AVERAGE NUMBER OF MISTAKES IN SEQUENTIAL RISK-AVERSE SCENARIO DECISION-MAKING

63rd Conference on Decision and Control 2024 - "Learning-Based Control V: Safety and Convergence Guarantees"

December 19

AVERAGE NUMBER OF MISTAKES IN SEQUENTIAL RISK-AVERSE SCENARIO DECISION-MAKING

Simone Garatti (Politecnico di Milano, MI)

Marco C. Campi (University of Brescia, IT)

63rd Conference on Decision and Control 2024 - "Learning-Based Control V: Safety and Convergence Guarantees"

December 19

AVERAGE NUMBER OF MISTAKES IN SEQUENTIAL RISK-AVERSE SCENARIO DECISION-MAKING

Simone Garatti (Politecnico di Milano, MI)

Marco C. Campi (University of Brescia, IT)

Algo Carè

(University of Brescia, IT)

63rd Conference on Decision and Control 2024 - "Learning-Based Control V: Safety and Convergence Guarantees"

December 19

S. Garatti, M.C. Campi, A. Carè "On a Class of Interval Predictor Models with Universal Reliability" Automatica 2019

$$(u_1, y_1), \ldots, (u_{10}, y_{10}), (u_{11}, y_{11})$$

$$(u_1, y_1), \ldots, (u_{10}, y_{10}), (u_{11}, y_{11})$$

Training $(u_1,y_1),\ldots,(u_{10},y_{10}),(u_{11},y_{11})$ P_{10}^*

Training $(u_1,y_1),\ldots,(u_{10},y_{10}),(u_{11},y_{11})$ Future point

Training $(u_1,y_1),\ldots,(u_{10},y_{10}),(u_{11},y_{11}):(u_{11},y_{11})\notin P_{10}^*$ Future point prediction error

Training $\{(u_1,y_1),\ldots,(u_{10},y_{10}),(u_{11},y_{11}):(u_{11},y_{11})\notin P_{10}^*\}$ Future point prediction error

 $PErr_{10}$

Training $Prob\{(u_1,y_1),\ldots,(u_{10},y_{10}),(u_{11},y_{11}):(u_{11},y_{11})\notin P_{10}^*\}$ Future point prediction error

$$PErr_{10} = \frac{3}{11}$$

Training $Prob\{(u_1,y_1),\ldots,(u_{10},y_{10}),(u_{11},y_{11}):(u_{11},y_{11})\notin P_{10}^*\}$ Future point prediction error

$$PErr_{10} = \frac{3}{11}$$

#support points
$$N+1$$

Training:

Our predictor Data-driven decision Training: Optimization:

Training:

 $\min_{(\theta_0,\theta_1,w)\in\mathbb{R}^3}$

w

Data-driven decision

Optimization:

Training:

 $\min_{(\theta_0,\theta_1,w)\in\mathbb{R}^3} w$

Data-driven decision

Optimization:

$$\min_{x \in \mathcal{X} \subset \mathbb{R}^d} c(x)$$

Training:

w

 $|y_i - (\theta_0 + \theta_1 u_i)| \le w,$

 $(\theta_0, \theta_1, w) \in \mathbb{R}^3$

min

subject to:

$$i = 1, \dots, N$$

Data-driven decision

Optimization:

$$\min_{x \in \mathcal{X} \subset \mathbb{R}^d} c(x)$$

Training:

subject to:

min

 $(\theta_0, \theta_1, w) \in \mathbb{R}^3$

$$|y_i - (\theta_0 + \theta_1 u_i)| \le w,$$

$$i = 1, \dots, N$$

Data-driven decision

Optimization:

$$\min_{x \in \mathcal{X} \subset \mathbb{R}^d} c(x)$$

subject to:

$$x \in \mathcal{X}_{\delta_i}$$
,

$$i = 1, \dots, N$$

Training:

u

 $(\theta_0, \theta_1, w) \in \mathbb{R}^3$

subject to:

min

$$|\mathbf{y}_i - (\theta_0 + \theta_1 \mathbf{u}_i)| \le w,$$

$$i = 1, \dots, N$$

Data-driven decision

Optimization:

$$\min_{x \in \mathcal{X} \subset \mathbb{R}^d} c(x)$$

subject to:

$$x \in \mathcal{X}_{\delta_i},$$
 $i = 1, \dots, N$

"scenario"

$$i=1,\ldots,N$$

Training:

$$\min_{(\theta_0,\theta_1,w)\in\mathbb{R}^3} w$$

subject to:

$$|\mathbf{y_i} - (\theta_0 + \theta_1 \mathbf{u_i})| \le w,$$

$$i = 1, \dots, N$$

Predictor: $P_N^* = \{|y - (\theta_0^* + \theta_1^* u)| \le w^*\}$

Data-driven decision

Optimization:

$$\min_{x \in \mathcal{X} \subset \mathbb{R}^d} c(x)$$

subject to: "scenario"

$$x \in \mathcal{X}_{\delta_i}$$

$$i = 1, \dots, N$$

Training:

 $\min_{(\theta_0,\theta_1,w)\in\mathbb{R}^3} w$

subject to:

$$|\mathbf{y_i} - (\theta_0 + \theta_1 \mathbf{u_i})| \le w,$$

$$i = 1, \dots, N$$

Predictor: $P_N^* = \{|y - (\theta_0^* + \theta_1^* u)| \le w^*\}$

Data-driven decision

Optimization:

 $\min_{x \in \mathcal{X} \subset \mathbb{R}^d} c(x)$

subject to: "scenario"

 $x \in \mathcal{X}_{\delta_i}$

 $i = 1, \dots, N$

Solution (decision): x^*

Training:

w

 $(\theta_0, \theta_1, w) \in \mathbb{R}^3$

min

subject to:

$$|\mathbf{y_i} - (\theta_0 + \theta_1 \mathbf{u_i})| \le w,$$

$$i = 1, \dots, N$$

Predictor: $P_N^* = \{|y - (\theta_0^* + \theta_1^* u)| \le w^*\}$

Complexity: 3 support points

Data-driven decision

Optimization:

$$\min_{x \in \mathcal{X} \subset \mathbb{R}^d} c(x)$$

subject to:

$$x \in \mathcal{X}_{\delta_i}$$

"scenario"

$$i = 1, \dots, N$$

Solution (decision): x^*

Training:

$$\min_{(\theta_0,\theta_1,w)\in\mathbb{R}^3} w$$

subject to:

$$|y_i - (\theta_0 + \theta_1 u_i)| \le w,$$

$$i = 1, \dots, N$$

Predictor: $P_N^* = \{|y - (\theta_0^* + \theta_1^* u)| \le w^*\}$

Complexity: 3 support points

Data-driven decision

Optimization:

$$\min_{x \in \mathcal{X} \subset \mathbb{R}^d} c(x)$$

subject to:

$$x\in\mathcal{X}_{\delta_i}, \ i=1,\ldots,N$$

"scenario"

Solution (decision): x^*

Training:

$$\min_{(\theta_0,\theta_1,w)\in\mathbb{R}^3} w$$

subject to:

$$|y_i - (\theta_0 + \theta_1 u_i)| \le w,$$

$$i = 1, \dots, N$$

Predictor: $P_N^* = \{|y - (\theta_0^* + \theta_1^* u)| \le w^*\}$

Complexity: 3 support points

Data-driven decision

Optimization:

$$\min_{x \in \mathcal{X} \subseteq \mathbb{R}^d}$$

subject to:

$$x \in \mathcal{X}_{\delta_i}$$

c(x)

"scenario"

$$i = 1, \dots, N$$

Solution (decision): x^*

Complexity: at most d support constraints

Training:

$$\min_{(\theta_0,\theta_1,w)\in\mathbb{R}^3} w$$

subject to:

$$|\mathbf{y}_i - (\theta_0 + \theta_1 \mathbf{u}_i)| \le w,$$

$$i = 1, \dots, N$$

Predictor: $P_N^* = \{|y - (\theta_0^* + \theta_1^* u)| \le w^*\}$

Complexity: 3 support points

Misprediction:

$$(u_{N+1}, y_{N+1}) : |y_{N+1} - (\theta_0^* + \theta_1^* u_{N+1})| > w^*$$

Data-driven decision

Optimization:

$$\min_{x \in \mathcal{X} \subset \mathbb{R}^d} c(x)$$

subject to:

$$x \in \mathcal{X}_{\delta_i},$$
 $i = 1, \dots, N$

"scenario"

Solution (decision): x^*

Complexity: at most d support constraints

Training:

$$\min_{(\theta_0,\theta_1,w)\in\mathbb{R}^3} \quad w$$

subject to:

$$|\mathbf{y}_i - (\theta_0 + \theta_1 \mathbf{u}_i)| \le w,$$

$$i = 1, \dots, N$$

Predictor: $P_N^* = \{|y - (\theta_0^* + \theta_1^* u)| \le w^*\}$

Complexity: 3 support points

Misprediction:

$$|(u_{N+1}, y_{N+1}): |y_{N+1} - (\theta_0^* + \theta_1^* u_{N+1})| > w^*|$$

Data-driven decision

Optimization:

$$\min_{x \in \mathcal{X} \subseteq \mathbb{R}^d} c(x)$$

subject to:

$$x \in \mathcal{X}_{\delta_i},$$
 $i = 1, \dots, N$

"scenario"

Solution (decision): x^*

Complexity: at most d support constraints

Constraint violation:

$$\delta_{N+1}: x^* \notin \mathcal{X}_{\delta_{N+1}}$$

Training:

$$\min_{(\theta_0,\theta_1,w)\in\mathbb{R}^3}$$

subject to:

$$|\mathbf{y}_i - (\theta_0 + \theta_1 \mathbf{u}_i)| \le w,$$

$$i = 1, \dots, N$$

u

Predictor: $P_N^* = \{|y - (\theta_0^* + \theta_1^* u)| \le w^*\}$

Complexity: 3 support points

Misprediction:

$$(u_{N+1}, y_{N+1}) : |y_{N+1} - (\theta_0^* + \theta_1^* u_{N+1})| > w^*$$

Guarantee: $PErr_N = \frac{3}{N+1}$

Data-driven decision

Optimization:

$$\min_{x \in \mathcal{X} \subset \mathbb{R}^d} c(x)$$

subject to:

$$x \in \mathcal{X}_{\delta_i},$$
 $i = 1, \dots, N$

"scenario"

Solution (decision):
$$x^*$$

Complexity: at most d support constraints

Constraint violation:

$$\delta_{N+1}: x^* \notin \mathcal{X}_{\delta_{N+1}}$$

Training:

 $(\theta_0,\theta_1,w)\in\mathbb{R}^3$

u

subject to:

 $|\mathbf{y_i} - (\theta_0 + \theta_1 \mathbf{u_i})| \leq w,$

Predictor: $P_N^* = \{|y - (\theta_0^* + \theta_1^* u)| \le w^*\}$

Complexity: 3 support points

Misprediction:

 $(u_{N+1}, y_{N+1}): |y_{N+1} - (\theta_0^* + \theta_1^* u_{N+1})| > w^*$

Guarantee:

 $PErr_N = \frac{3}{N+1}$

 $i = 1, \dots, N$

Data-driven decision

Optimization:

min $x \in \mathcal{X} \subset \mathbb{R}^d$

subject to:

 $x \in \mathcal{X}_{\delta_i}$

c(x)

"scenario"

 $i = 1, \dots, N$ Solution (decision): x^*

Complexity: at most d support constraints

Constraint violation:

 $\delta_{N+1}: x^* \notin \mathcal{X}_{\delta_{N+1}}$

35

Training:

 $(\theta_0,\theta_1,w)\in\mathbb{R}^3$

u

 $i = 1, \dots, N$

subject to:

 $|\mathbf{y_i} - (\theta_0 + \theta_1 \mathbf{u_i})| \leq w,$

Predictor: $P_N^* = \{|y - (\theta_0^* + \theta_1^* u)| \le w^*\}$

Complexity: 3 support points

Misprediction:

 $(u_{N+1}, y_{N+1}): |y_{N+1} - (\theta_0^* + \theta_1^* u_{N+1})| > w^*$

Guarantee:

 $PErr_N = \frac{3}{N+1}$

Data-driven decision

Optimization:

min $x \in \mathcal{X} \subset \mathbb{R}^d$

subject to:

 $x \in \mathcal{X}_{\delta_i}$

 $i = 1, \dots, N$

Complexity: at most d support constraints

Solution (decision): x^*

Constraint violation:

 $\delta_{N+1}: x^* \notin \mathcal{X}_{\delta_{N+1}}$ Guarantee: $PErr_N \leq \frac{a}{N+1}$

c(x)

"scenario"

36

Result:

Result:

δ_1	δ_2	δ_3	δ_4	δ_5	δ_6	δ_7	δ_8	δ_9	δ_{10}	δ_{11}
------------	------------	------------	------------	------------	------------	------------	------------	------------	---------------	---------------

Result:

Result: X X V ...

Rate of errors

Rate of errors $\rightarrow PErr_N$

Result: X X V ...

Rate of errors
$$\rightarrow PErr_N \leq \frac{d}{N+1}$$

Result: X X V ...

 δ_i rate of return at day i

 δ_i rate of return at day i

 x^{*} optimized portfolio of investments with guaranteed loss threshold

 δ_i rate of return at day i

 x^* optimized portfolio of investments with guaranteed loss threshold

$$x^* \notin \mathcal{X}_{\delta_{N+1}}$$
 "shortfall"

 δ_i rate of return at day i

 x^* optimized portfolio of investments with guaranteed loss threshold

Fig. 6. Sliding window. Solid line (-) = average number of times when $L_{j+N+1}(\mathbf{x}_{N,j}^*) > \bar{L}_{N,j}$; dashed-dotted line (-·) = 5.9% obtained from Theorem 4.1.

 δ_i realization of disturbances etc.

 x^* control inputs

 δ_i realization of disturbances etc.

 x^* control inputs

 $x^* \notin \mathcal{X}_{\delta_{N+1}}$ violation of the control constraints

 δ_i realization of disturbances etc.

 x^* control inputs

 $x^* \notin \mathcal{X}_{\delta_{N+1}}$ violation of the control constraints

Automatica 50 (2014) 3009-3018

The scenario approach for Stochastic Model Predictive Control with bounds on closed-loop constraint violations*

Georg Schildbach a,1, Lorenzo Fagiano a,b, Christoph Freic, Manfred Morari a

^a Automatic Control Laboratory, Swiss Federal Institute of Technology Zurich, Physikstrasse 3, 8092 Zurich, Switzerland

^b ABB Switzerland Ltd., Corporate Research, Segelhofstrasse 1, Baden-Daettwil, Switzerland

^c Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada

Fundamental idea:

s*reveals if our predictor

s*reveals
if our predictor
aligns with the unknown
data-generating mechanism

s*reveals
if our predictor
aligns with the unknown
data-generating mechanism

Proof of the claim:

S. Garatti, M.C. Campi

"Risk and complexity in scenario optimization"

Mathematical Programming 2022

Initialization: set a complexity threshold $ar{k}$

Initialization: set a complexity threshold k

Execution:

1) get N data, train the predictor and compute its s^*

Initialization: set a complexity threshold k

Execution:

- 1) get N data, train the predictor and compute its s^*
- 2) IF $s^* \leq \bar{k}$ THEN **USE the predictor** to predict the (N+1)-th data point

Initialization: set a complexity threshold k

Execution:

- 1) get N data, train the predictor and compute its s^*
- 2) IF $s^* \leq \bar{k}$ THEN **USE the predictor** to predict the (N+1)-th data point

OTHERWISE **USE an ORACLE*** that is ALWAYS RIGHT

Initialization: set a complexity threshold k

Execution:

- 1) get N data, train the predictor and compute its s^*
- 2) IF $s^* \leq \bar{k}$ THEN **USE the predictor** to predict the (N+1)-th data point

OTHERWISE **USE an ORACLE*** that is ALWAYS RIGHT

*ORACLE:

Initialization: set a complexity threshold k

Execution:

- 1) get N data, train the predictor and compute its s^*
- 2) IF $s^* \leq \bar{k}$ THEN **USE the predictor** to predict the (N+1)-th data point

OTHERWISE **USE an ORACLE*** that is ALWAYS RIGHT

***ORACLE:** Large prediction band

Initialization: set a complexity threshold k

Execution:

- 1) get **N** data, train the predictor and compute its s^*
- 2) IF $s^* \leq \bar{k}$ THEN **USE the predictor** to predict the (N+1)-th data point

OTHERWISE **USE an ORACLE*** that is ALWAYS RIGHT

*ORACLE: La

Large prediction band

"do not invest"

Ex. 1

Initialization: set a complexity threshold k

Execution:

- 1) get N data, train the predictor and compute its s^*
- 2) IF $s^* < k$ THEN **USE the predictor** to predict the (N+1)-th data point

OTHERWISE **USE an ORACLE*** that is ALWAYS RIGHT

Large prediction band *ORACLE:

$$PErr_N = Prob\{(u_1, y_1), \dots, (u_N, y_N), (u_{N+1}, y_{N+1}) :$$

$$(u_{N+1}, y_{N+1}) \notin P_N^*\}$$

$$PErr_N = Prob\{(u_1, y_1), \dots, (u_N, y_N), (u_{N+1}, y_{N+1}) :$$

$$s^* \leq \bar{k} \text{ AND } (u_{N+1}, y_{N+1}) \notin P_N^*\}$$

$$PErr_N = Prob\{(u_1, y_1), \dots, (u_N, y_N), (u_{N+1}, y_{N+1}) :$$

$$s^* \leq \bar{k} \text{ AND } (u_{N+1}, y_{N+1}) \notin P_N^*\}$$

$$PErr_N = Prob\{(u_1, y_1), \dots, (u_N, y_N), (u_{N+1}, y_{N+1}) :$$

$$s^* \leq \bar{k} \text{ AND } (u_{N+1}, y_{N+1}) \notin P_N^*\}$$

$$PErr_N \le \frac{\bar{k}}{N+1}$$

$$PErr_N = Prob\{(u_1, y_1), \dots, (u_N, y_N), (u_{N+1}, y_{N+1}) :$$

$$s^* \leq \bar{k} \text{ AND } (u_{N+1}, y_{N+1}) \notin P_N^*\}$$

$$\bar{k} \geq \frac{N}{2}$$

$\operatorname{PErr}_N \leq \frac{\bar{k}}{N}$

$$\bar{k} \ge \frac{\Lambda}{2}$$

$$PErr_N \le \min_{\ell=0,1,...,N} \frac{\binom{N}{\bar{k}}}{\binom{\ell}{\bar{k}}} \left(\frac{N-\ell}{N-\ell+1}\right)^{N-\ell} \frac{1}{N-\ell+1}$$

$$\operatorname{PErr}_N \leq \frac{\bar{k}}{N}$$

$$\bar{k} < \frac{\Lambda}{2}$$

$$\bar{k} \geq \frac{N}{2}$$

$$PErr_N \le \min_{\ell=0,1,\dots,N} \frac{\binom{N}{k}}{\binom{\ell}{k}} \left(\frac{N-\ell}{N-\ell+1}\right)^{N-\ell} \frac{1}{N-\ell+1}$$

$$\operatorname{PErr}_N \leq \frac{\bar{k}}{N}$$

$$\bar{k} < \frac{\Lambda}{2}$$

$$\bar{k} \ge \frac{N}{2}$$

Take-home message:

To limit our mistakes, we don't need to *postulate* that reality is simple. By measuring the complexity (s^*) of our decisions, we can **see** if our decisions align with reality and *be cautious* if they don't.

Take-home message:

To limit our mistakes, we don't need to *postulate* that reality is simple. By measuring the complexity (s^*) of our decisions, we can **see** if our decisions align with reality and *be cautious* if they don't.

