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1. A comparison with other conformal prediction methods

Consider Example 1 in paper “A Coverage Theory for Least Squares” where, for simplicity, we take

p ∈ R, so that both X and Y are reals. p is uniformly distributed in [0, 10] and ρ = exp(−p). N = 99

observations {(X1, Y1), . . . , (X99, Y99)} are collected and displayed in Fig. s.1. We here compare two
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Figure s.1. The data set in the (X,Y ) domain; pairs (Xi, Yi) are represented by dots.

prediction sets in the (X,Y ) domain with mean coverage 95%: that obtained with the new conformity

measure introduced in paper “A Coverage Theory for Least Squares”, Fig. s.2(a), and the prediction

set that is constructed by the approach of Lei et al. (2013) with Gaussian kernel with covariance

10−2 · I, Fig. s.2(b).

In both cases, the sup of q = ∥Y −Xβ̂N∥2 over the (X,Y ) that belong to the prediction sets gives

a threshold for q whose mean coverage is no smaller than 95%. With the 99 observations at hand,

these sup are 0.0472 and 0.1184 in the two approaches, respectively.
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Figure s.2. (a) prediction set obtained with the new conformity measure introduced in this paper; (b) prediction

set constructed by the kernel density approach of Lei et al. (2013).

One can see that the volume of our prediction set is bigger than that of the prediction set con-

structed using the method of Lei et al. (2013). However, the sup of the cost over our prediction set

is smaller. The reason is that the conformity measure introduced in this paper has been specifically

tailored to obtain small thresholds on the costs, while the conformity measure of Lei et al. (2013)

aims to obtain sets with small Lebesgue volume. Hence, we see that our prediction set and the

prediction set constructed using the method of Lei et al. (2013) have complementary features, and

each is valuable in its own specific domain of application.

For problems in higher dimension, computing the sup of the cost over the prediction set is im-

practical. Theorem 1 in paper “A Coverage Theory for Least Squares” provides an easy-to-compute

formula to upper bound this sup for our construction. In the present example, this formula gives a

tight 0.0478.

2. Proof of the key relationship (22) in paper “A Coverage Theory for Least Squares”

Start with noting that
∑

l ̸=iKl � 0 or γi ≥ 1√
2
implies that q̃i = ∞, see (15) in paper “A Coverage

Theory for Least Squares”, and q̃i ≥ µi is therefore clearly true. Hence, throughout what follows we

assume that ∑
l ̸=i

Kl ≻ 0 and γi <
1√
2
.

By substituting in equation (21) of paper “A Coverage Theory for Least Squares” the expressions for

m and mi that are given in equations (19) and (20) of the same paper, we have

µi = sup
K,v,h

Q(β̂N )

subject to: Q(β̂N ) ≤ Q(β̂)−Q(β̂N ) + 2Qi(β̂
[i])−Qi(β̂),
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i.e., µi is computed as the supremum of Q(β̂N ) over the triples (K, v, h) such that Q(β̂N ) does not

exceed Q(β̂)−Q(β̂N ) + 2Qi(β̂
[i])−Qi(β̂). Hence,

µi ≤ sup
K,v,h

{
Q(β̂)−Q(β̂N ) + 2Qi(β̂

[i])−Qi(β̂)
}
. (s.1)

Now we write Q as an explicit function of the optimization variables (K, v, h) with respect to which

the sup in (s.1) is computed.

Note that:

β̂ =
(∑

Kl +K
)−1(∑

Klvl +Kv
)
,

β̂N =
(∑

Kl

)−1∑
Klvl,

β̂[i] =

∑
l ̸=i

Kl +K

−1∑
l ̸=i

Klvl +Kv

.

Let

w := β̂ − v =
(∑

Kl +K
)−1(∑

Klvl +Kv
)
− v, (s.2)

wi := β̂ − vi =
(∑

Kl +K
)−1(∑

Klvl +Kv
)
− vi, (s.3)

and note that

β̂N − v =
(∑

Kl

)−1∑
Klvl − v

=
(∑

Kl

)−1(∑
Klvl −

∑
Klv

)
=
(∑

Kl

)−1(∑
Kl +K

)(∑
Kl +K

)−1 [∑
Klvl +Kv −

(∑
Kl +K

)
v
]

=

(
I +

(∑
Kl

)−1
K

)[(∑
Kl +K

)−1(∑
Klvl +Kv

)
− v

]
=

(
I +

(∑
Kl

)−1
K

)
w,

and similarly that

β̂[i] − vi =

∑
l ̸=i

Kl +K

−1∑
l ̸=i

Klvl +Kv

− vi =

I +

∑
l ̸=i

Kl +K

−1

Ki

wi.

Using these expressions in the definitions (16) and (17) of Qi and Q in paper “A Coverage Theory

for Least Squares” yields

Q(β̂) = wTKw + h,

Q(β̂N ) = wT

(
I +

(∑
Kl

)−1
K

)T

K

(
I +

(∑
Kl

)−1
K

)
w + h,

Qi(β̂
[i]) = wT

i

I +

∑
l ̸=i

Kl +K

−1

Ki

T

Ki

I +

∑
l ̸=i

Kl +K

−1

Ki

wi + hi,

Qi(β̂) = wT
i Kiwi + hi.
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Now, substituting in (s.1) and noting that h is canceled when taking the difference between Q(β̂)

and Q(β̂N ), we have that (recall that K and Ki are symmetric)

µi ≤ sup
K,v

wT

(
K −

(
I +

(∑
Kl

)−1
K

)T

K

(
I +

(∑
Kl

)−1
K

))
w

+wT
i

2

I +

∑
l ̸=i

Kl +K

−1

Ki

T

Ki

I +

∑
l ̸=i

Kl +K

−1

Ki

−Ki

wi + hi


= sup

K,v

{
−wTK

(∑
Kl

)−1
Z(K)

(∑
Kl

)−1
Kw + wT

i V (K)wi + hi

}
,

(s.4)

where

Z(K) := 2
∑

Kl +K, (s.5)

V (K) := 2

I +

∑
l ̸=i

Kl +K

−1

Ki

T

Ki

I +

∑
l ̸=i

Kl +K

−1

Ki

−Ki, (s.6)

In (s.4), the dependence on K and v shows up explicitly and also implicitly through the definition of

w and wi in (s.2) and (s.3).

A simplification in the study of (s.4) is obtained by noting that (s.2) defines a one-to-one correspon-

dence between (K, v) and (K,w). In fact, given (K, v), (s.2) permits one to compute w. On the other

hand, given (K,w), v is computed through relationship

v =
(∑

Kl

)−1∑
Klvl −

(
I +

(∑
Kl

)−1
K

)
w. (s.7)

Therefore, the supremum with respect to K, v in (s.4) is equivalent to the supremum with respect to

K,w provided that wi is also written as a function of K,w. This is easily done by substituting in

(s.3) the expression (s.7) for v, so obtaining

wi =
(∑

Kl +K
)−1

(∑
Klvl +K

[(∑
Kl

)−1∑
Klvl −

(
I +

(∑
Kl

)−1
K

)
w

])
− vi

=
(∑

Kl +K
)−1

(
I +K

(∑
Kl

)−1
)∑

Klvl

−
(∑

Kl +K
)−1

(
K +K

(∑
Kl

)−1
K

)
w − vi

=
(∑

Kl +K
)−1(∑

Kl +K
)(∑

Kl

)−1∑
Klvl

−
(∑

Kl +K
)−1(∑

Kl +K
)(∑

Kl

)−1
Kw − vi

=
(∑

Kl

)−1∑
Klvl − vi −

(∑
Kl

)−1
Kw

= β̂N − vi −
(∑

Kl

)−1
Kw.
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Substituting this expression for wi in (s.4) we obtain (recall that K and Ki are symmetric)

µi ≤ sup
K,w

{
wTK

(∑
Kl

)−1
(V (K)− Z(K))

(∑
Kl

)−1
Kw

− 2
(
β̂N − vi

)T
V (K)

(∑
Kl

)−1
Kw +

(
β̂N − vi

)T
V (K)

(
β̂N − vi

)
+ hi

}
.

Now, letting

A(K) :=V (K)− Z(K), (s.8)

B(K) :=− 2
(
β̂N − vi

)T
V (K), (s.9)

C(K) :=
(
β̂N − vi

)T
V (K)

(
β̂N − vi

)
+ hi, (s.10)

we have that

µi ≤ sup
K,w

{
wTK

(∑
Kl

)−1
A(K)

(∑
Kl

)−1
Kw +B(K)

(∑
Kl

)−1
Kw + C(K)

}
,

which, with the notation y := (
∑

Kl)
−1Kw, implies

µi ≤ sup
K,w

{
yTA(K)y +B(K)y + C(K)

}
≤ sup

K,y

{
yTA(K)y +B(K)y + C(K)

}
. (s.11)

In the next Fact 1 it is proven that A(K) ≺ 0. As a consequence, the quadratic form yTA(K)y +

B(K)y + C(K) admits a unique maximizer as a function of y.

Fact 1. If
∑

l ̸=iKl ≻ 0 and γi <
1√
2
, then A(K) ≺ 0, ∀K ≽ 0.

⋆

Proof. From (s.8), (s.5), and (s.6) we have that

A(K) = 2

I +

∑
l ̸=i

Kl +K

−1

Ki

T

Ki

I +

∑
l ̸=i

Kl +K

−1

Ki

−Ki − 2
∑

Kl −K

= 2Ki
1

2

I +Ki
1

2

∑
l ̸=i

Kl +K

−1

Ki
1

2

2

Ki
1

2 −Ki − 2
∑

Kl −K

≼ 2Ki
1

2

I +Ki
1

2

∑
l ̸=i

Kl +K

−1

Ki
1

2

2

Ki
1

2 −Ki − 2
∑

Kl. (s.12)

Observe that

I +Ki
1

2

∑
l ̸=i

Kl +K

−1

Ki
1

2 ≼ I +Ki
1

2

∑
l ̸=i

Kl

−1

Ki
1

2

≺
(
1 +

1√
2

)
I,
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where the last inequality follows from (12) in paper “A Coverage Theory for Least Squares” using

the assumption that γi <
1√
2
. Hence,1

I +Ki
1

2

∑
l ̸=i

Kl +K

−1

Ki
1

2

2

≺
(
1 +

1√
2

)2

I.

Substituting in (s.12), the conclusion is drawn that

A(K) ≼ 2

(
1 +

1√
2

)2

Ki −Ki − 2
∑

Kl = 2(
√
2 + 1)Ki − 2

∑
Kl ≺ 0,

where the last inequality follows since γi <
1√
2
implies that Ki

1

2

(∑
l ̸=iKl

)−1
Ki

1

2 ≺ 1√
2
I, from which,

in view of Lemma 1 in paper “A Coverage Theory for Least Squares”, Ki ≺ 1√
2

∑
l ̸=iKl, which in

turn implies that 2(
√
2 + 1)Ki ≺ 2

∑
Kl. 2

The maximizer of yTA(K)y +B(K)y + C(K) is

ymax = −1

2
A(K)−1B(K)T ,

so that, for any given K,

sup
y

{
yTA(K)y +B(K)y + C(K)

}
= −1

4
B(K)A(K)−1B(K)T + C(K)

=
(
β̂N − vi

)T(
V (K)− V (K)(V (K)− Z(K))−1V (K)

)(
β̂N − vi

)
+ hi,

in virtue of (s.8)-(s.10). Thus, (s.11) gives

µi ≤ sup
K

(
β̂N − vi

)T(
V (K)− V (K)(V (K)− Z(K))−1V (K)

)(
β̂N − vi

)
+ hi.

The final step of the proof of the key relationship (22) in paper “A Coverage Theory for Least Squares”

consists in showing that(
β̂N − vi

)T(
V (K)− V (K)(V (K)− Z(K))−1V (K)

)(
β̂N − vi

)
+ hi ≤ q̃i, ∀K ≽ 0. (s.13)

We start with the following fact.

Fact 2. Assume that
∑

l ̸=iKl ≻ 0 and γi <
1√
2
. Let W = W T ≽ 0 such that

(i) V (K) ≼ W , ∀K ≽ 0.

(ii) W ≺ 2
∑

Kl.

Then,

V (K)− V (K)(V (K)− Z(K))−1V (K) ≼ W +W
(
2
∑

Kl −W
)−1

W, ∀K ≽ 0.

⋆
1Though in general A ≺ B ; A2 ≺ B2, it holds that A ≺ I ⇒ A2 ≺ I.
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Proof. Rewrite (s.6) as

V (K) = Ki + 2Ki

∑
l ̸=i

Kl +K

−1

Ki

∑
l ̸=i

Kl +K

−1

+ 2

∑
l ̸=i

Kl +K

−1Ki

to see that V (k) ≻ 0 if Ki ≻ 0 while V (K) ≽ 0 if Ki ≽ 0.

Suppose first that Ki ≻ 0, so that V (K) ≻ 0. Using (i), we have (Z(K) was defined in (s.5))

V (K)−1 − Z(K)−1 ≽ W−1 − Z(K)−1

≽ W−1 −
(
2
∑

Kl

)−1
.

Because of (ii), W−1 − (2
∑

Kl)
−1 ≻ 0, so that W−1 − (2

∑
Kl)

−1 is invertible and we have

(
V (K)−1 − Z(K)−1

)−1 ≼
(
W−1 −

(
2
∑

Kl

)−1
)−1

.

An application of the Matrix Inversion Lemma (see e.g. Hager (1989)) now gives

V (K)− V (K)(V (K)− Z(K))−1V (K) ≼ W −W
(
W − 2

∑
Kl

)−1
W

= W +W
(
2
∑

Kl −W
)−1

W,

which is the statement of Fact 2.

Suppose instead that Ki ≽ 0. Since (i) and (ii) give V (K) ≼ W ≺ 2
∑

Kl, for any ϵ > 0 small enough

it holds that

0 ≺ V (K) + ϵI ≼ W + ϵI ≺ 2
∑

Kl.

Repeating the proof for the case Ki ≻ 0 applied to V (K) + ϵI and W + ϵI in place of V (K) and W

yields

V (K) + ϵI − (V (K) + ϵI)(V (K) + ϵI − Z(K))−1(V (K) + ϵI)

≼ W + ϵI + (W + ϵI)
(
2
∑

Kl −W − ϵI
)−1

(W + ϵI),

and the result is obtained by letting ϵ → 0. 2

Fact 2 is now applied with W = Wi, where Wi is defined in equation (11) of paper “A Coverage

Theory for Least Squares”.

Rewrite V (K) as

V (K) = Ki + 4Ki

∑
l ̸=i

Kl +K

−1

Ki + 2K
1

2

i

K
1

2

i

∑
l ̸=i

Kl +K

−1

K
1

2

i

2

K
1

2

i .
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Since using (12) in paper “A Coverage Theory for Least Squares” gives

K
1

2

i

∑
l ̸=i

Kl +K

−1

K
1

2

i ≼ K
1

2

i

∑
l ̸=i

Kl

−1

K
1

2

i ≼ γiI,

it holds that

V (K) ≼ Ki + 4Ki

∑
l ̸=i

Kl

−1

Ki + 2γiKi

∑
l ̸=i

Kl

−1

Ki = Wi, ∀K ≽ 0,

which is (i) in Fact 2. Relation (ii) in Fact 2 is also true because of equation (14) in paper “A

Coverage Theory for Least Squares”. Thus, Fact 2 gives

V (K)− V (K)(V (K)− Z(K))−1V (K) ≼ Wi +Wi

(
2
∑

Kl −Wi

)−1
Wi, ∀K ≽ 0,

and we conclude that(
β̂N − vi

)T(
V (K)− V (K)(V (K)− Z(K))−1V (K)

)(
β̂N − vi

)
+ hi

≤
(
β̂N − vi

)T(
Wi +Wi

(
2
∑

Kl −Wi

)−1
Wi

)(
β̂N − vi

)
+ hi = q̃i,

which is (s.13). This concludes the proof of the key relationship (22) in paper “A Coverage Theory

for Least Squares”. 2
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