Ĵ(θ) can be
computed directly by backpropagation applying the chain
rule. The algorithm PIPPS [68] experimented with the repa-
rameterization trick to estimate the gradient, highlighting
several issues due to exploding magnitude and random di-
rection. To overcome such limitations, PIPPS proposed the
total propagation algorithm, which regularized the gradient
obtained with the reparameterization trick using the likelihood
ratio gradient [254]. PIPPS performs similar to PILCO,
with some improvements both in the gradient computation
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and in the overall performance when the level of noise
increases. A recent work based on the reparameterization
trick is MC-PILCO [69], which follows a different approach
to avoid issues due to exploding magnitude and random
direction in the gradient computation. The authors show
that by introducing the dropout during policy optimiza-
tion and by shaping the cost function opportunely, the
reparameterization trick can actually be used to compute
the gradient in particle-based GP MBRL algorithms, and
Monte Carlo methods do not suffer from gradient estima-
tion problems. The use of dropout that was introduced
in the deep learning community [255] to avoid overfitting
during training DNNs is revisited in a control framework
in [69] to optimize the control policy. This makes the policy
stochastic during learning which increases the entropy of
the particles distributions and helps the optimization algo-
rithm to escape local minima in the parameter space. One
of the advantages of particle-based approaches in MBRL
is that it is possible to remove all the kernel assumptions
that were required to compute closed-form expressions
of the gradients when using moment matching. Indeed,
the advantages of using kernels with more structured
than the limited Gaussian kernel are demonstrated both
in simulation and on real systems in MC-PILCO. Finally,
MC-PILCO is extended to cope with systems with partially
measurable states, MC-PILCO4PMS. Considering for ex-
ample a mechanical system, it is likely that only positions
are actually measurable in the real system, while other
components of the state like velocities and accelerations
are only numerically derived with filters from the history
of the positions. This fact leads to a differentiation between
the states available during policy execution (which need
to be computed with fast online filters) and the states
available during offline learning (where the states can be
computed in a non-physical way to improve the accuracy).
MC-PILCO4PMS proposes both to learn the GP models
using accurate a-causal filter to improve the long-term
predictions and to simulate the online observation system
during particles propagation in policy optimization. The
latter effectively injects additional noise to the model pre-
dictions to emulate the state that will be seen during policy
execution. Recently, the same authors proposed a variation
of the algorithm MC-PILCO4PMS, which was specifically
designed for mechanical systems when the joint velocities
are not available in [247]. Finally, Black-DROPS [70] is an-
other particle-based approach, which mainly differs from
the above methods because it uses a gradient-free policy
optimization to avoid gradient estimation issues. The main
advantages are that there are no constraints in the type of
cost function considered in the algorithm, which can even
be non-differentiable. The policy optimization relies on ro-
bust black-box algorithms such as CMA-ES [256] to escape
from local minima, and the data efficiency of the algorithm
is comparable to analytical approaches such as PILCO.

Furthermore, this approach carries the advantage that the
optimization can be parallelized in modern GPU clusters.
Black-DROPS achieves similar data efficiency to PILCOs
but significantly increases asymptotic performance, thanks
to the better accuracy of particle-based approximation and
the ability of the gradient-free optimizer to escape from
local minima.

Experiments
In this section, we report a comparison between three
of the MBRL algorithms previously discussed, namely,
PILCO, Black-Drops, and MC-PILCO. We considered these
algorithms not only for their importance, but also because
they made the source code available for comparison. Be-
sides that, we present an application of MC-PILCO carried
out on a real setup, highlighting the benefits due to the the
possibility of including prior knowledge in the kernel func-
tion. We compared the three algorithms on the simulated
cart-pole swing-up task, which is a standard benchmark
both in the control and reinforcement learning community.
Indeed, despite the system is low-dimensional, this bench-
mark is particularly hard due to the underactuation and
the highly nonlinear dynamics. The system consists of a
cart and a pole. The cart is constrained by a rail to move
horizontally, while a non-actuated revolute joint connects
the cart and the pole, so that the pole rotation plane is per-
pendicular to the ground. The state of the system is given
by p[m] and θ[rad], that is, the cart position and the pole
angle, together with their time derivatives. When the pole
is in the downward stable equilibrium θ = 0, while the
unstable equilibrium point is in θ = π. The control action
is the force that pushes the cart horizontally. The goal is to
swing-up the pendulum and keep it in the unstable equi-
librium point, starting from the initial state distribution
N ([0, 0, 0, 0], diag([10−4, 10−4, 10−4, 10−4])). The geometri-
cal and dynamical properties of the system are the same
as the system used in PILCO [65]. The sampling time and
the control period are T = 0.05 s. The state measurements
are corrupted by an i.i.d Gaussian noise with standard
deviation 10−2. We implemented a Monte-Carlo study to
compare the three algorithms. For each algorithm, we run
100 experiments on the simulated cart-pole task. Every
experiment is composed of five trials, each of length 3 s.
The random seed varies at each experiment, corresponding
to different exploration data and initialization of the policy,
as well as different measurement noise realizations. The
policies optimized by the algorithms are RBF-networks like
the one in (84). The three algorithms adopted cost functions
of the kind reported in (85) to encode the task, with some
minor differences to accommodate the different strategies
used for approximation and optimization. All the results
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Figure 13 Median and confidence intervals (25-75%) of the cu-
mulative cost as a function of trials obtained with PILCO, Black-
DROPS, and MC-PILCO. Success rates are reported below.

Success Rates
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

PILCO 2% 4% 25% 34% 38%

Black-DROPS 0% 4% 33% 69% 84%

MC-PILCO 0% 14% 70% 98% 100%

are reported w.r.t. the PILCO cost function, that is,

cpilco(xt) = 1 − exp

(
−1

2

(
dt

0.25

)2
)

(91)

where d2
t is the squared Euclidean distance between the

tip of the pole and its position at the unstable equilibrium
point with pt = 0 [m]. Finally, for model learning, all
the algorithms define the GP prior as in (87). Figure 13
reports the median of the cumulative costs collected in
the Monte Carlo experiment as a function of the trials,
namely, the experience accumulated on the system. We
also reported the first and third quartiles to provide a
measure of the dispersion around the median. The table
below Figure 13 reports the success rates collected at each
trial, namely the percentage of "success" collected in the
100 experiments. We label a trial as "success" if |pt| < 0.1
[m] and 170 [deg] < |θt| < 190 [deg] ∀t in the last
second of the trial. In this task, MC-PILCO achieved the
best performance, both in transitory and at convergence,
as demonstrated by the evolution of its cumulative cost
distribution (which is lower than the ones of PILCO and
Black-Drops). Similar considerations can be draw by com-
paring the success rates: at trial 4 and 5 MC-PILCO success
rates are, respectively, 98% and 100%, while the ones of
PILCO and Black-DROPS are still far from 100%. PILCO
showed poor convergence properties, since at trial 5 the
success rate is only 38%, and the cumulative cost disper-
sion around the median is still considerable, compared to
MC-PILCO and Black-DROPS. Black-DROPS outperforms
consistently PILCO at trial 3, 4, and 5, but without reaching
MC-PILCO performance. We applied MC-PILCO in real
setup to solve a swing-up task. Instead of using a cart-pole,

we considered a Furuta pendulum (FP) [257]. The FP is a
popular benchmark in nonlinear control and reinforcement
learning. The system is composed of three links and two
revolute joints. The first link, named base, is fixed and
perpendicular to the ground. The second link, named arm,
rotates on a plane parallel to the ground, while the rotation
axis of the last link (the pendulum) is parallel to the
principal axis of the second link. A picture of the system
is reported in Figure 14. Like the cart-pole, the FP is an
underactuated system, since only the first joint is actuated
through a DC motor. The control input is the voltage of
the DC motor. The angles of the horizontal and vertical
joints, hereafter denoted θh and θv, are measured by optical
encoders with 4096 [ppr] at 30 [Hz]. The task consists of
learning a controller able to swing-up the pendulum in
the unstable equilibrium point (θh = 0, θv = ±π), starting
from the θh = 0 and θv = 0. The cost function is given by

c(xt) = 1 − exp


−

(
θh

t
2

)2

−
( |θv

t | − π

2

)2

+ cb(xt)

(92)
with

cb(xt) =
1

1 + exp
(
−10

(
− 3

4 π − θh
t

))

+
1

1 + exp
(
−10

(
θh

t − 3
4 π
)) .

The first part of the function in (92) promotes solutions
that reach the target state θh

t = 0 and θv
t = ±π, while

cb(xt) penalizes trajectories where θh
t ≤ − 3

4 π or θh
t ≥ 3

4 π

to limit the risk of damaging the system if the horizontal
joint rotates too much. For model learning, we considered
three different prior definitions to quantify the advantages
coming from exploitation of prior information. The kernel
considered are: (i) the Gaussian kernel (G), which is the
standard option when no prior knowledge is available; (ii)
the Gaussian kernel plus a polynomial kernel of degree
2 (G+P(2)), which aims at exploiting eventual polynomial
behaviors affecting the system dynamics [248]. (iii) semi-
parametrical kernel (SP), which combines prior informa-
tion from physical models and data driven kernels, see
[249], [46]:

kSP(x̃tj , x̃tk ) = kPI(x̃tj , x̃tk ) + kG(x̃tj , x̃tk ) (93)

= ϕT(x̃tj )ΣPIϕ(x̃tk ), + kG(x̃tj , x̃tk ).

kPI is called a physically inspired kernel because it is
a linear kernel defined on suitable basis functions ϕ(x̃),
extracted by first-principles dynamical models [249], and
ΣPI is a positive-definite matrix. Specifically, SP basis
functions can be obtained by isolating, in each ODE
defining FP laws of motion, all the linearly related state-
dependent components. In particular, we have ϕθ̇h (x, u) =
[(θ̇v)2sin(θv), θ̇h θ̇vsin(2θv), θ̇h, u] for the arm velocity GP,
and ϕθ̇v (x, u) = [(θ̇h)2sin(2θv), θ̇v, sin(θv), u cos(θv)] for
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Arm

Pendulum

Base

Figure 14 Illustration of the real system Furuta Pendulum con-
trolled in the unstable equilibrium point.

the pendulum velocity GP. Figure 15 shows the resulting
trajectories for each trial. The algorithm learned how to
swing up the FP with all the prior models considered. It
succeeded at trial 6 with the Gaussian kernel, at trial 4
with kernel G+P(2), and at trial 3 with SP kernel. This
result suggests that a great advantage of particle-based
approaches is the possibility of using any kernel function,
and in particular including prior knowledge on the system
dynamics to improve data efficiency.

CONCLUSIONS
In this article, we have provided an overview of recent
advances in kernel-based identification of dynamical sys-
tems and their application to control. In the first part of
the article we have reviewed kernel-based methods for
linear and nonlinear systems, highlighting the different
perspectives and advantages with respect to the classic
parametric-based system identification. Looking at kernel-
based methods from a Bayesian point of view, we have
illustrated the existing bridge between such techniques
and GP regression, which has been successfully applied in
the last decade in different fields, ranging from computer
science, data analysis, robotics, and control. Indeed, as dis-
cussed in the second part of the paper, GP models quantify
the uncertainty of the estimates in a simple and effective
way, compared to their deterministic counterparts. This
makes GPs particularly appealing for model-based control
methods, since a correct understanding of the uncertainty
allows the derivation of more robust control algorithms. In
the last part of the article we have reviewed the use of GPs
in control algorithms such as MPC, feedback linearization,
adaptive and robust control, and reinforcement learning.
We have focused on GP-based MBRL algorithms, a class of
algorithms whose aim is to simulate the system evolution
and optimize a control policy. We have compared three GP-
based MBRL algorithms (PILCO, Black-Drops, and MC-
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Figure 15 Trajectories of the FP vertical and horizontal angles,
obtained by applying MC-PILCO with prior defined by: G, G + P(2),
or SP kernel.

PILCO) on the cart-pole swing-up task, then applied MC-
PILCO on a real Furuta pendulum system.
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