Algo Carè

with S. Garatti^a and M.C. Campi^b

Algo Carè

University of Brescia, Italy

with S. Garatti^a and M.C. Campi^b

Algo Carè

University of Brescia, Italy

University of Melbourne, Australia

with S. Garatti^a and M.C. Campi^b

Algo Carè

University of Brescia, Italy

University of Melbourne, Australia

MTA SZTAKI, Budapest, Hungary

with S. Garatti^a and M.C. Campi^b

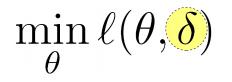
 $\min_{\theta} \ell(\theta)$

 $\min_{\theta} \ell(\theta)$

 θ design parameter(s)

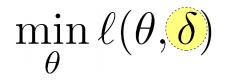
 $\min_{\theta} \ell(\theta, \delta)$

θ design parameter(s)



 θ design parameter(s)

 δ uncertain parameter



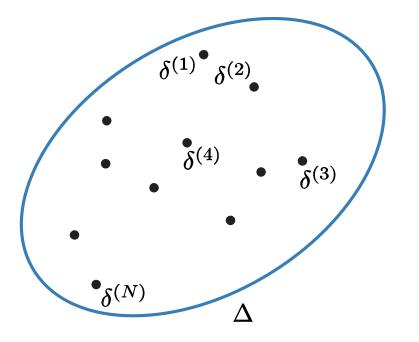
design parameter(s) θ

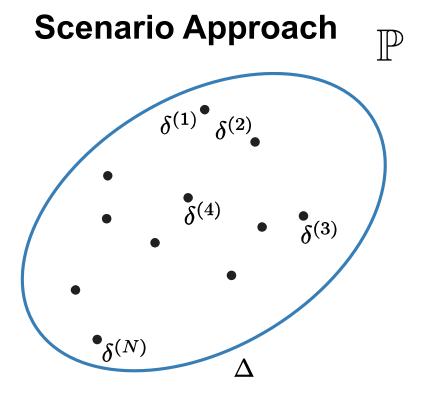
 δ uncertain parameter

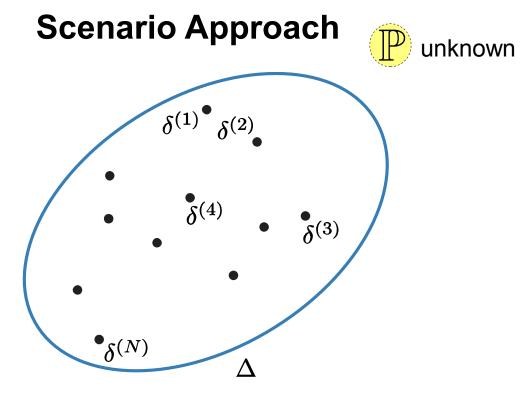
Uncertain problem!

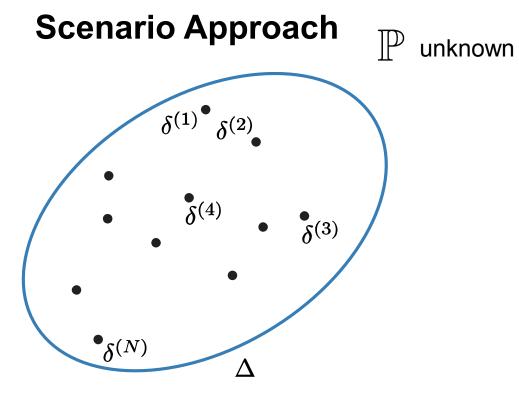
The Scenario Approach

Scenario Approach

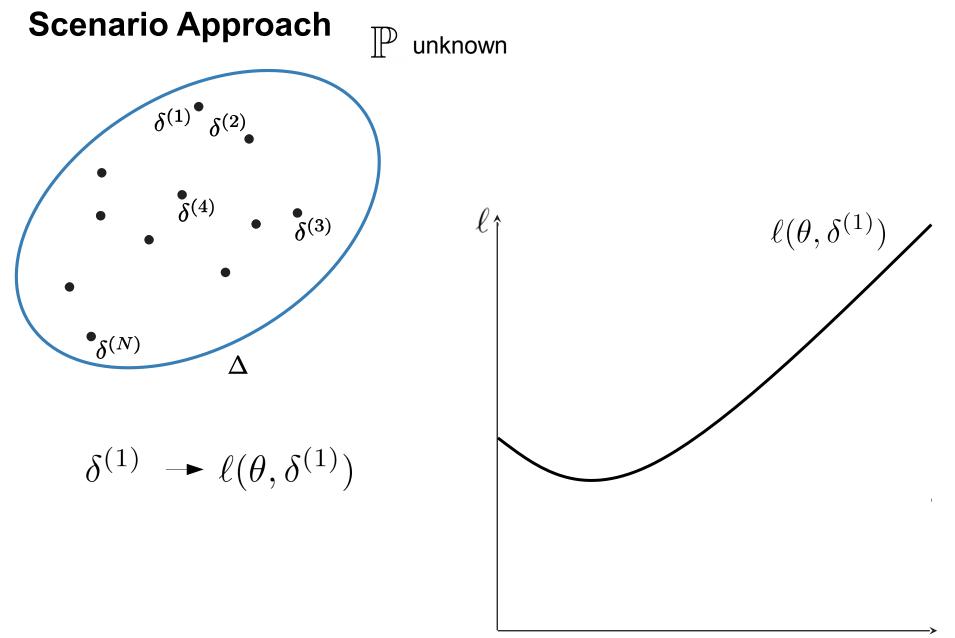




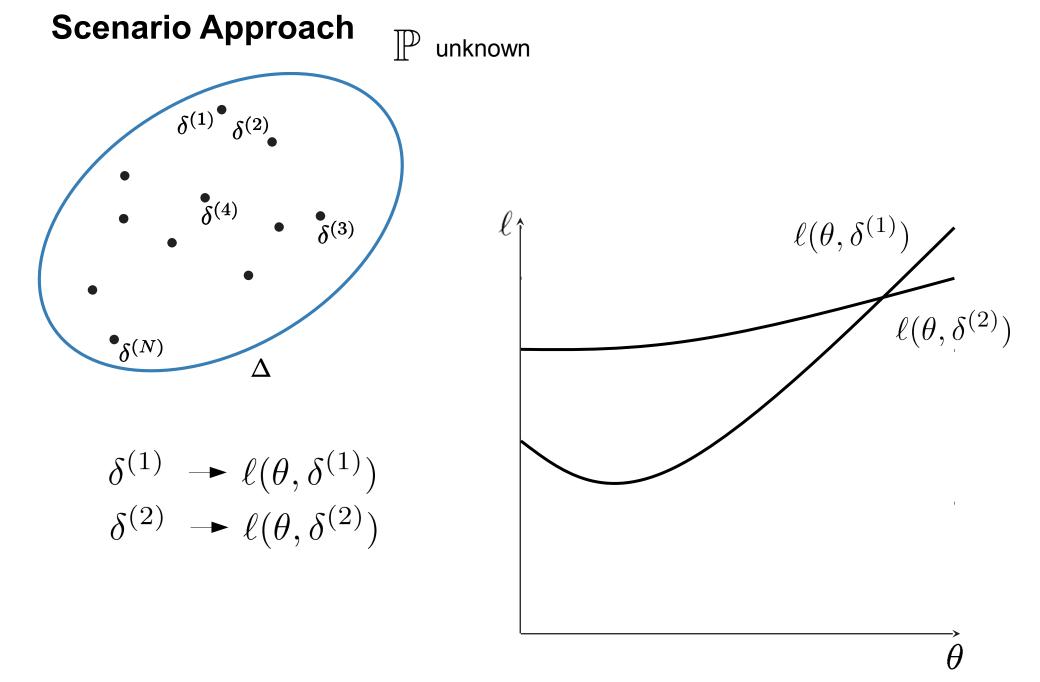


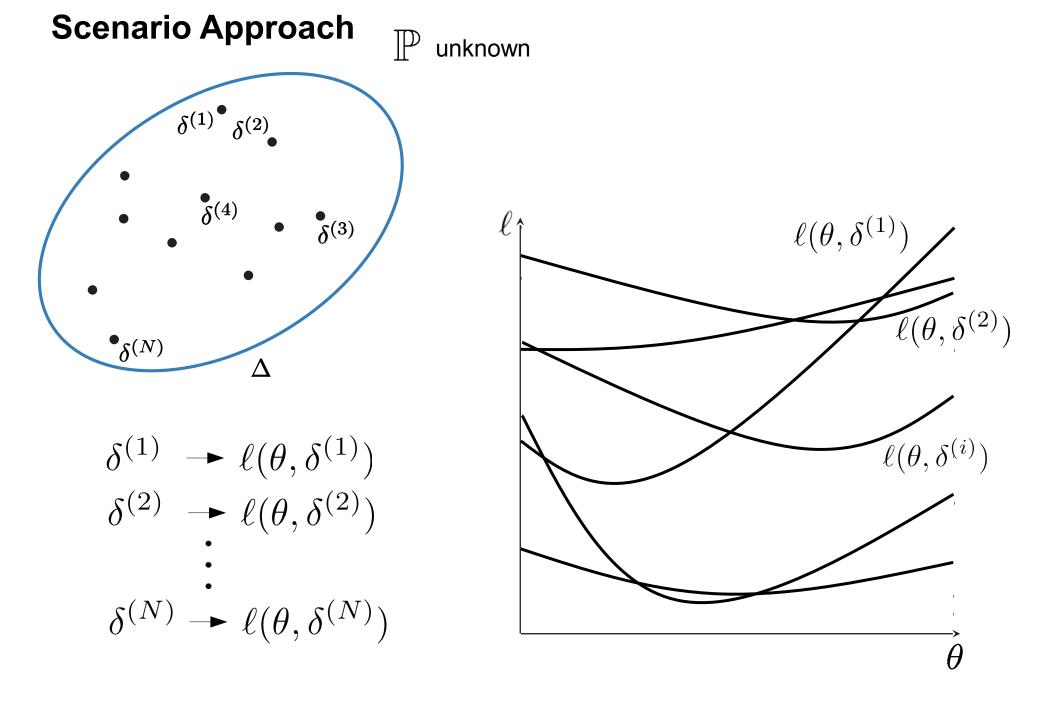


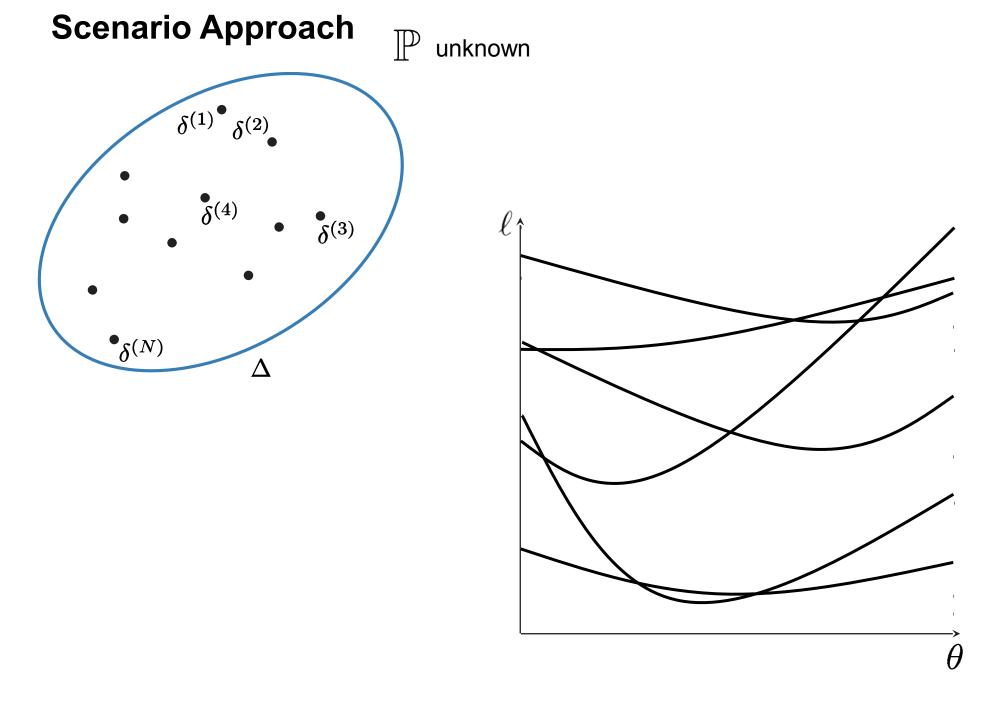
$$\delta^{(1)} \twoheadrightarrow \ell(\theta, \delta^{(1)})$$

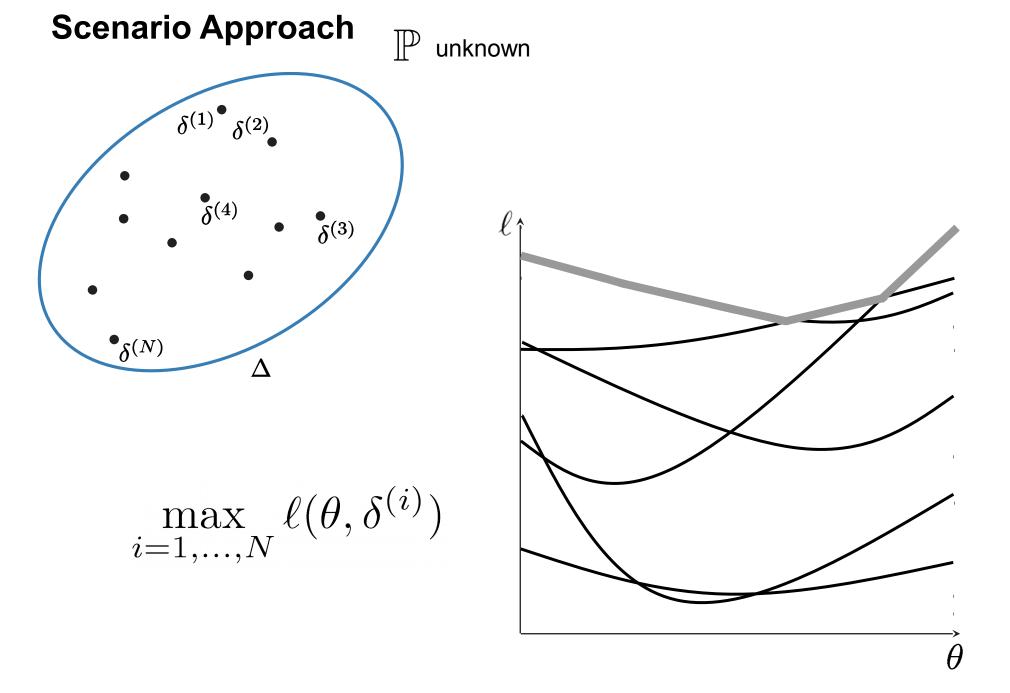


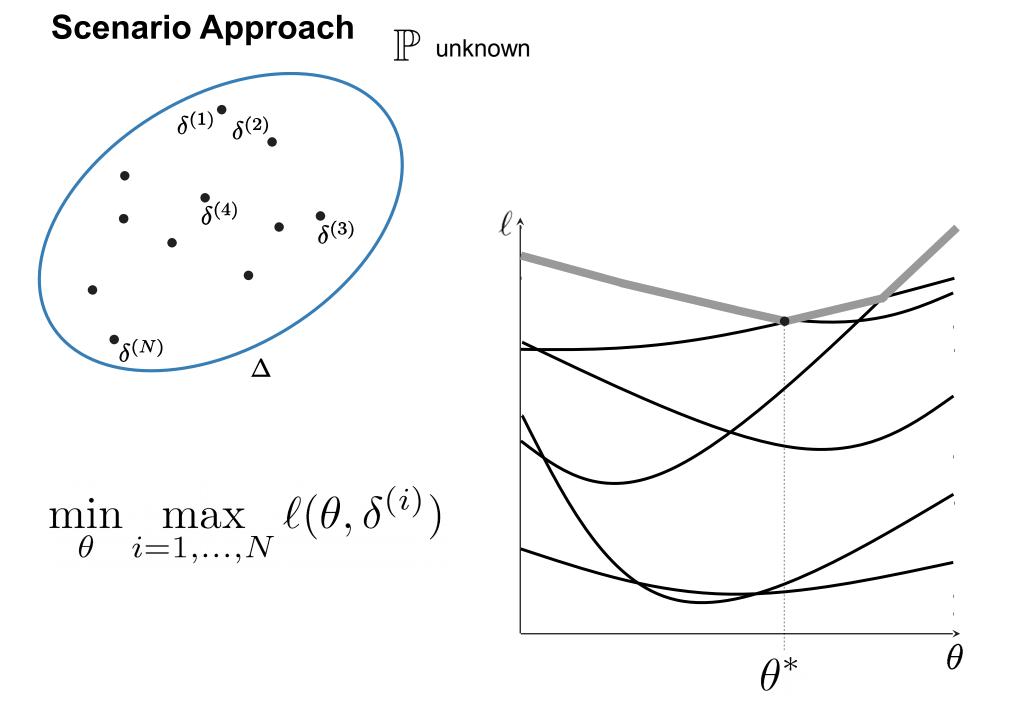
 θ

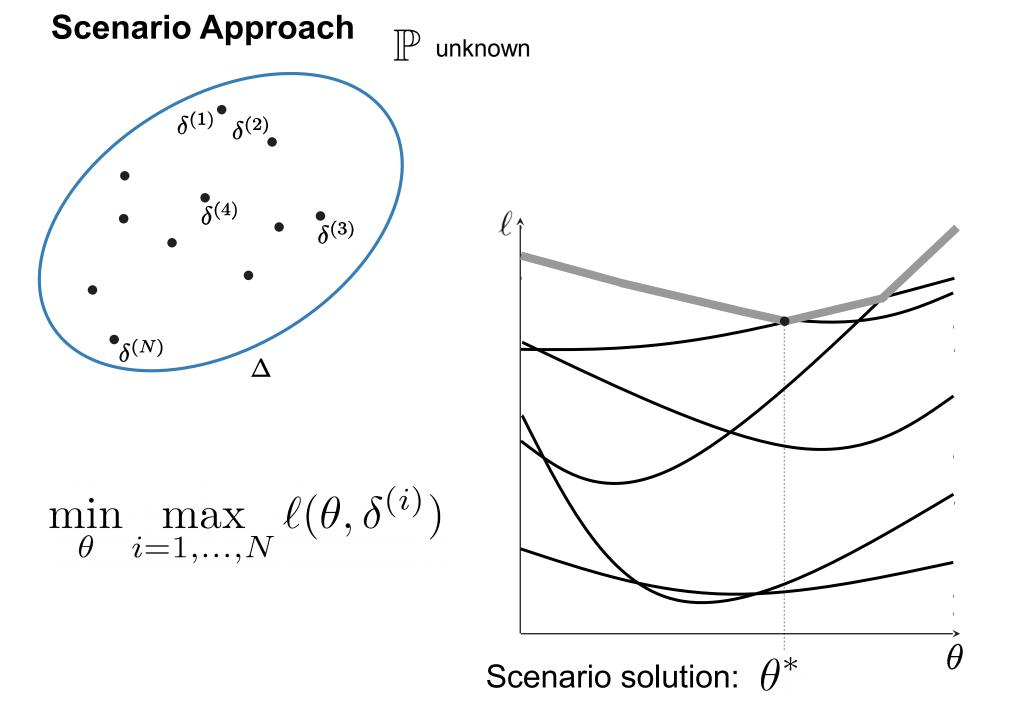


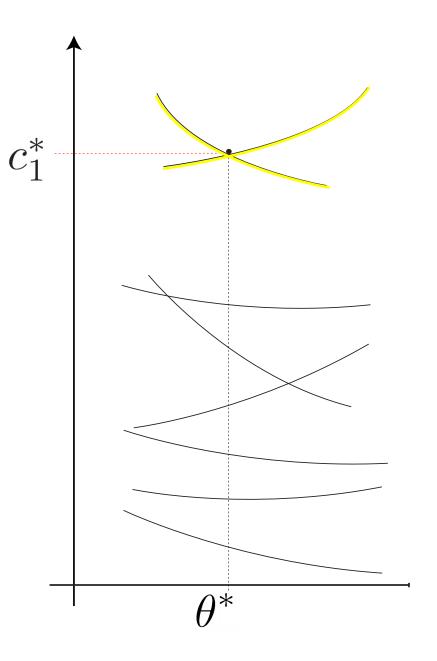


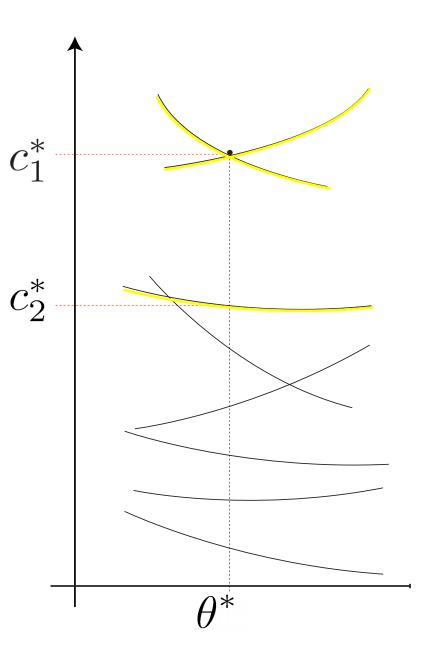


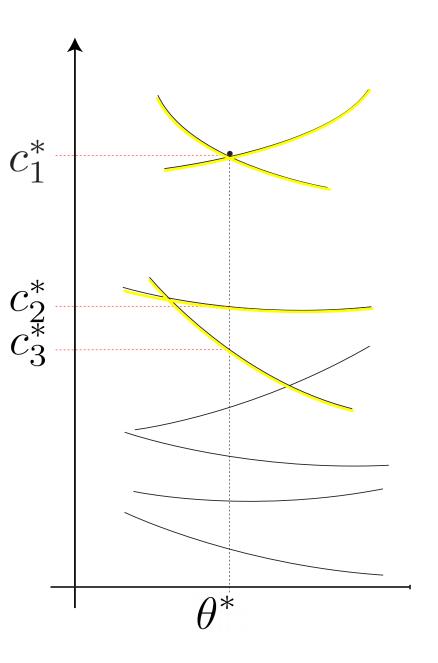


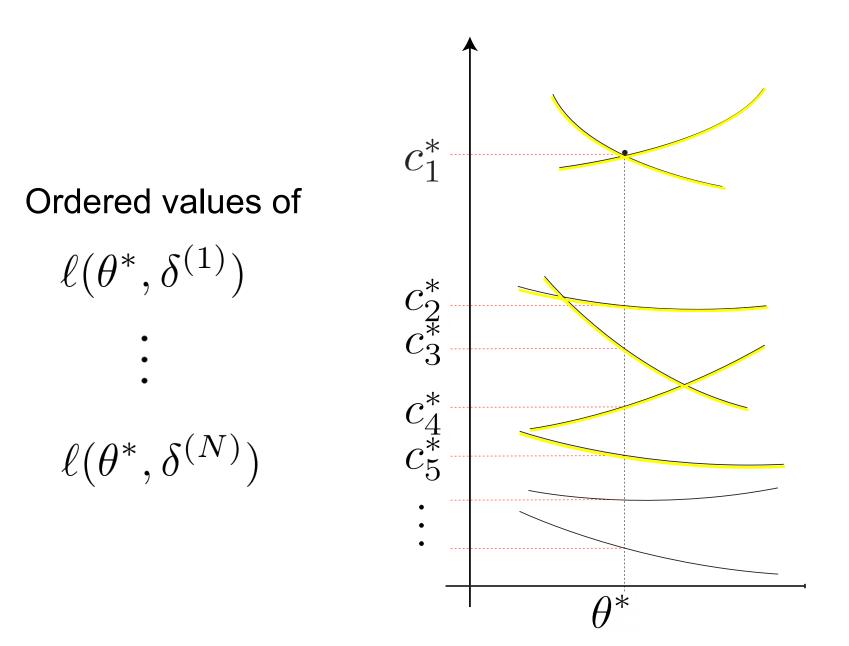


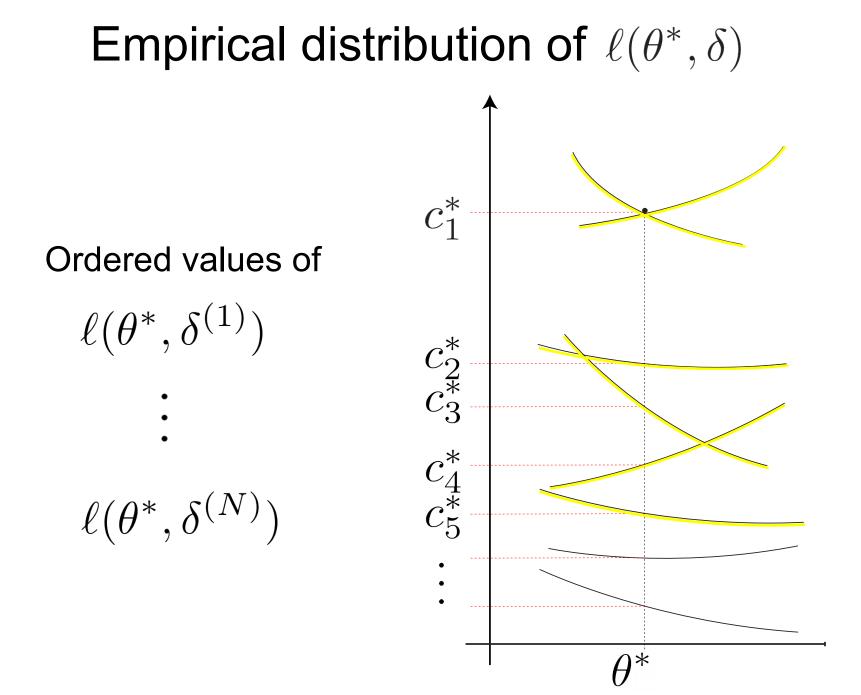


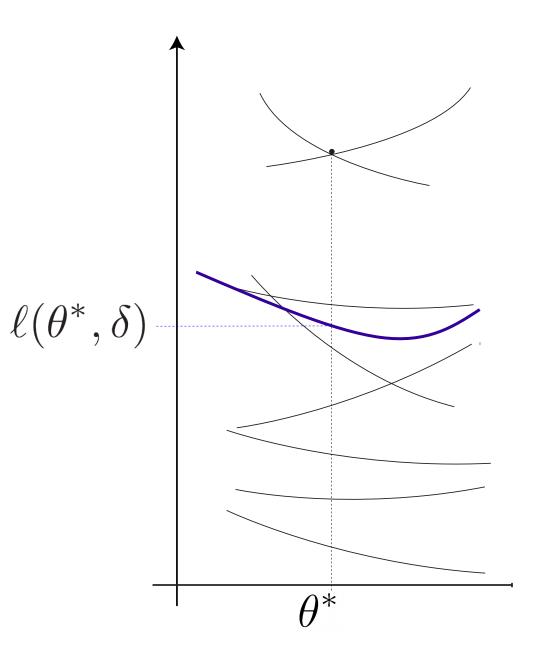


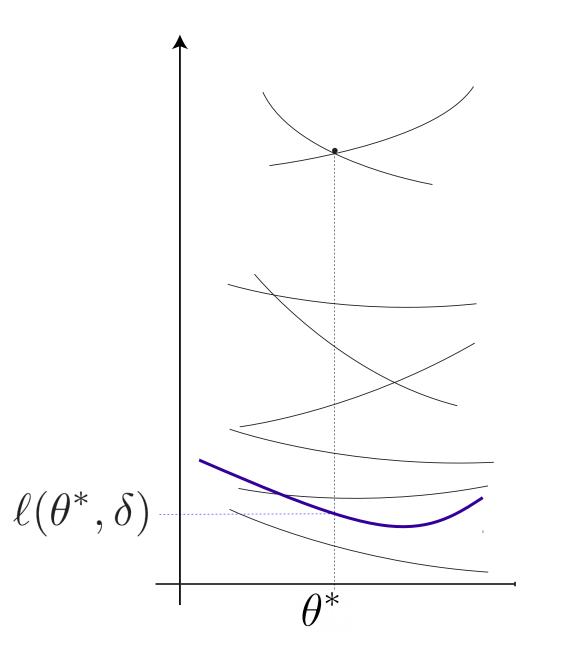


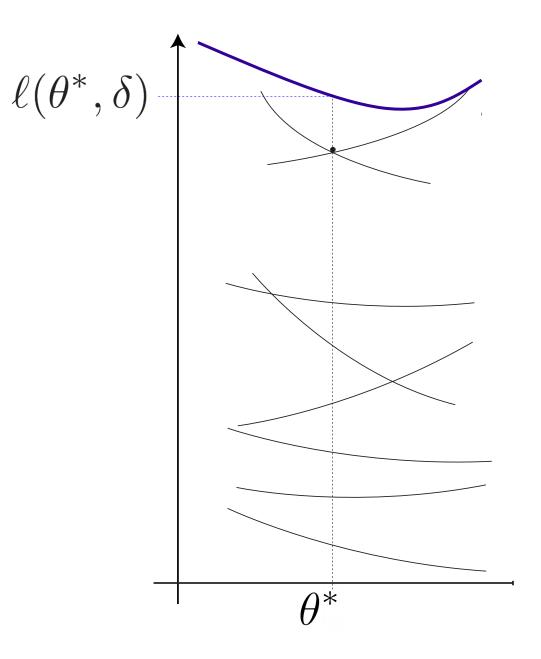


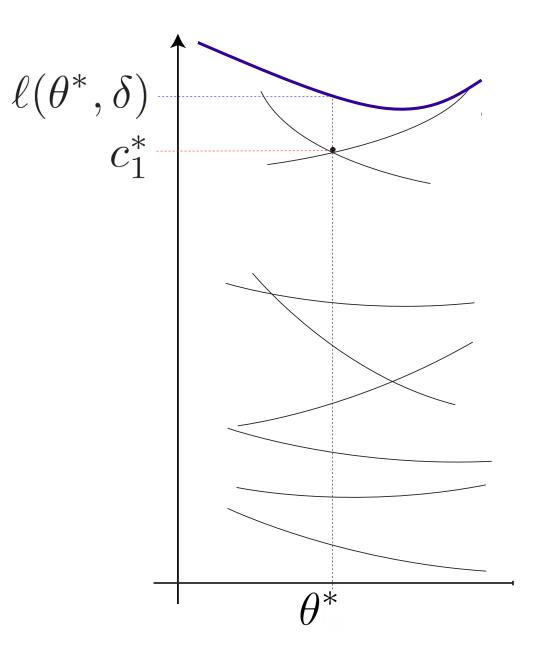


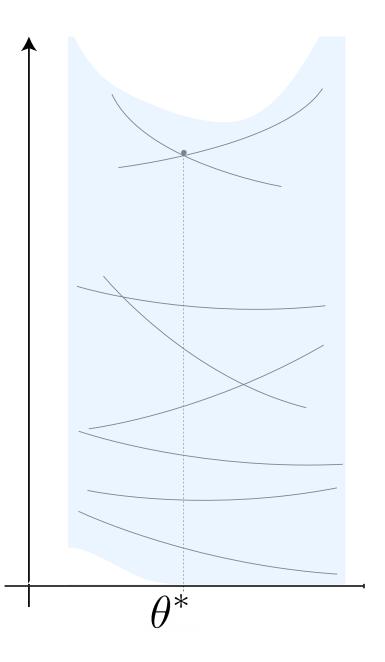


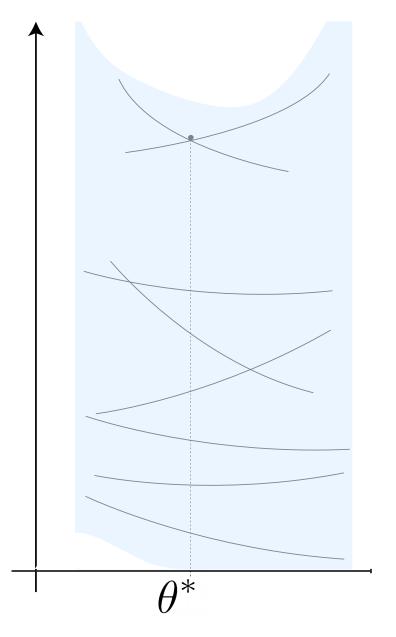


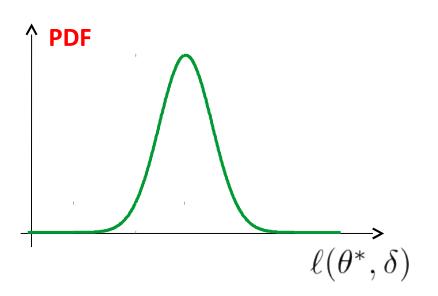


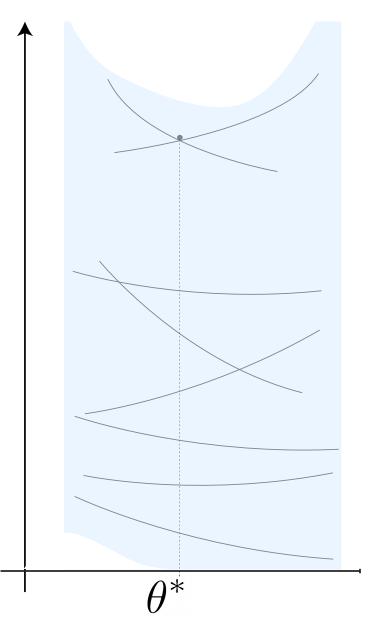


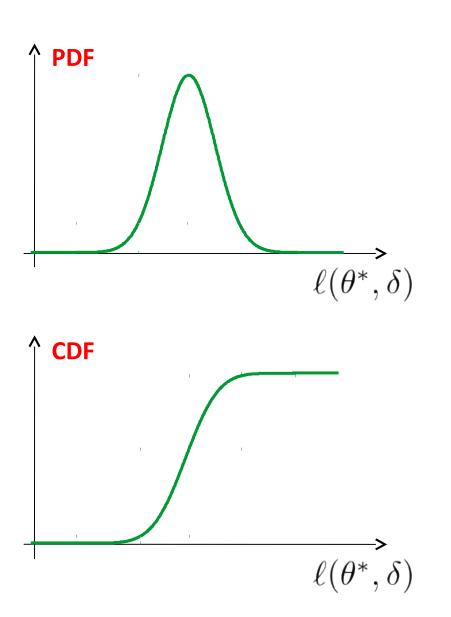


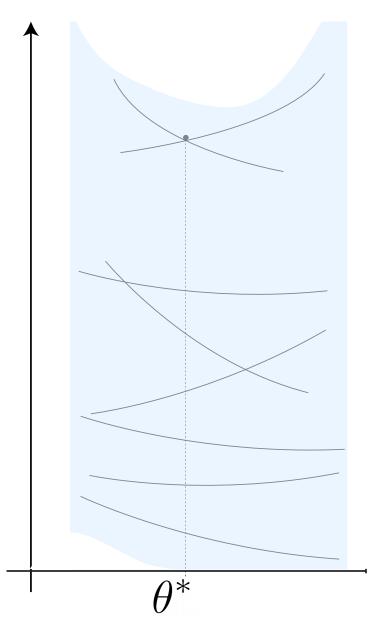


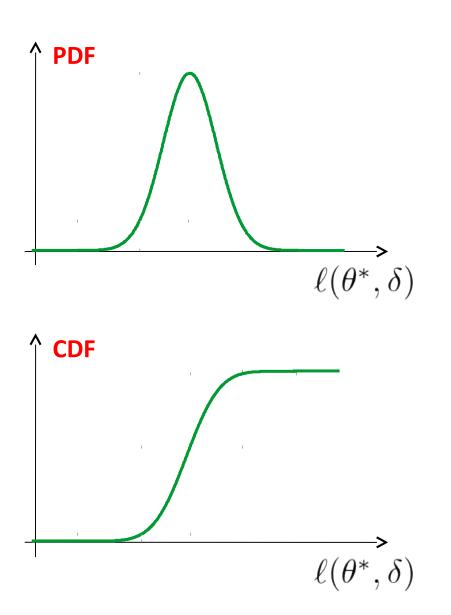


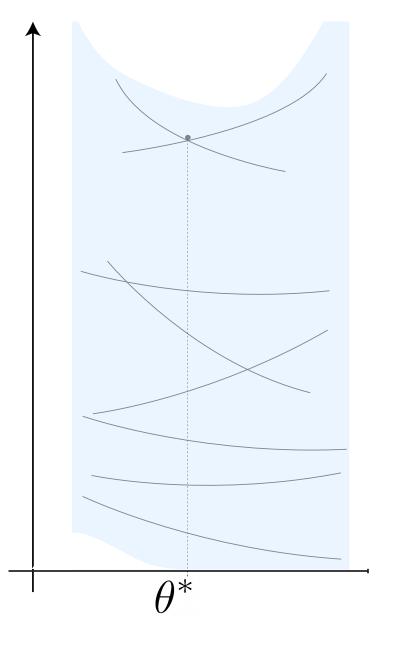




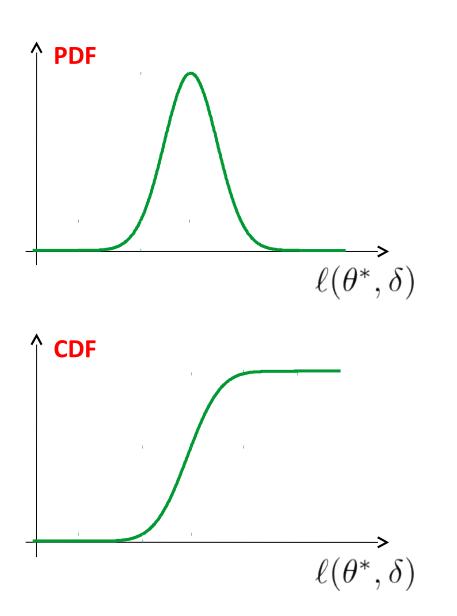


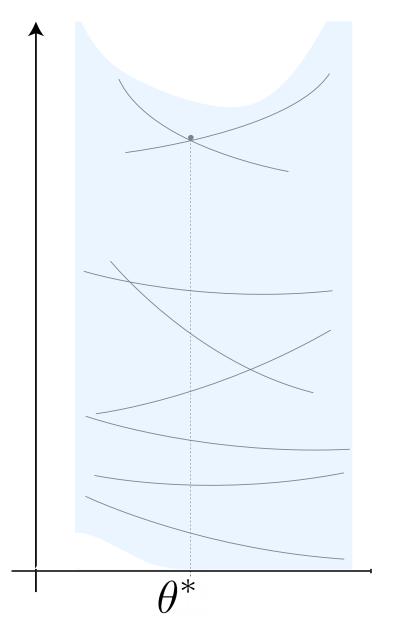




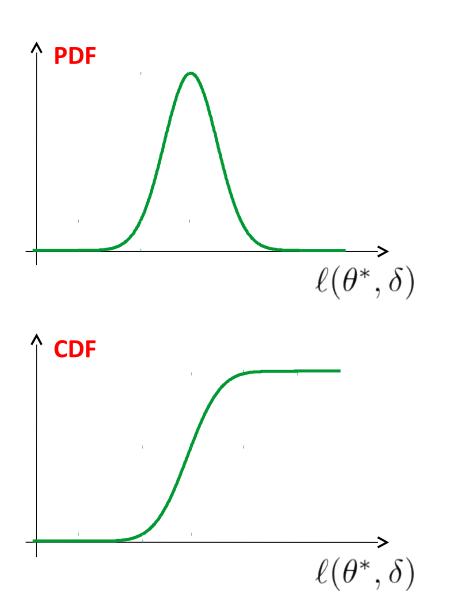


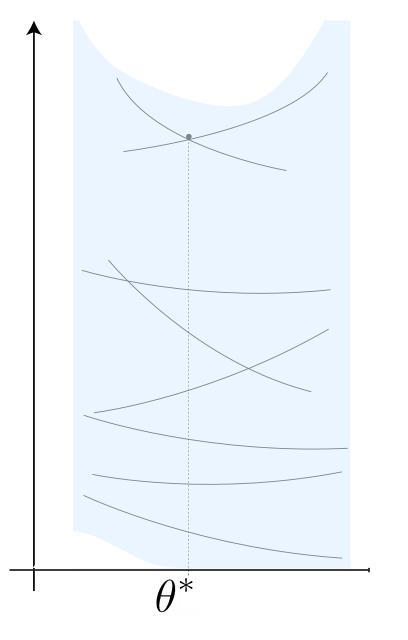
Probability distribution of $\ell(\theta^*, \delta)$ $\delta \sim \mathbb{P}$



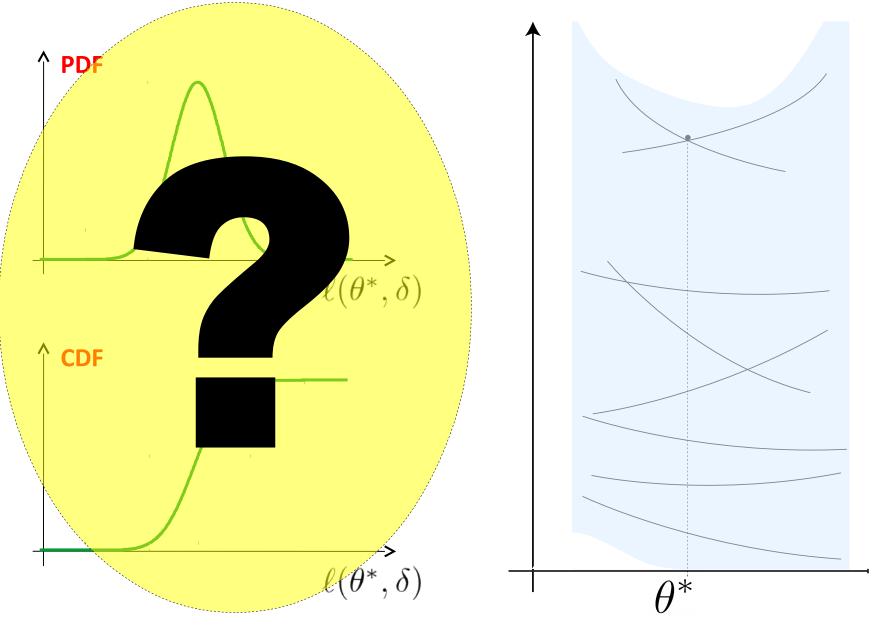


Probability distribution of $\ell(\theta^*, \delta)$ $\delta \sim \mathbb{P}$

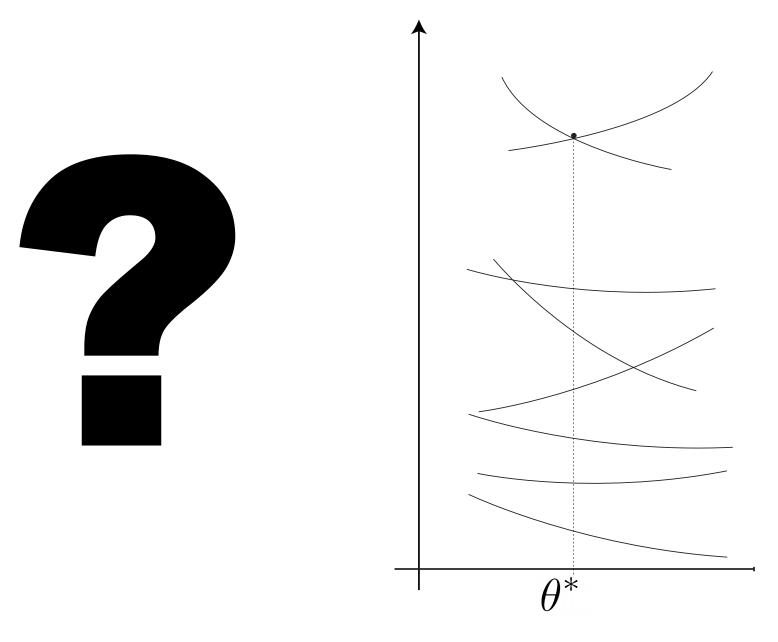




Probability distribution of $\ell(\theta^*, \delta)$ $\delta \sim \mathbb{P}$



Probability distribution of $\ell(\theta^*, \delta)$ $\delta \sim \mathbb{P}$



TAKE-HOME MESSAGE:

It is possible to "reconstruct" the distribution of the cost

TAKE-HOME MESSAGE:

It is possible to "reconstruct" the distribution of the cost by using the sole N scenarios that have been used to compute θ^* .

TAKE-HOME MESSAGE:

It is possible to "reconstruct" the distribution of the cost by using the sole N scenarios that have been used to compute θ^* .

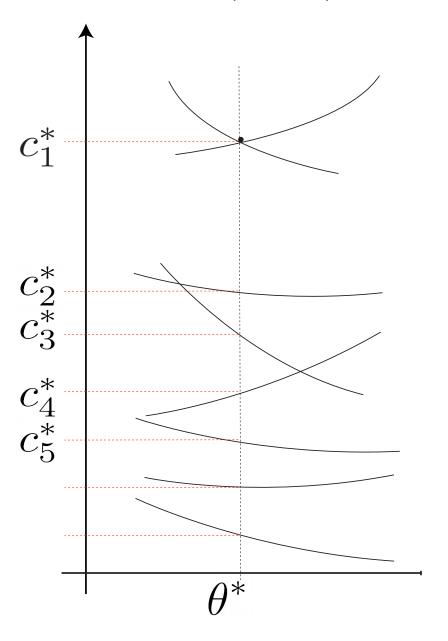
Without using any new observation nor any specific knowledge of \mathbb{P} .

HOW?

By combining a-posteriori knowledge

with distribution-free theorems

Empirical distribution of $\ell(\theta^*, \delta)$



By combining a-posteriori knowledge (the empirical distribution of the cost)

with distribution-free theorems

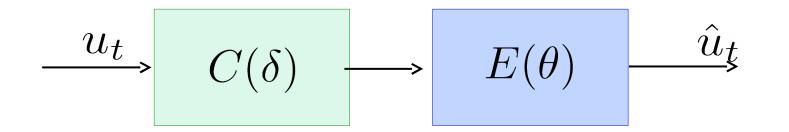
By combining a-posteriori knowledge (the empirical distribution of the cost)

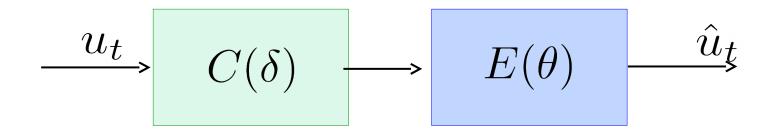
with distribution-free theorems (invariant properties of convex problems)

By combining a-posteriori knowledge (the empirical distribution of the cost)

with distribution-free theorems (invariant properties of convex problems)

example (and a few technical details) following...





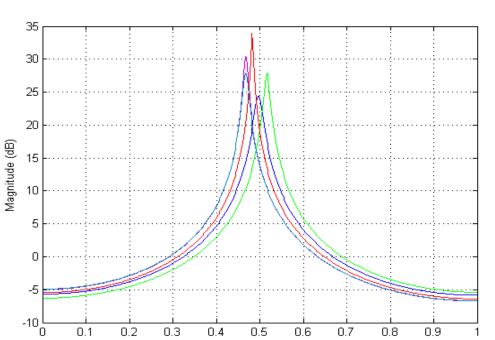
$\ell(\theta, \delta) = \|C(\delta)E(\theta) - \text{IdealChannel}\|$

$$\xrightarrow{u_t} C(\delta) \longrightarrow E(\theta) \xrightarrow{\hat{u}_t}$$

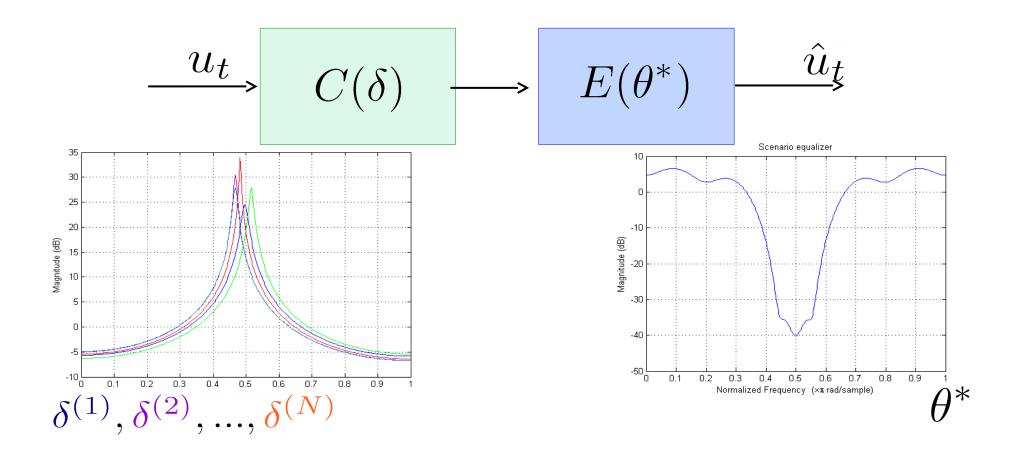
$\ell(\theta, \delta) = \|C(\delta)E(\theta) - \text{IdealChannel}\|$

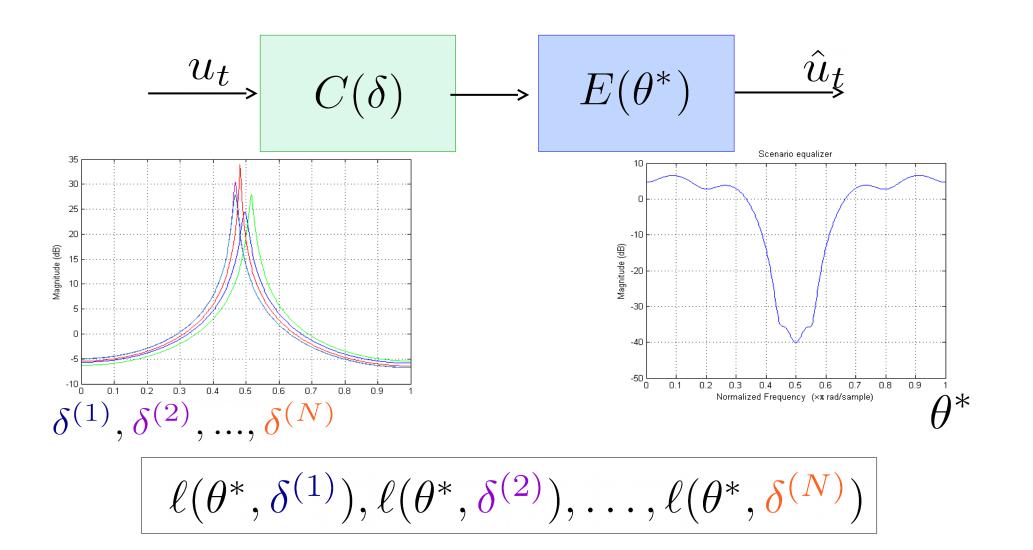
For details: see paper

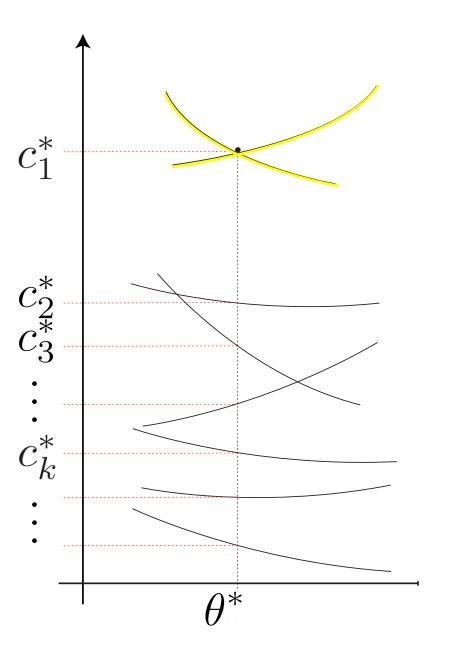
 $C(\delta)$

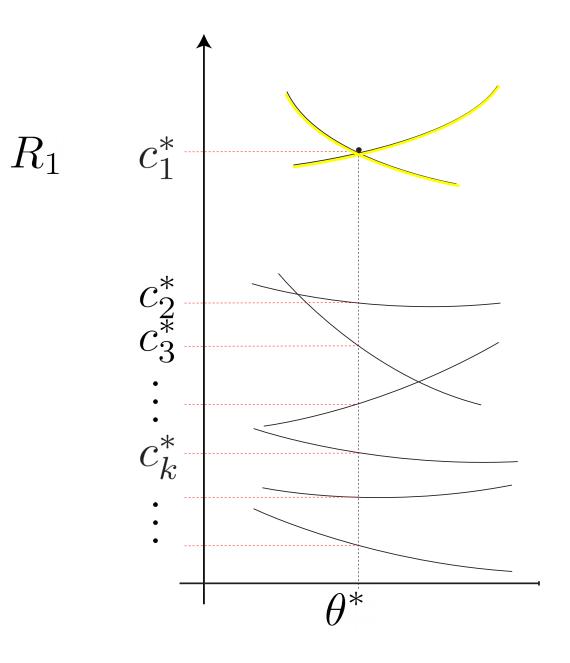


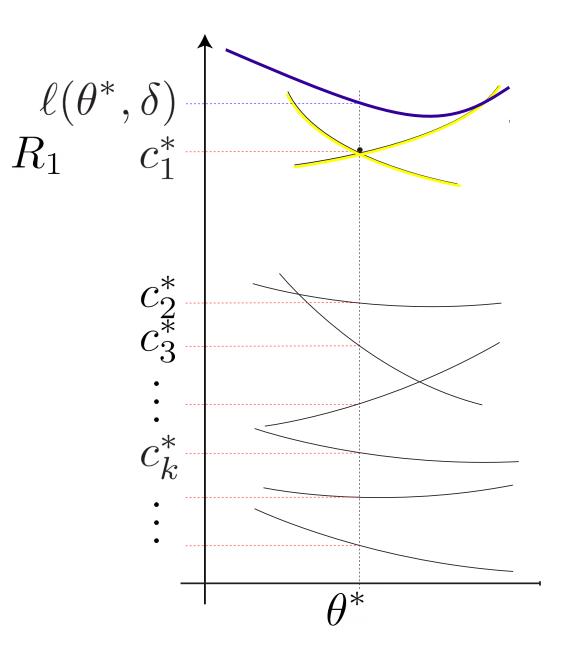
 $\delta^{(1)}, \delta^{(2)}, ..., \delta^{(N)}$

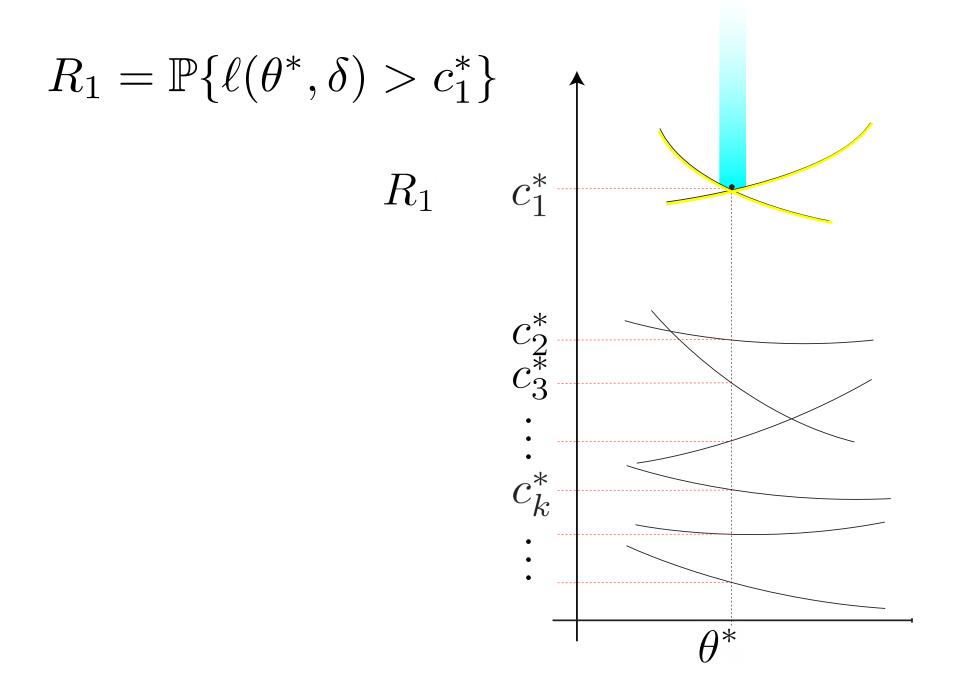


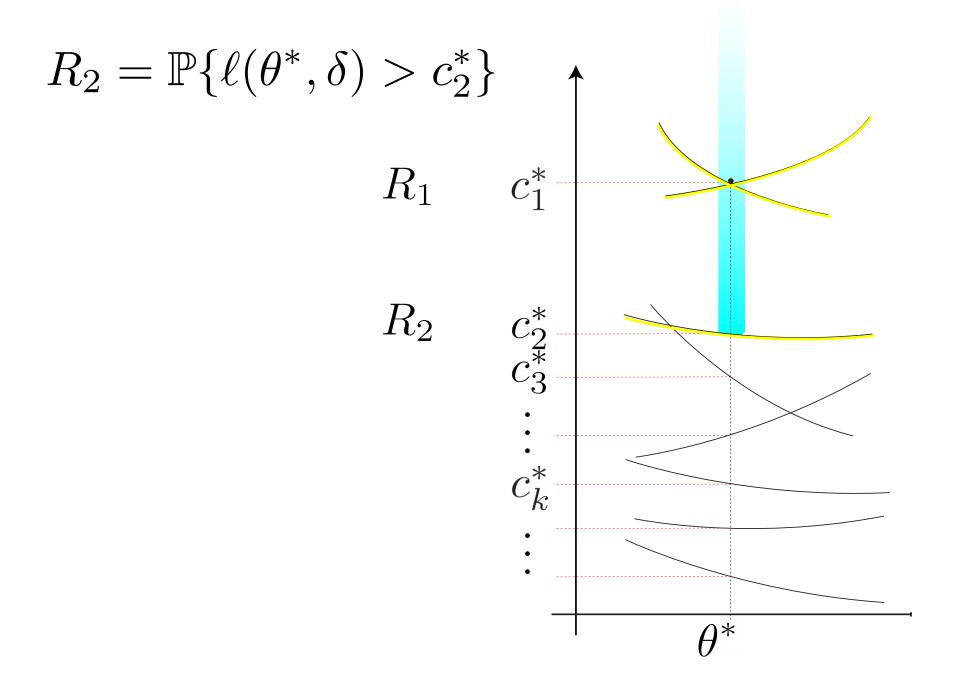


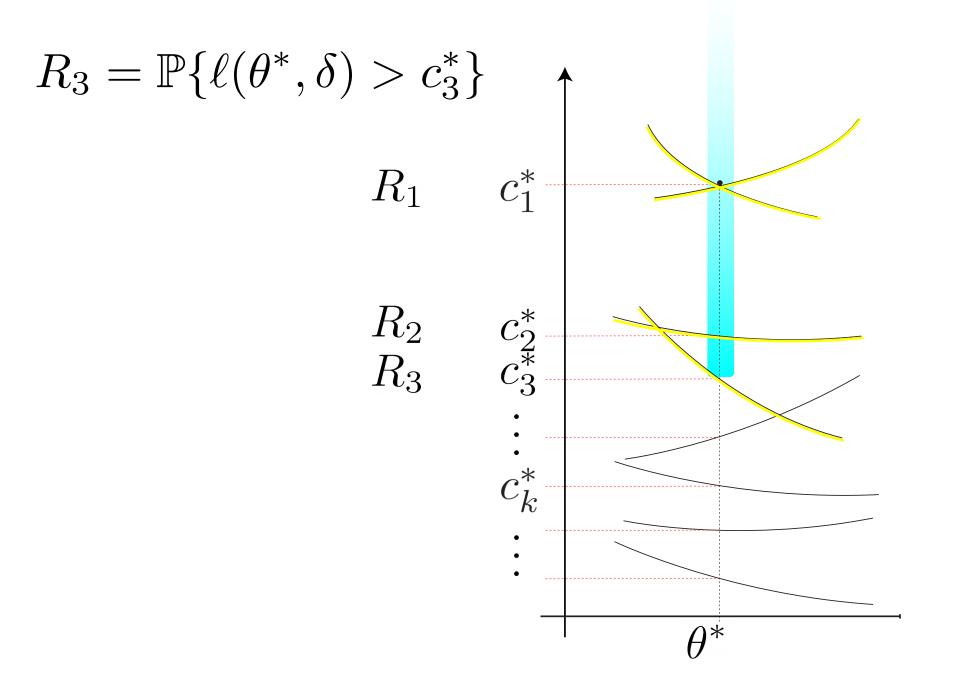


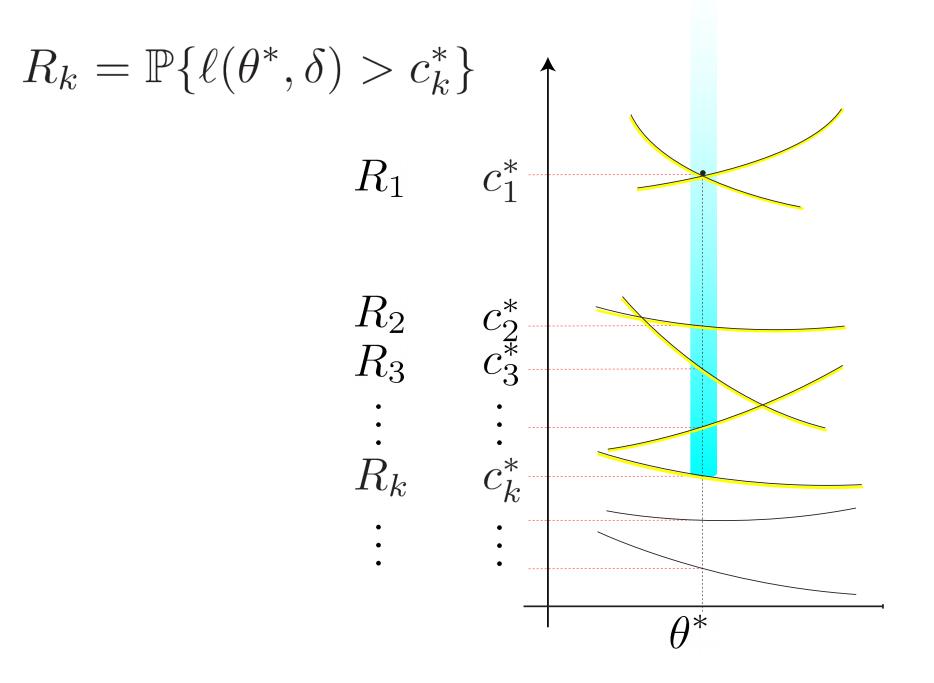


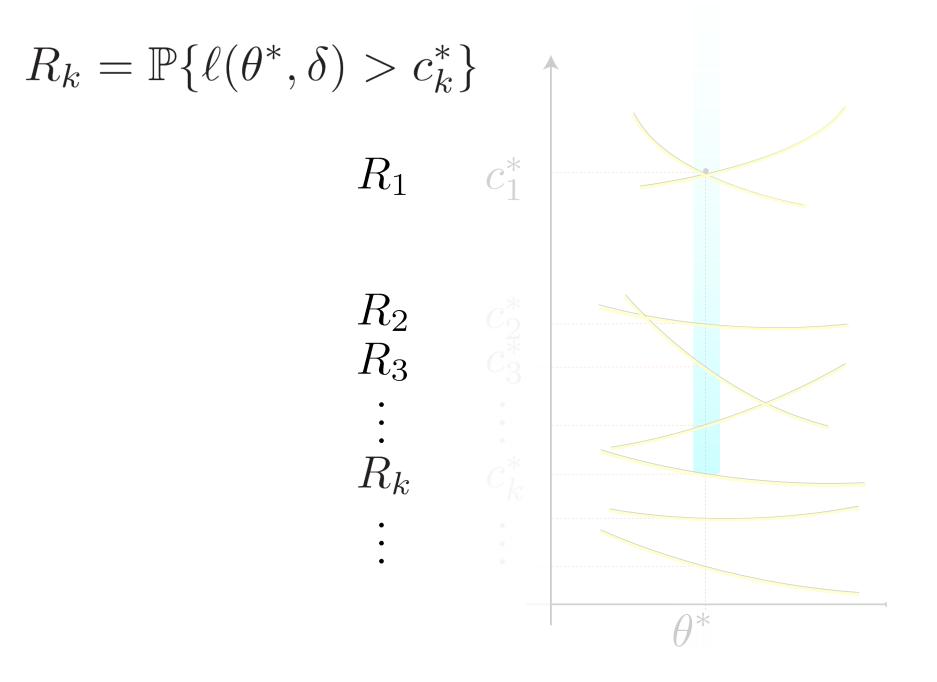












 R_1 R_2 R_3

•

R_k

- •

 R_1 R_2 R_3 \vdots

N and d are all that matters

•

 R_k

- •
- •

 $R_k \in [\underline{\epsilon}_k, \overline{\epsilon}_k]$

 $R_1 \\ R_2 \\ R_3$

• •

 R_k

N and d are all that matters

- •
- •
- •

 R_1

 R_2

 R_3

•

 R_k

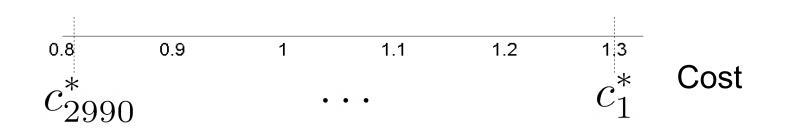
٠

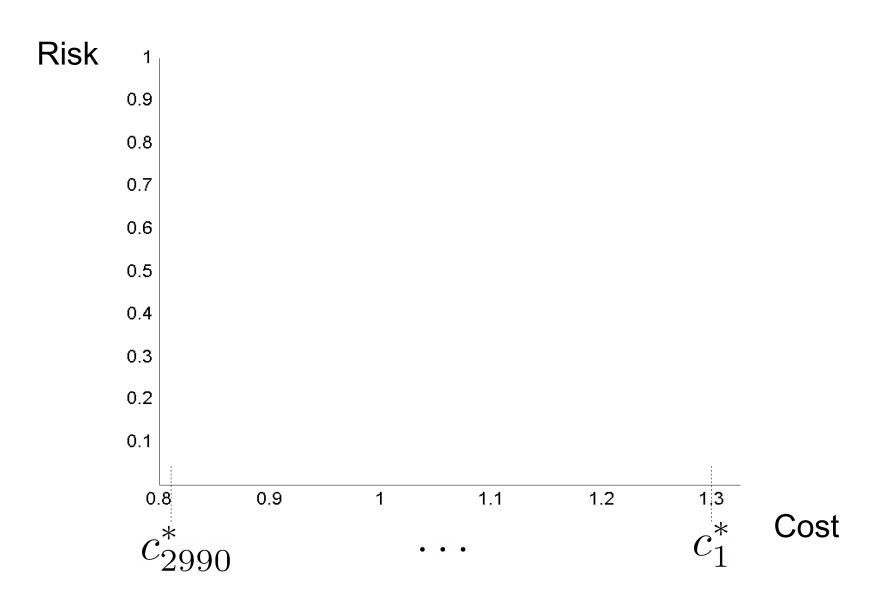
٠

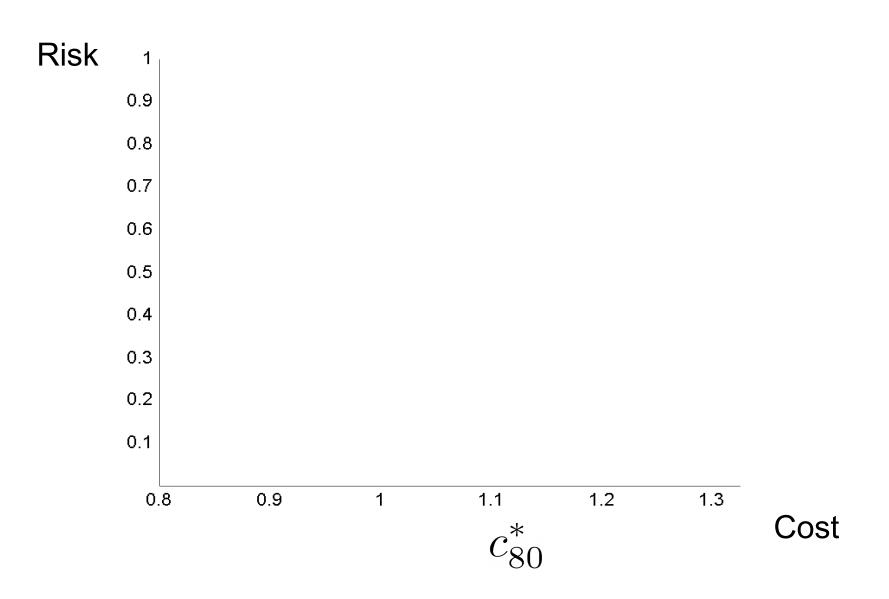
$$R_k \in [\epsilon_k, ar \epsilon_k]$$
with confidence 1-10⁻⁶

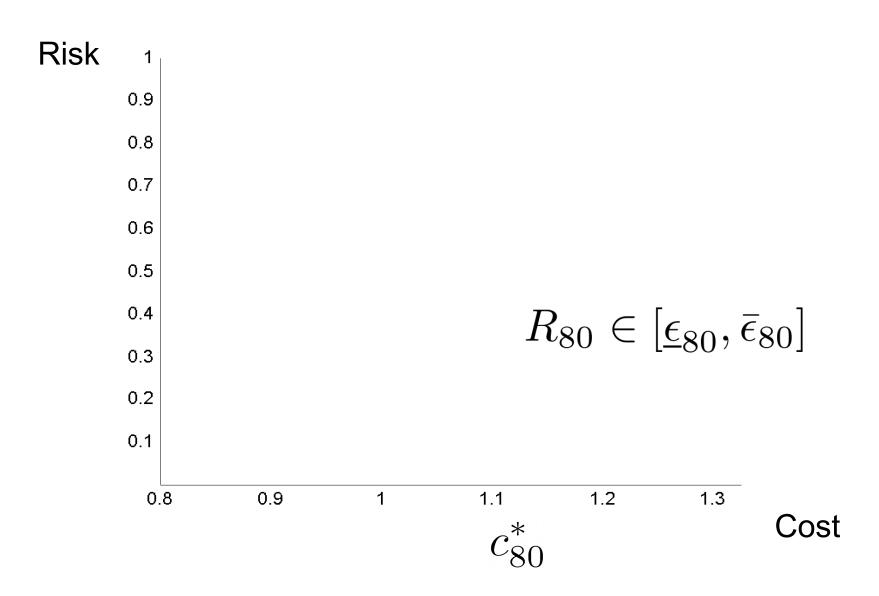
are all that matters

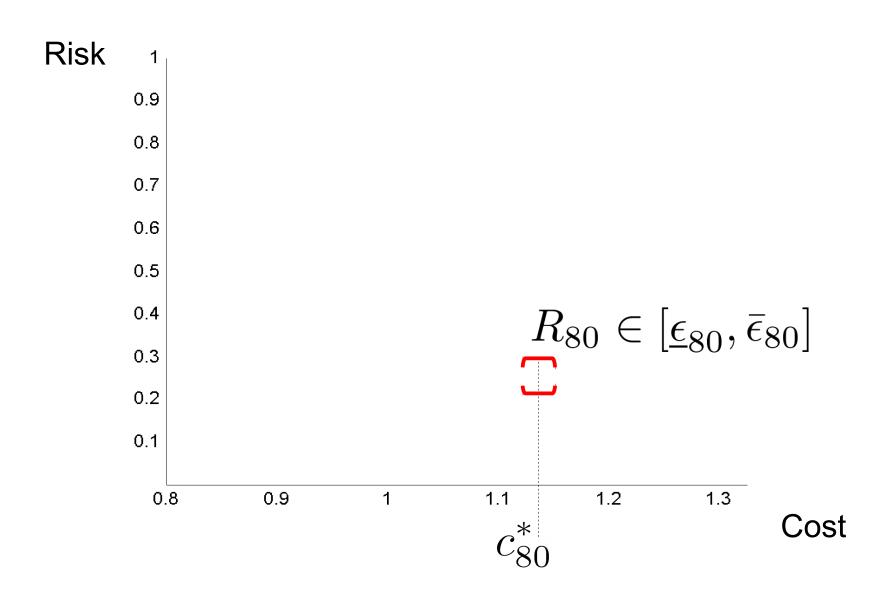
N and d

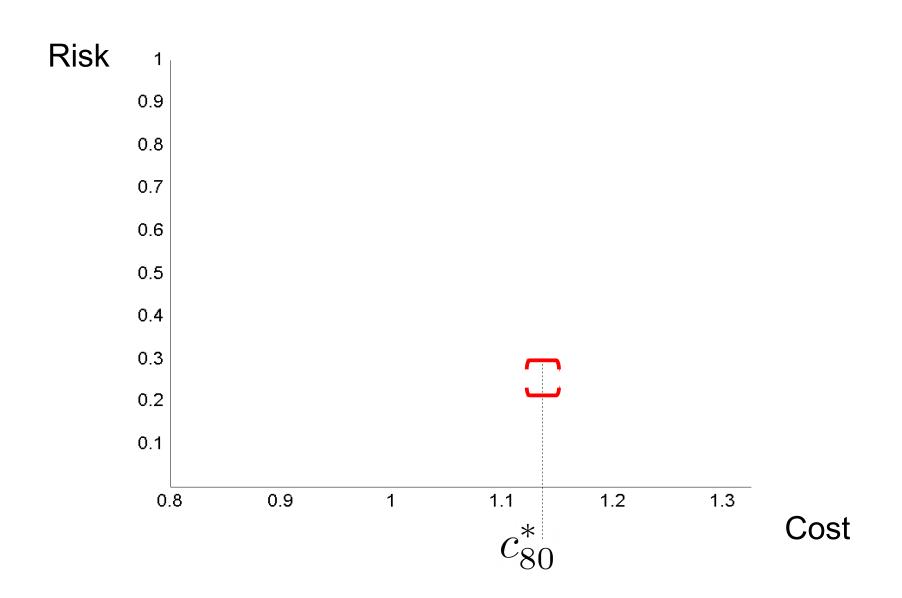


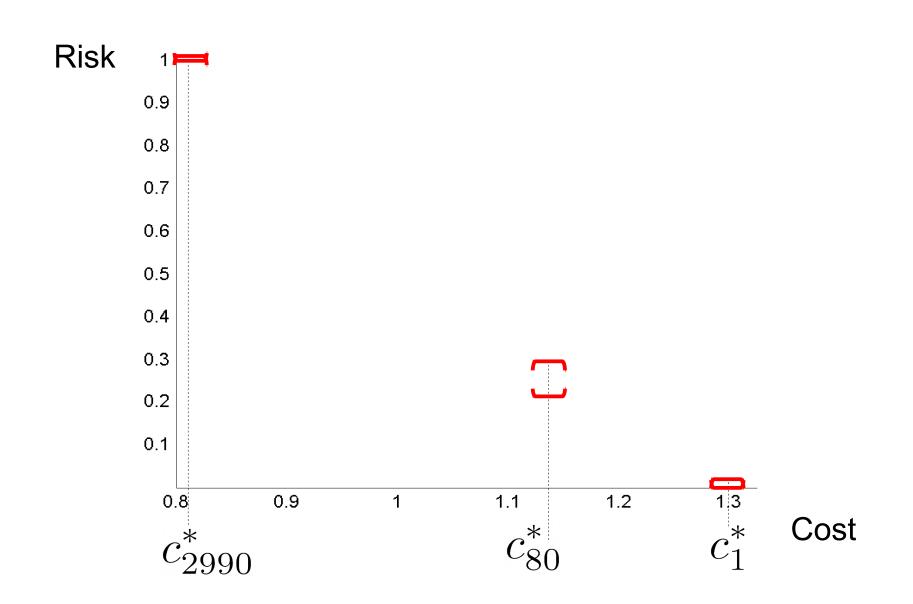


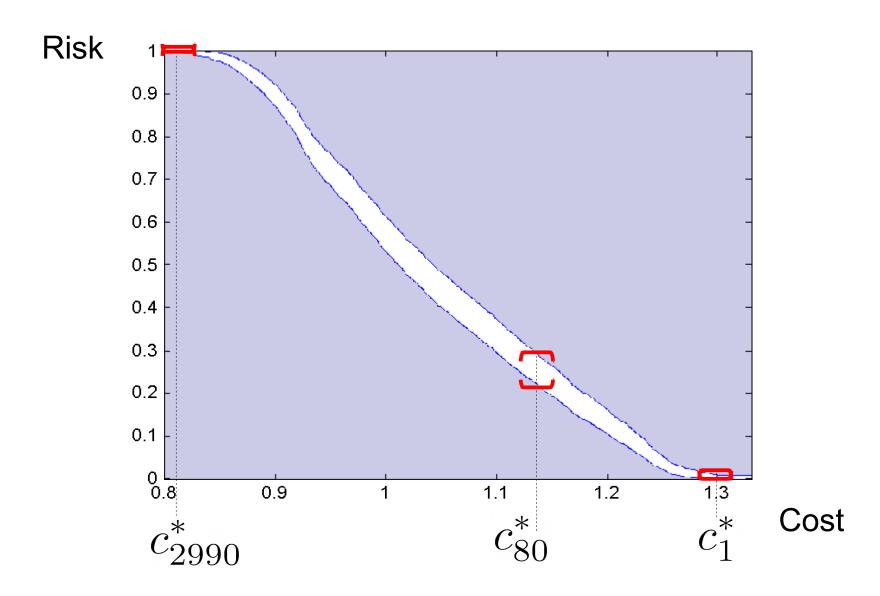


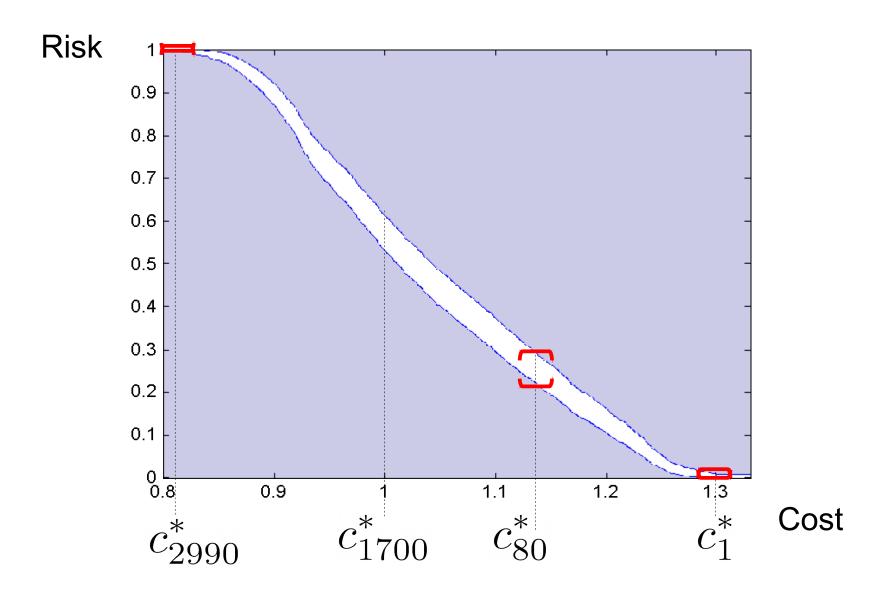


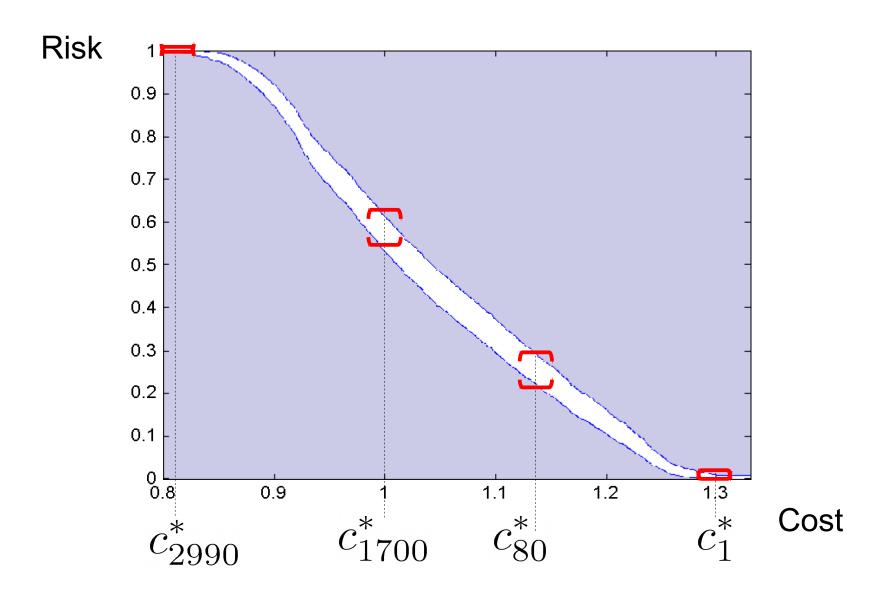




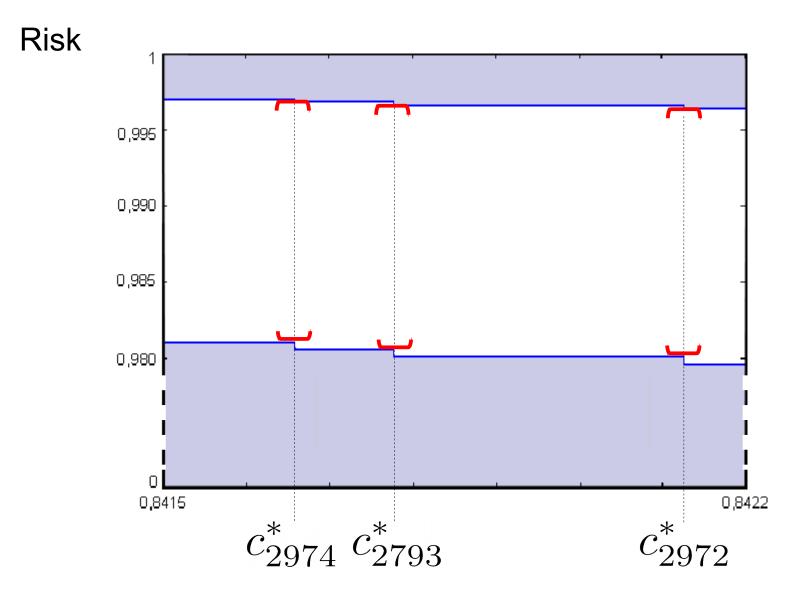


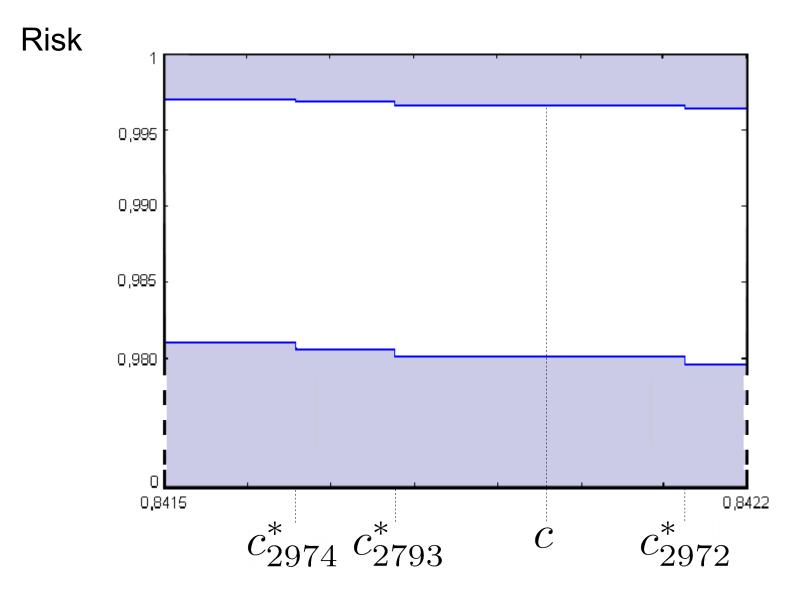


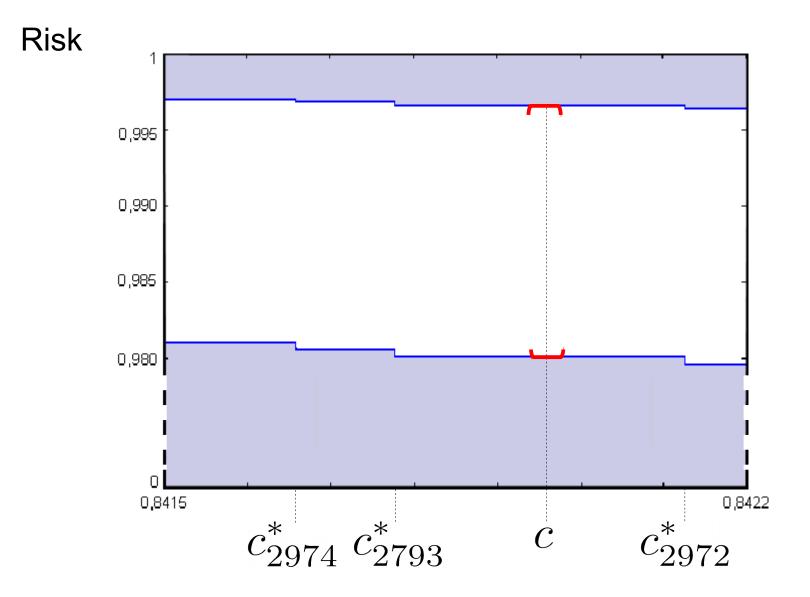


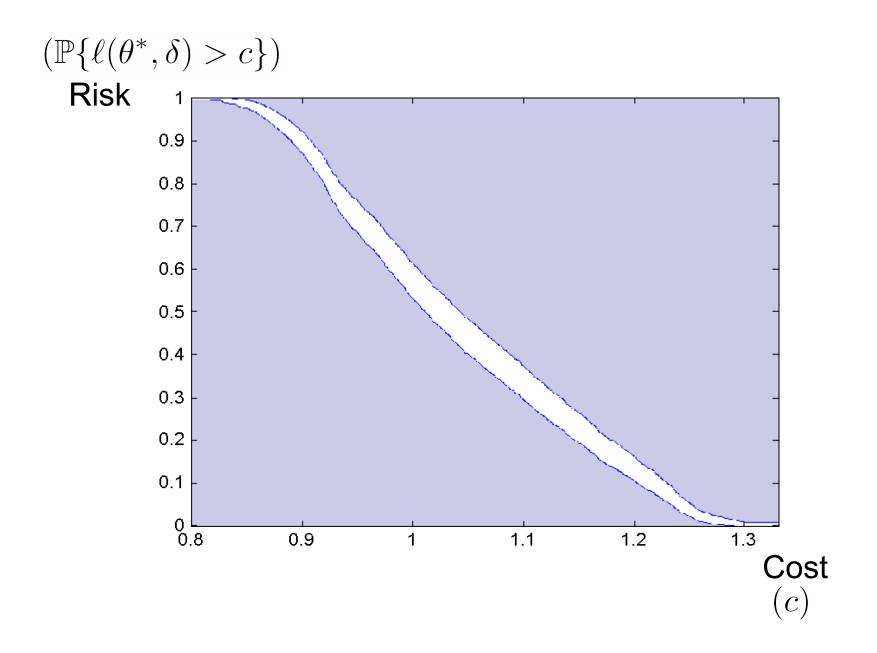


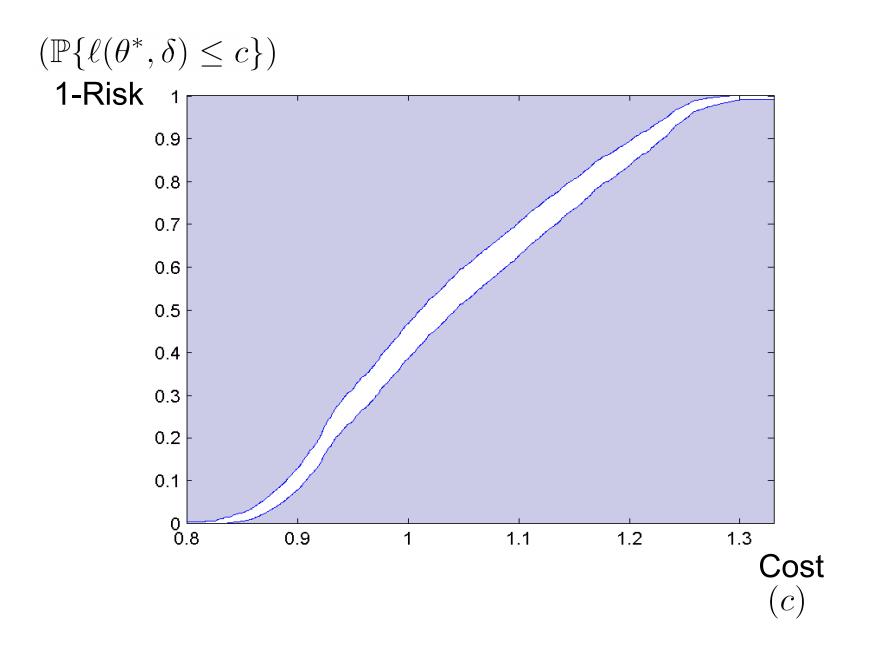




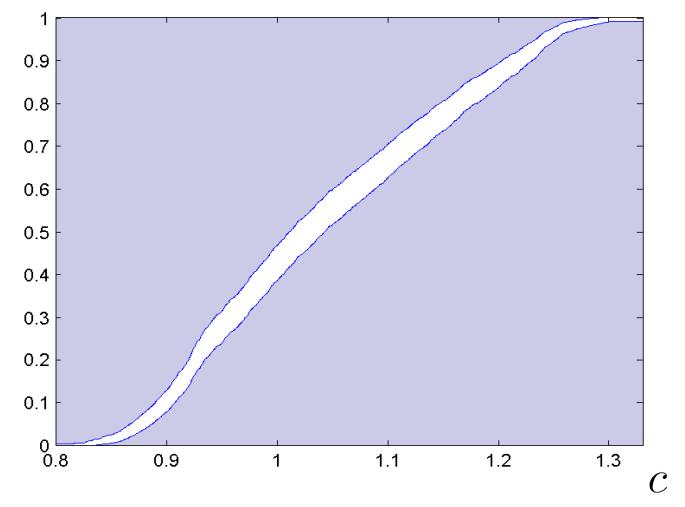




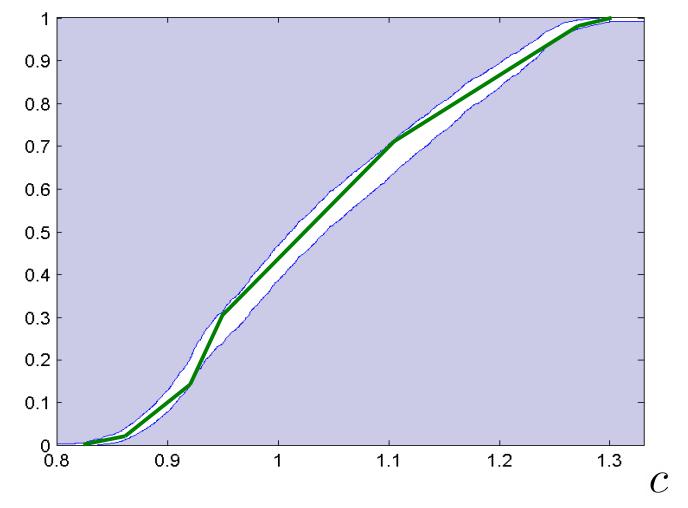




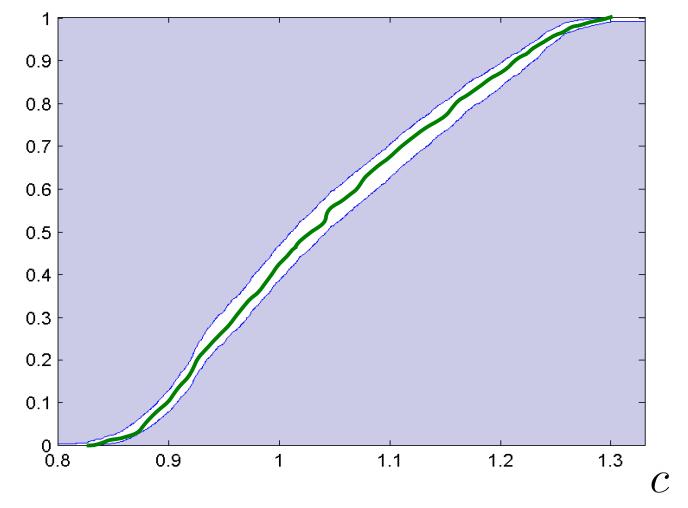
 $\mathrm{CDF}_{\ell(\theta^*,\delta)}(c)$



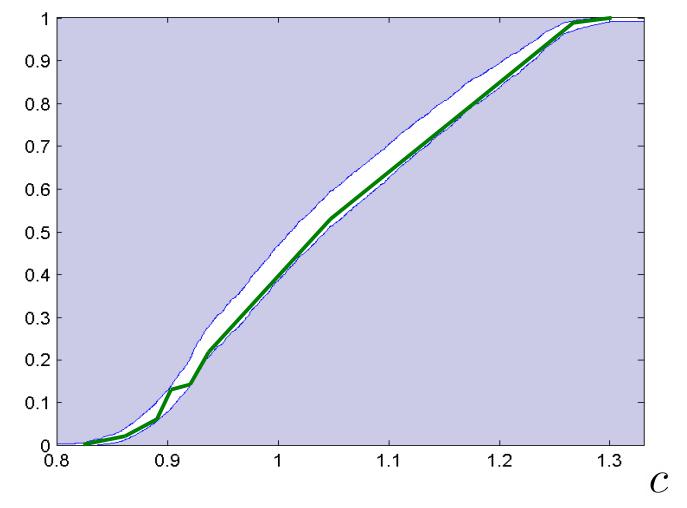
 $\mathrm{CDF}_{\ell(\theta^*,\delta)}(c)$



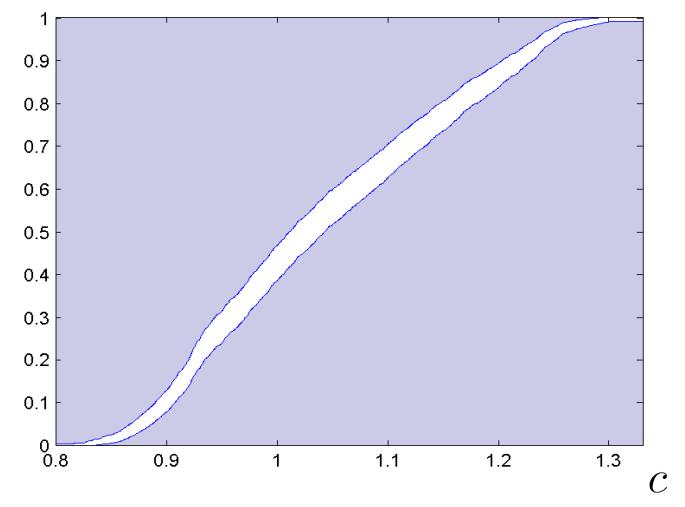
 $\mathrm{CDF}_{\ell(\theta^*,\delta)}(c)$



 $\mathrm{CDF}_{\ell(\theta^*,\delta)}(c)$



 $\mathrm{CDF}_{\ell(\theta^*,\delta)}(c)$



Probability distribution of $\ell(\theta^*, \delta)$ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.8 0.9 1.1 1.2 1.3 1 с $\hat{H^*}$

We have reconstructed (wrapped) the real distribution of the cost from data (*N* scenarios).

No specific knowledge of $\ell(\theta, \delta), \Delta$ and \mathbb{P} has been used. We have reconstructed (wrapped) the real distribution of the cost from data (*N* scenarios).

No specific knowledge of $\ell(\theta, \delta), \Delta$ and \mathbb{P} has been used.

REFERENCE

A. Carè, S. Garatti, and M.C. Campi,

Scenario Min-Max Optimization and the Risk of Empirical Costs.

SIAM Journal on Optimization, 25(4):2061–2080, 2015.

algo.care@gmail.com

Ordered Dirichlet C.D.F.

$$\mathbb{P}^{N} \{ R_{1} \leq \epsilon_{1}, R_{2} \leq \epsilon_{2}, \dots, R_{N-d} \leq \epsilon_{N-d} \}$$

$$N! \quad \ell^{\epsilon_{1}} \quad \ell^{\epsilon_{2}} \quad \ell^{\epsilon_{N-d}}$$

$$= \frac{N!}{d!} \int_0^{\sigma_1} \int_{r_1}^{\sigma_2} \cdots \int_{r_{N-d-1}}^{\sigma_{N-d}} r_1^d \mathrm{d}r_{N-d} \cdots \mathrm{d}r_2 \mathrm{d}r_1$$

"Fully" vs "non-fully" supported

