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1. Introduction

Given a sample of experimental observations (Xi, Yi), i = 1, . . . , N , where Xi ∈ R
n×d and Yi ∈ R

n

(see the example given a few lines below to clarify the reasons why we consider a multidimensional

Yi and, correspondingly, a matrix structure for Xi), the least squares method consists in minimizing

N
∑

i=1

‖Yi −Xiβ‖
2, (1)

with respect to the decision variable β ∈ R
d, where ‖·‖ is Euclidean norm. The minimizer2 is denoted

by β̂N , and is called the least squares estimate or the least squares solution. Depending on the context,

the least squares method has various interpretations that range from β being a parameter used to

tune a descriptive model to β being a decision variable in a design process. An example of this second

set-up is in order.

Example 1 (Service location). Each member of a population is described by a two-dimensional

vector p, which gives the position where the person lives, and a number ρ ∈ [0, 1] which assigns the

person’s rate of use of a given service (e.g. public laundry, post office, etc.). We are interested in

determining a suitable location β to position the service. To this purpose, a sample of N members of

the population is interviewed and their values (pi, ρi), i = 1, . . . , N , are recorded. The service loca-

tion is then determined by minimizing
∑N

i=1 ‖ρi(pi − β)‖2, which is the sum of squared home-service

distances weighted by the rate of use of the service. This problem can be rewritten in the form (1)

with Xi = ρi · I ∈ R
2×2, and Yi = ρipi ∈ R

2. Notice that a multidimensional Yi and, correspondingly,

a matrix structure for Xi turn up naturally in the formulation of this problem. ⋆

The least squares method has become a standard in many applied fields that range from data-based

and stochastic optimization, to robust filter design, system identification, and adaptive control. Irre-

spective of the application at hand, assessing the performance of β̂N prior to its use is an important

step to validate the solution, and the performance assessment of β̂N is the subject of this paper.

Throughout, we assume that (Xi, Yi), i = 1, . . . , N , is an independent and identically distributed

sample from a distribution F . For short, we shall denote the data set by DN , namely, DN =

{(X1, Y1), . . . , (XN , YN )}. For a new pair (X,Y ), define the least squares cost (or more briefly the

cost) of (X,Y ) as

q := ‖Y −Xβ̂N‖2.

As (X,Y ) varies according to F independently of DN , the conditional distribution of q given β̂N

describes the cost paid by the population of (X,Y ) corresponding to β̂N , and its knowledge may be

used to support decisions of various type. For instance, in the service location problem of Example 1

2 If the minimizer is not unique, the solution is determined by a tie-break rule.
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knowing the distribution of q may support decisions on the service facility equipment that has to be

acquired to dispatch goods, or even on whether one single service facility is not enough to serve the

territory and two facilities should be built instead. However, computing the conditional distribution

of q given β̂N demands that one knows F , which is unrealistic in practice. Hence, for a practical

performance assessment one aims at constructing descriptors of the conditional distribution of q that

are based on the experimental data set DN .3

One simple descriptor is the empirical mean 1
N

∑N
i=1 ‖Yi −Xiβ̂N‖2. This is an estimator of E[q|β̂N ],

the conditional mean of q given β̂N , and it has received much attention in the literature. Classic

results characterize the deviation of 1
N

∑N
i=1 ‖Yi −Xiβ̂N‖2 from E[q|β̂N ] when N → ∞ (asymptotic

results), Lehmann and Casella (1998), while more recent work based on the statistical learning theory

extends these results to when N is finite, Vapnik and Chervonenkis (1971); Vapnik (1996).

1.1. Goal of this paper: least squares cost coverages

In this paper, we consider a more structured characterization of the least squares cost than its mean.

The goal is to determine statistics c of the data set DN that are threshold values for q with given

probabilistic guarantees. In other words, referring to Fig. 1, the attention is shifted from quantifying

the deviation of 1
N

∑N
i=1 ‖Yi −Xiβ̂N‖2 from E[q|β̂N ], as in Fig. 1(a), to quantifying the probability

that ‖Y − Xβ̂N‖2 falls in the bold segment below c, as in Fig. 1(b). In this context, we want to

establish rigorous results that hold for any finite N .

We start with the following definition of coverage and mean coverage.

Definition 1 (coverage and mean coverage). Given a statistic c of the data set DN and a

pair (X,Y ) distributed according to F and independent of DN , the coverage of q = ‖Y −Xβ̂N‖2 by

(−∞, c] is defined as

P{q ≤ c|DN}; (2)

the mean coverage of q by (−∞, c] is

E[P{q ≤ c|DN}] = P{q ≤ c}.

⋆

The term “coverage” comes from the literature on tolerance/prediction regions, Wilks (1941); Scheffé

and Tukey (1947); Fraser and Guttman (1956); Vardeman (1992); Di Bucchianico et al. (2001); Li

and Liu (2008); Lei et al. (2013); Frey (2013), which can be explained as follows. For a given

DN , T (DN ) := {(X,Y ) : q ≤ c} is a region in the space R
n×d × R

n and the coverage of q by

3 In our study, the (Xi, Yi) values are random draws from a population, and, hence, regression problems where

the Xi are deterministic values are left out from our analysis.
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β̂N

E[q|β̂N ]

1
N

∑N

i=1 ‖Yi −Xiβ̂N‖2

(a)
β̂N

c

(b)

Figure 1. (a) empirical vs. conditional mean; (b) c statistic. The curved lines represent the squared residual

functions ‖Yi −Xiβ̂N‖2.

(−∞, c] is the coverage of (X,Y ) by the region T (DN ) in the sense of the above literature since

P{q ≤ c|DN} =
∫

{(X,Y )} 1
(

T (DN )
)

dF (here, 1 (·) denotes indicator function).

For a given DN , c is the quantile of the distribution of q corresponding to the probability value

given by the coverage. That is, if e.g. the coverage is 90%, for the β̂N and c given by the seen DN ,

the probability mass of the (X,Y ) pairs such that ‖Y −Xβ̂N‖2 ≤ c is 90%.

The coverage of q by (−∞, c] depends on DN and is a random variable. The mean coverage is

its expected value. The mean coverage is also equal to P{q ≤ c}, i.e., it is the total probability of

seeing a random sample DN , constructing c, and then extracting one more instance of (X,Y ) that

incurs a cost smaller than or equal to c. In an application with sequential observations, the mean

coverage is the limit of the frequency with which the (N + 1)th observation incurs a cost less than

or equal to the statistic c computed from the previous N observations when the observation window

shifts along the time axis. See Section 3.1 for an example.

In this paper, our goal is to find statistics c that have a guaranteed mean coverage irrespective

of the (unknown) distribution F . The statistics we will introduce have the additional property of

being asymptotically tight in a precise sense specified later. Instead, we do not enter the theoretical

study of the coverage, which exhibits difficulties that go beyond the analysis presented in this paper.
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The following definition is in order.

Definition 2 (distribution-free mean coverage). Interval (−∞, c] has a distribution-free mean

coverage τ if

P{q ≤ c} ≥ τ

holds for all distributions F . ⋆

One natural approach to follow when one seeks distribution-free statistics is to look at the squared

residuals corresponding to β̂N

qi := ‖Yi −Xiβ̂N‖2, i = 1, . . . , N.

These qi’s are called empirical costs. Intuitively, the empirical costs carry information on how q

distributes for the seen data set DN . Note that the real line is split by the N empirical costs qi in

N + 1 intervals, and one might expect that each of these intervals carries on average a probability

of 1/(N + 1) of containing q. This is indeed what happens in a simplified context where N points

are independently drawn on the real line and then ordered (order statistics). We briefly digress to

describe this situation because it is useful for future comparison.

Consider a univariate independent random sample ri ∈ R, i = 1, . . . , N , from a distribution Fr,

and let r(1), r(2), . . . , r(N) be the order statistics of the ri’s, that is, r(1) ≤ r(2) ≤ · · · ≤ r(N).
4 Then,

the following well known result holds, see e.g. David and Nagaraja (2003).

Proposition 1 (order statistics). Let r be a new value sampled from Fr independently of r1, r2 . . . , rN .

Then,

P{r ≤ r(i)} ≥
i

N + 1
, i = 1, . . . , N,

i.e., (−∞, r(i)] has a distribution-free mean coverage i
N+1 . ⋆

This result holds with equality, i.e., P{r ≤ r(i)} = i
N+1 , for continuous distributions Fr.

In the context of least squares optimization of this paper, however, there is an extra element, which

makes order statistics not applicable. This is that the empirical costs qi are computed on a real line

that originates from β̂N . Since β̂N minimizes the squared residuals, this line is data-dependent and

a bias arises so that the mean coverage of (−∞,q(i)] is in general less than i
N+1 . A simple example

in Appendix A illustrates this fact. This situation is similar to what happens in post-selection infer-

ence. It was noted as early as in the 1960s by Buehler and Fedderson (1963) and Brown (1967) that

performing data-based model selection and deriving statistical inference from the selected model as

4Throughout this paper, for any collection of N real numbers, a1, a2, . . . , aN , notation a(1), a(2), . . . , a(N)

denotes the ai’s in ascending order.
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though the model were deterministically assigned leads to invalid results, see also Pötscher (1991) and

Benjamini and Yekutieli (2005) for more recent discussions. This problem has attracted much interest

in recent years, in particular Berk et al. (2013) proposes to perform simultaneous inference to restore

validity and Belloni et al. (2015), Tibshirani et al. (2016), Lee et al. (2016), and Belloni et al. (2014)

derive valid statistical inference in various contexts that include Least Absolute Deviation regression

(LAD), Forward Stepwise Regression (FS), Least Angle Regression (LAR), the Lasso, and quantile

regression. In the present paper, the focus is different from that of the aforementioned contributions

since we do not make variable selection and are interested in studying the mean coverage of the cost

for a fixed structure. In this context, order statistics that are valid for a deterministic real line lose

their validity and our goal is that of providing valid inference as explained in the following.

1.2. Main results of this paper

We construct statistics q̄1, q̄2, . . . , q̄N such that each interval (−∞, q̄(i)] has a distribution-free mean

coverage i
N+1 (Theorem 1). The statistics q̄1, q̄2, . . . , q̄N are obtained by adding a data-dependent

margin to the empirical costs q1,q2, . . . ,qN . Under mild assumptions, the margin is shown to tend

to zero as N grows to infinity (Theorem 2), which shows that the statistics are asymptotically tight.

Moreover, even with moderate data sets the margin turns out to be small enough to be practically

useful. In the context of Proposition 1, the margin is zero and the result for order statistics is re-

covered as a particular case (Example 3). Moreover, the fact that the findings of this paper are

distribution-free is key to their applicability since assuming that the distribution F is available is

unrealistic in most applications. These results are theoretically proved, and demonstrated through

simulation experiments in this paper.

The intuitive idea behind the derivation of the statistics q̄i is as follows. A prediction set S(DN )

in the (X,Y ) domain with distribution-free mean coverage P{(X,Y ) ∈ S(DN )} = i
N+1 is first con-

structed. Then, q̄(i) is obtained by upper bounding the sup of the costs associated to the pairs (X,Y )

that belong to S(DN ), so that (−∞, q̄(i)] carries a guaranteed mean coverage.

The prediction set S(DN ) is constructed by resorting to so-called “conformal prediction”, Vovk

(2004); Vovk et al. (2005); Gammerman and Vovk (2007); Shafer and Vovk (2008); Lei et al. (2013);

Lei and Wasserman (2014). The creators of this approach had the brilliant intuition that, in an

exchangeable framework, discarding the pairs (X,Y ) that turn out to be the less conformal in the set

of N observations DN augmented by (X,Y ) generates regions with an a-priori known probability of

containing a future observation. This approach was mainly motivated by prediction purposes, namely,

the problem of finding a region in the (X,Y ) domain for (XN+1, YN+1). We construct a prediction

set in exactly the same sense as that considered in the above references. In our paper, however, we
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make this construction as an intermediate step towards our final goal, which is different from that

of predicting (XN+1, YN+1). Our final goal is to derive rigorous and useful statistics to evaluate the

performance of the least squares design for when the design is applied to a new member of the pop-

ulation. In this regard, it is important to note that the choice of the conformity measure has a large

impact on the shape of the prediction set, which, in turn, affects the quality of the statistics on the

cost. One first contribution of this paper is that of introducing a suitable conformity measure that is

geared towards the achievement of tight statistics q̄(i). This is obtained by making the prediction set

adhere to the part of the (X,Y ) domain that has low cost corresponding to β̂N . This property is not

met by other conformity measures available in the literature, and the interested reader is referred to

the on-line supplementary material, Section 1, for a comparative example.

A second contribution of the paper is that of providing an explicit and easy-to-compute formula

to evaluate the statistics q̄(i). This is important because an explicit computation of the sup of the

cost over a highly complex prediction set is in general difficult to perform, and simply defining the

statistics as the sup would leave the computational burden to the end user, resulting in an impracti-

cal approach. The easy-to-compute formula is carefully derived to reduce conservatism, as shown by

asymptotic theorems and simulation examples.

1.3. Other related literature

An early study that is related to the subject matter of this paper is Saw et al. (1984, 1988). In

these contributions, the authors have derived data-dependent Chebyshev inequalities that can be

used in a scalar set-up corresponding in our notation to X = 1 and Y ∈ R to build statistics with

distribution-free mean coverage. Applications of this result are found in various contexts among

which UCBs (Upper Confidence Bounds) methods, Xu and Nelson (2013), neural curve tuning, Et-

zold and Eurich (2005), distance concentration, Kabán (2012), model reliability for train station

parking errors, Chen and Gao (2012), and testing procedures, Beasley et al. (2004). However, the

papers Saw et al. (1984, 1988) deal only with a scalar set-up and, most notably, due to their nature

and scope, the statistics there obtained depend on the data sample only through the sample mean and

variance. Hence, information that is valuable for our purpose of characterizing q remains unexploited.

Tight results on distribution-free mean coverages have been previously obtained by the authors of

this paper in a different set-up, that of worst-case convex optimization, Calafiore and Campi (2005).

Moreover, in Campi and Garatti (2008, 2011); Carè et al. (2015); Campi and Garatti (2016) the

results of Calafiore and Campi (2005) have been strengthened by also computing the distribution

of the coverage, which is important for determining confidence regions for the coverage values. All

these studies hinge crucially upon the concept of support constraint, Calafiore and Campi (2005), a
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concept which does not carry over to the set-up of the present paper of least squares optimization.

In actual facts, this is the very reason why the fundamental least squares method has so far not been

object of consideration in our studies.

1.4. Structure of the paper

All main results of the paper are provided and discussed in Section 2. Section 3 contains numerical

examples, while all the technical proofs are in the appendices.

The data and software code used in the numerical examples can be downloaded from the URL:

http://home.deib.polimi.it/sgaratti/coverageLS.htm.

1.5. Notation

For a matrix M :

- MT denotes the transpose of M ;

- M † denotes Moore-Penrose generalized inverse of M ;

- ‖M‖ is the spectral norm, i.e., ‖M‖ = sup‖x‖=1 ‖Mx‖, where the norm in the right-hand side

is Euclidean norm;

- λmax(M) denotes maximum eigenvalue of M ;

- for a symmetric M , M ≻ 0 (M � 0) means that M is positive definite (semi-definite). For a

pair of symmetric matrices M and N , M ≻ N (M � N) means that M −N is positive definite

(semi-definite).

2. Statistics with Distribution-Free Mean Coverage

For convenience, the squared residuals are henceforth written as ‖Yi−Xiβ‖
2 = (β−vi)

TKi(β−vi)+hi,

where Ki = XT
i Xi, vi = X†

i Yi, hi = ‖Yi −Xivi‖
2. Note that Ki � 0, but Ki can as well be singular,

as is e.g. in regression problems with scalar Y where Ki = XT
i Xi has rank 1.

When
∑N

ℓ=1
ℓ 6=i

Kℓ ≻ 0, let K̄i := Ki + 6Ki

(

∑N
ℓ=1
ℓ 6=i

Kℓ

)−1

Ki. The modified empirical costs q̄i are

then defined as follows

q̄i :=







(β̂N − vi)
T K̄i(β̂N − vi) + hi, if Ki ≺

1
6

∑N
ℓ=1
ℓ 6=i

Kℓ

+∞, otherwise.
(3)

The next Theorem 1, which asserts that (−∞, q̄(i)] has a distribution-free mean coverage i
N+1 , is the

main result of our study.
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Theorem 1 (distribution-free mean coverage). Relation

P{q ≤ q̄(i)} ≥
i

N + 1
, i = 1, . . . , N, (4)

holds for any probability distribution F . ⋆

The technical proof of this theorem is differed to Appendix B. We now concentrate on discussing the

meaning and importance of Theorem 1.

β̂N R

qi

q̄i

Figure 2. The paraboloid (β− vi)
TKi(β− vi)+hi (continuous line) vs. the paraboloid (β− vi)

T K̄i(β− vi)+hi

with increased curvature (dashed line). Their values at β = β̂N are the empirical cost qi and the modified

empirical cost q̄i, respectively.

a. [geometric interpretation and intuitive explanation]

q̄i has a nice geometric interpretation. The empirical cost qi is the value of the paraboloid (β −

vi)
TKi(β − vi) + hi at β = β̂N . Instead, the modified empirical cost q̄i is obtained as the value at

β = β̂N of a paraboloid with increased curvature obtained by replacing Ki with K̄i, see Fig. 2.

The margin q̄i − qi is given by

(β̂N − vi)
T









6Ki









N
∑

ℓ=1
ℓ 6=i

Kℓ









−1

Ki









(β̂N − vi), (5)

and it depends on the ratio of Ki to
∑N

ℓ=1
ℓ 6=i

Kℓ. If Ki is small compared to
∑N

ℓ=1
ℓ 6=i

Kℓ, then q̄i ≈ qi,

which is normally the case except for moderate data sets (small N). In the opposite, when Ki is

not small compared to
∑N

ℓ=1
ℓ 6=i

Kℓ, the margin can be larger. The intuitive reason for this is as follows.

Corresponding to β̂N , the empirical costs are on average biased towards smaller values than the dis-

tribution of costs for the whole population. This is because the least squares estimate β̂N is chosen in

the point where the sum of the squared empirical costs is minimized. This biasing effect is larger for

some empirical costs than for others. Suppose that one Ki is pretty large as compared to the others,



10 Carè, Garatti, Campi

to the point that Ki is even bigger than
∑N

ℓ=1
ℓ 6=i

Kℓ. Then, the i-th data point plays an important role

in determining the solution since the paraboloid (β − vi)
TKi(β − vi) + hi has a strong “attraction

effect” as compared to the attraction effect of other data points. As a consequence, the bias towards

smaller values is more significant for the i-th paraboloid than for other paraboloids, which requires

a bigger margin to compensate for this effect. In normal circumstances, one cannot expect that the

situation is as sharp as in the hypothetical case used in the explanation above, and the margin given

in (5) plays a subtle role in making the statistics valid in all conditions.

b. [the role of dimension d]

We have already observed that in regression problems with scalar Y , the matrix Ki = XT
i Xi has rank

1. This means that the paraboloid (β − vi)
TKi(β − vi) + hi associated with a pair (Xi, Yi) is flat in

d− 1 orthogonal directions, and (Xi, Yi) does not influence the solution β̂N but in one direction only.

As a consequence, at least d observations are required for q̄i to be finite, and, moreover, the margin

decreases roughly as d/N . This behavior has connections with the notion of overfitting in statistical

learning. In other problems, on the other hand, the importance of d is toned down. This happens

for example when all the Ki’s are identity matrices, in which case a single pair (Xi, Yi) impacts on

all the d directions simultaneously, see Example 2 at the end of this section for one example of this

situation.

c. [convergence of margin to zero]

In applications, it is almost the rule that
∑N

ℓ=1
ℓ 6=i

Kℓ grows faster than the largest of the Ki’s. Then,

the term 6Ki

(

∑N
ℓ=1
ℓ 6=i

Kℓ

)−1

Ki in the definition of K̄i vanishes as N grows, yielding K̄i → Ki, and,

hence, the margin tends to zero. This idea is formalized in the next Theorem 2, where it is shown

that each margin q̄i − qi goes to zero as N → ∞ provided that the distributions F is thin-tailed.

Theorem 2 (convergence). Assume that

E[Ki] ≻ 0, (6)

∃α, χ̄ > 0 such that ∀χ > χ̄ P{‖Ki‖ > χ} ≤ e−αχ, (7)

∃γ, ν̄ > 0 such that ∀ν > ν̄ P{‖vi‖ > ν} ≤ e−γν . (8)

Then,

max
i=1,...,N

(q̄i − qi) −−−−→
N→∞

0 almost surely.

⋆

The proof is in Appendix C.
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d. [distribution-free nature of the result]

Theorem 1 is universal, that is, no assumptions on F are made. Assumptions limit the applicability

of a method in two distinct respects. First, the method is not applicable if the assumptions are not

satisfied. Second, even if the assumptions are satisfied, the user may not know whether they are or are

not. Thus, its distribution-free nature is a fundamental point of strength of the analytical instruments

introduced in this paper. On the other hand, distribution-free results may be conservative. Theorem

3 below shows that if q̄(i) is replaced by q(i) in the statement of Theorem 1, then the result in equation

(4) holds with a reversed inequality for all F ’s satisfying a mild non-concentration condition. Thus,

any possible conservatism is in the margin q̄i − qi, and, since this margin converges to zero under

natural conditions (see Theorem 2), and it is reasonably small in applications even for moderate data

sets (see e.g. the examples at the end of this section and those in Section 3), the conclusion follows

that the conservatism due to the distribution-free nature of the results is mild in the context of study

of this paper.

Theorem 3 (upper bound on the mean coverage of (−∞,q(i)]). Suppose that

P{‖Y −Xβ‖2 = λ} = 0

holds for any (β, λ) ∈ R
d × R. Then,

P{q ≤ q(i)} ≤
i

N + 1
, i = 1, . . . , N.

⋆

The proof of Theorem 3 is in Appendix D.

e. [order selection in regression problems]

The findings of this paper are potentially useful for the problem of order selection in regression prob-

lems. A full development of a selection methodology, however, calls for extra knowledge that is not

available at the present time, and we here briefly discuss this topic, which may serve as a stimulus for

further research. Our Theorem 1 establishes a tight distribution-free mean coverage result. When,

various model structures are considered, one can compare the modified empirical costs q̄(i) that, in

different structures, attain the same mean coverage, and choose the structure with lowest q̄(i). This

allows one to obtain a suitable trade-off between selecting a low-order model (which gives a large

q(i)) and a high order model where the decrease of q(i) is balanced by an increase of the margin

q̄(i) −q(i) (see point b.). It is of interest to note that, for this procedure to stand on solid theoretical

grounds, the coverage must also have a low variance for, otherwise, one runs into the risk of selecting

a structure with guaranteed mean coverage but with significantly lower coverage for the sample at

hand. While our empirical experience shows that the variance is indeed small in various contexts, see

Section 3 for an example, at present no theoretical result on the variance is available. The authors of
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this paper believe that establishing a result in this direction would open important new avenues for

model order selection.

We end this section with two simple examples that further illustrate facts and results that we have

discussed in this section. More complex numerical and empirical examples are given in the next

Section 3.

Example 2 (paraboloids with coplanar vertexes). Suppose that n = d = 2, X = I, and Y

is a random variable uniformly distributed in [0, 1]2. Then, Ki = I, vi = Yi, hi = 0. Some of the cost

functions ‖Yi − β‖2 are shown in Fig. 3(a).

In this case, Ki ≺
1
6

∑N
ℓ=1
ℓ 6=i

Kℓ ⇔ N ≥ 8, and

K̄i = I +
6

N − 1
I,

q̄i = qi +
6

N − 1
qi,

for N ≥ 8. Here qi is upper bounded, in fact qi ≤ maxβ,Yi∈[0,1]2 ‖Yi − β‖2 = 2, so that in this

case the margin q̄i − qi = 6
N−1qi ≤ 12

N−1 goes to zero as 1/N . See Fig. 4 for a graph depicting

maxi=1,...,N (q̄i − qi) as a function of N in a simulated experiment. ⋆

(a) (b)

Figure 3. The cost functions ‖Yi −Xiβ‖
2 of Example 2 (left) and of Example 3 (right).

Example 3 (stack of paraboloids). Suppose that X and Y have the following structure

X =





I2×2

01×2



 , Y =





02×1

α



 ,

where subscript denotes the matrix dimension (e.g. 01×2 is a row vector with two zeros) and α is

a random variable uniformly distributed in [0, 1]. In this case, we have that Ki = I2×2, vi = 02×1,
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Figure 4. The largest margin maxi=1,...,N(q̄i − qi) of Example 2 as a function of N .

hi = α2
i . Some of the cost functions ‖β‖2 + α2

i are depicted in Fig. 3(b).

Since all paraboloids have vertex in zero, it turns out that β̂N = 0 and q̄i = qi = α2
i , i = 1, . . . , N ,

that is, the margin is zero in this case. As before, Ki ≺ 1
6

∑

ℓ 6=iKℓ ⇔ N ≥ 8, and, for N ≥ 8,

Theorem 1 gives

P
{

q ≤ q̄(i) = q(i)

}

≥
i

N + 1
.

Interestingly enough, this is the same result that is obtained by applying Proposition 1 to qi = α2
i ,

that is, the order statistics result is recovered from the distribution-free Theorem 1. ⋆

3. Numerical Examples

Two examples are provided. The first example refers to stock prices. The second example aims at

providing more intuition on certain concentration properties of the coverages.

3.1. An example in stock prices

We consider a data set of stock prices taken from the Bilkent University Function Approximation

Repository (http://funapp.cs.bilkent.edu.tr/DataSets/). This is a public repository for “train-

ing and demonstration by machine learning and statistics community”. The stock prices refer to ten

aerospace companies, and were daily collected from January 1988 to October 1991. The whole data

set can be represented by a 10 × 950 matrix P = [Pk,i], whose column Pi contains the stock prices

(in US dollars) for the ten companies at day i. Figure 5 profiles the trend of Pk,i as a function of the

day i, for k = 1, 2, . . . , 10.

Stock prices can be modeled as geometric Brownian motions, which, in discrete time, is written

as

Pk,i+1 = Pk,i + µkPk,i + σk,iPk,i,
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Figure 5. Stock prices from January 1988 to October 1991.

where µk is the percentage drift for the kth stock price, and σk,i is a zero mean independent stochastic

process that represents the percentage price volatility, see e.g. Hull (2009), Section 13.3. Letting

Lk,i =
Pk,i+1 − Pk,i

Pk,i

= µk + σk,i

be the rate-of-return of company k at day i, it is of interest to estimate µ = [µ1 µ2 · · · µ10]
T , the

vector of percentage drift, but also to collect knowledge on the dispersion of the random variable

Li = [L1,i L2,i · · · L10,i]
T .

In practice, µ and the probability distribution of σi = [σ1,i σ2,i · · · σ10,i]
T are time-varying. However,

they can be considered constant over short time windows. In the following, estimation is performed

over a moving window of 19 days, which is short enough for the approximation that µ and the prob-

ability distribution of σi are constant to approximately hold. The value µτ of µ at the τth time

window is estimated by solving the least squares problem

β̂19 = argmin
β

19
∑

i=1

‖β − Lτ−1+i‖
2.

In this context, q = ‖β̂19 − Lτ+19‖
2 is a synthetic scalar index – that is, the norm reduces the 10-

dimensional vector of dispersions to a single real value – of how Lτ+19 distributes around the estimate

β̂19. It carries important information on the volatility of prices, and can be used by investors and

governing bodies for decision making.

In the present setup, we have that the empirical costs

qi = ‖β̂19 − Lτ−1+i‖
2, i = 1, . . . , 19
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Figure 6. q(i) (circles) vs. q̄(i) (crosses) in the first (left) and in the last (right) time window.

Table 1. Empirical frequencies with which q ≤ q̄(i); N = 19.

i 4 8 12 16

Estimate of P{q ≤ q̄(i)} 0.28 0.51 0.69 0.85

i
20 0.2 0.4 0.6 0.8

correspond to the volatility observed over the time window, and the modified empirical costs are

q̄i =

(

1 +
1

3

)

· qi, i = 1, . . . , 19.

Examples of the ordered q(i) and q̄(i) are given in Fig. 6.

According to Theorem 1, the statistic q̄(i) has a mean coverage no smaller than i/20. Thus, as

the time window slides along the time axis, relation q ≤ q̄(i) holds with a frequency at least of i/20.

This property has been experimentally verified and the results for i = 4, 8, 12, 16 are reported in Table

3.1. Interestingly, q(i) gave instead empirical frequencies that were systematically below i/20. With

longer time windows the empirical results get closer to the theoretical evaluations, a fact that is in

line with Theorem 2. As an example, Table 3.1 gives the results for a window of length 39.

3.2. A simulation example that describes the distribution of the coverages

In this second example, we investigate through simulation how the coverage of (−∞, q̄(i)] distributes

around its mean. When the distribution is peaked, the mean coverage approximates the coverage for

the given data set.

Take n = 1, d = 20, and suppose that X is a random direction in R
20 and Y is the scalar product

Table 2. Empirical frequencies with which q ≤ q̄(i); N = 39.

i 8 16 24 32

Estimate of P{q ≤ q̄(i)} 0.24 0.44 0.64 0.82

i
40 0.2 0.4 0.6 0.8
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between X and a random Gaussian vector as follows

X =
uT

‖u‖
Y = Xv,

where u, v ∈ R
20 are independent vectors both drawn according to a 20-variate normal density with

identity covariance matrix and zero mean.5 For a given data set DN = {(X1, Y1), . . . , (XN , YN )}, the

coverage P{q ≤ q̄(i)|D
N} is a number indicating the probability level of the quantile q̄(i). On the

other hand, as the data set DN varies, the coverage of (−∞, q̄(i)] changes, and we are interested in

recording its variability. For concreteness, we let N = 199 and computed via Montecarlo methods

the coverage of the statistic q̄(0.8·(N+1)) with distribution-free mean coverage 0.8 in 10000 repeated

experiments.

In dark in Fig. 7(a) is the histogram of the coverage of (−∞, q̄(0.8·(N+1))]. This histogram is rather

concentrated around its mean, and the coverage of (−∞, q̄(0.8·(N+1))] is above 0.8 in most cases. For

completeness, the histogram of the coverage of (−∞,q(0.8·(N+1))] is also depicted in Fig. 7(a). This

histogram shows values almost systematically smaller than 0.8. The fact that the mean of the cover-

age of (−∞,q(0.8·(N+1))] is smaller than 0.8 follows from Theorem 3.

Further, Figs. 7(b) and 7(c) depict the histograms of the coverages of (−∞, q̄(0.8·(N+1))] and (−∞,q(0.8·(N+1))]

for N = 399 and N = 3999, respectively. As N increases, the histograms become more and more

concentrated. Moreover, in agreement with Theorem 2 where it is proved that q̄(0.8·(N+1)) tends to

q(0.8·(N+1)) almost surely, the two histograms approach each other.

A. A simple example showing the bias of q(i)

Suppose that n = d = 1, X = 1 and Y is random with continuous distribution. N = 2 observations

are available. Based on D2 = {(1, Y1), (1, Y2)}, the least squares estimate β̂2 and the empirical

costs q1,q2 are computed. We will evaluate the probability that a new instance (1, Y ) is such that

q ≤ q(2) and show that this probability is strictly less than 2
3 . First, notice that, conditionally to

any set of three instances, say S = {(1, Y ′), (1, Y ′′), (1, Y ′′′)}, the probability of each permutation of

the elements in S is the same, that is, each element of S plays the role of new instance (1, Y ) with

probability 1
3 . As a consequence, for any set of three instances, the three situations represented in

Fig. 8 are equally likely and, since q ≤ q(2) holds in one out of the three situations, integrating over

all possible sets of three instances yields P{q ≤ q(2)} = 1
3 < 2

3 .

5Note that K = XTX has rank 1; see the discussion following Theorem 1 for comments on how d affects

q̄(i).
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(a) (b)

(c)

Figure 7. Histograms of the coverage of (−∞, q̄(0.8·(N+1))] (darker, on the right) and of (−∞,q(0.8·(N+1))]

(lighter, on the left) when (a) N = 199; (b) N = 399; (c) N = 3999.

β̂N

β̂N

β̂N R

R

R

q

q

q

q(2)

q(2)

q(2)

q > q(2) q > q(2)

q ≤ q(2)

Figure 8. The three parabolas. The dashed parabola is (Y − β)2, while the other two correspond to the data

set D2.

B. Proof of Theorem 1

We prove a slightly stronger result than Theorem 1. This stronger result is stated below as Theorem

4. In turn, we show that Theorem 1 follows from Theorem 4.
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Matrices Ki, i = 1, . . . , N , are defined in Section 2 as Ki = XT
i Xi. Thus, the Ki’s are symmetric and

positive semi-definite. Throughout, the following simplified notation is in use

∑

Kℓ stands for

N
∑

ℓ=1

Kℓ,
∑

ℓ 6=i

Kℓ stands for

N
∑

ℓ=1
ℓ 6=i

Kℓ.

The next lemma is frequently used in this section.

Lemma 1. Assume that
∑

ℓ 6=iKℓ ≻ 0. For any γ ≥ 0, the following two equivalences hold:

Ki

1

2





∑

ℓ 6=i

Kℓ





−1

Ki

1

2 ≺ γI ⇐⇒ Ki ≺ γ
∑

ℓ 6=i

Kℓ, (9)

Ki

1

2





∑

ℓ 6=i

Kℓ





−1

Ki

1

2 � γI ⇐⇒ Ki � γ
∑

ℓ 6=i

Kℓ. (10)

⋆

Proof. The case γ = 0 is easily verified by inspection. Suppose that γ > 0. For given matrices

A ∈ R
p×p, B ∈ R

p×q, C ∈ R
q×q with A ≻ 0 and C ≻ 0, the following relation among Schur

complements holds: C − BTA−1B ≻ 0 [� 0] ⇐⇒ A − BC−1BT ≻ 0 [� 0]. The lemma follows by

taking A = γI, B = Ki

1

2 , and C =
∑

ℓ 6=iKℓ. 2

We next introduce some definitions that are used later in the statement of Theorem 4.

If
∑

ℓ 6=iKℓ ≻ 0, let

γi := λmax



Ki

1

2





∑

ℓ 6=i

Kℓ





−1

Ki

1

2



,

Wi := Ki + (4 + 2γi)Ki





∑

ℓ 6=i

Kℓ





−1

Ki. (11)

Suppose further that γi <
1√
2
, then matrix 2

∑

Kℓ − Wi is invertible. To show this, note that, γi

being the maximum eigenvalue of Ki

1

2

(

∑

ℓ 6=iKℓ

)−1
Ki

1

2 , we have that

Ki

1

2





∑

ℓ 6=i

Kℓ





−1

Ki

1

2 � γiI, (12)

and, hence,

Wi = Ki + (4 + 2γi)Ki

1

2



Ki

1

2





∑

ℓ 6=i

Kℓ





−1

Ki

1

2



Ki

1

2

� Ki + (4 + 2γi)γiKi = (1 + 4γi + 2γ2i )Ki. (13)
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Applying Lemma 1 to (12) gives Ki � γi
∑

ℓ 6=iKℓ, from which Ki � γi

1+γi

∑

Kℓ. Substituting this

result in (13), under the condition γi <
1√
2
, yields

Wi � (1 + 4γi + 2γ2i )
γi

1 + γi

∑

Kℓ ≺ 2
∑

Kℓ, (14)

which proves the invertibility of 2
∑

Kℓ −Wi.

If
∑

ℓ 6=iKℓ ≻ 0 and γi <
1√
2
, define K̃i := Wi +Wi(2

∑

Kℓ −Wi)
−1Wi. Let

q̃i :=







(β̂N − vi)
T K̃i(β̂N − vi) + hi, if

∑

ℓ 6=iKℓ ≻ 0 and γi <
1√
2

+∞, otherwise.
(15)

Theorem 4. Relation

P{q ≤ q̃(i)} ≥
i

N + 1
.

holds for any probability distribution F . ⋆

Before proving Theorem 4, we show that Theorem 1 follows from Theorem 4. To this end, it is enough

to show that q̃i ≤ q̄i, i = 1, . . . , N . When q̄i = ∞, this is trivially true, so we consider the case when

q̄i is finite, which holds if Ki ≺
1
6

∑

ℓ 6=iKℓ. In view of Lemma 1, condition Ki ≺
1
6

∑

ℓ 6=iKℓ implies

that γi <
1
6 , which strengthens condition γi <

1√
2
used in Theorem 4. We now show that, if γi <

1
6 ,

then K̃i � K̄i, from which q̃i ≤ q̄i.

Due to that γi <
1
6 , (13) gives Wi � 2Ki, so that

2
∑

Kℓ −Wi � 2
∑

Kℓ − 2Ki = 2
∑

ℓ 6=i

Kℓ.

Thus,

K̃i = Wi +Wi

(

2
∑

Kℓ −Wi

)−1
Wi

� Wi +Wi



2
∑

ℓ 6=i

Kℓ





−1

Wi

= Ki +Ki

1

2

(

9 + 4γi
2

Φ + (4 + 2γi)Φ
2 + 2(2 + γi)

2Φ3

)

Ki

1

2 ,

where we substituted (11) for Wi and let Φ = Ki

1

2

(

∑

ℓ 6=iKℓ

)−1
Ki

1

2 . Since Φ � γiI, we get

K̃i � Ki +Ki

1

2

(

9 + 4γi
2

Φ + (4 + 2γi)γiΦ+ 2(2 + γi)
2γ2i Φ

)

Ki

1

2

= Ki + (4.5 + 6γi + 10γ2i + 8γ3i + 2γ4i )Ki





∑

ℓ 6=i

Kℓ





−1

Ki

� K̄i,
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where the last inequality follows from the fact that 4.5 + 6γi + 10γ2i + 8γ3i + 2γ4i < 6 for γi < 1
6 .

Wrapping up, if Ki ≺
1
6

∑

ℓ 6=iKℓ, then K̃i � K̄i =⇒ q̃i ≤ q̄i =⇒ Theorem 1 follows from Theorem 4.

Proof of Theorem 4.

To ease the notation, let

Qi(β) := (β − vi)
TKi(β − vi) + hi = ‖Yi −Xiβ‖

2, (16)

Q(β) := (β − v)TK(β − v) + h = ‖Y −Xβ‖2. (17)

With these definitions, we can write

β̂N = argmin
β

N
∑

i=1

Qi(β), qi = Qi(β̂N ), q = Q(β̂N ).

It is also convenient to introduce the minimizer of the least squares cost augmented with Q(β),

namely,6

β̂ := argmin
β

{

N
∑

i=1

Qi(β) +Q(β)

}

,

and the minimizer of the augmented least squares cost without the ith term, that is,

β̂[i] := argmin
β















N
∑

ℓ=1
ℓ 6=i

Qℓ(β) +Q(β)















, i = 1, . . . , N. (18)

The following random variables m and mi, i = 1, . . . , N , exhibit a precise ranking property indicated

in Lemma 2. Define:

m :=











Q(β̂N ) +
[

Q(β̂N )−Q(β̂)
]

, if
∑

Kℓ ≻ 0

+∞, otherwise,

(19)

mi :=











Qi(β̂
[i]) +

[

Qi(β̂
[i])−Qi(β̂)

]

, if
∑

ℓ 6=iKℓ +K ≻ 0

+∞, otherwise.

(20)

Lemma 2.

P{m ≤ m(i)} ≥
i

N + 1
, i = 1, . . . , N.

⋆

Proof. Random variables m and mi are all obtained by applying the same function to per-

mutations of an i.i.d. (independent and identically distributed) sample of N + 1 elements, namely

{(X1, Y1), . . . , (XN , YN ), (X,Y )}. Hence, m and mi are exchangeable random variables. Condition-

ally on a set of N + 1 fixed values taken by m and mi in any order (that is, the first value is taken

6 If the solution is not unique, the solution is determined by the same tie-break rule that is used to determine

β̂N when the minimizer of the least squares cost is not unique. The same applies to β̂[i] defined below.
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by any one of the variables m or mi, the second value by any one of the remaining variables, and so

on), relation m ≤ m(i) (which means that m has the lowest value, or the second lowest, . . . , or the

i-th lowest) holds with probability i
N+1 or more (more can occur because of ties). Integrating over

all the possible values taken by m and mi, the result is obtained. 2

According to the terminology of Vovk et al. (2005), equations (19) and (20) introduce a conformity

measure, and m, mi are the corresponding conformity scores of (X,Y ), (Xi, Yi).

Now, for a given DN , Q(β̂N ) is a function of (X,Y ), or, equivalently, of (K, v, h). For i = 1, . . . , N ,

consider the following maximization problem

µi := sup
K,v,h

Q(β̂N )

subject to: m ≤ mi. (21)

In the on-line supplementary material, Section 2, the validity of the following key relation is proven

(the proof of equation (22) is rather technical, and it has been moved to the on-line supplementary

material due to page limits)

µi ≤ q̃i, i = 1, . . . , N. (22)

Theorem 4 easily follows from (22). Indeed, note that (22) implies that

µ(i) ≤ q̃(i), i = 1, . . . , N. (23)

On the other hand, with the definition

νi := sup
K,v,h

Q(β̂N )

subject to: m ≤ m(i), (24)

we also have that

νi ≤ µ(i), i = 1, . . . , N, (25)

as it can be argued by the following simple reasoning. Fix a value of i, say i = ī. Assume for simplicity

that sup in (24) is actually a max (if not, the proof follows by a limiting argument), and let (K∗, v∗, h∗)

be the maximizer. Corresponding to (K∗, v∗, h∗), m ≤ m(̄i), which entails that (K∗, v∗, h∗) is feasible

for at least N − ī + 1 values of i in (21). Hence, since µi in (21) is obtained by a sup operation,

νī = Q∗(β̂N ) ≤ µi for at least N − ī+ 1 values of i, which implies that νī ≤ µ(̄i), that is, (25).

Since νi ≤ µ(i) (relation (25)) and µ(i) ≤ q̃(i) (relation (23)), we obtain νi ≤ q̃(i), and Theorem 4
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remains proven as follows

P{q ≤ q̃(i)} = P{Q(β̂N ) ≤ q̃(i)}

≥ P{Q(β̂N ) ≤ νi}

≥ P{m ≤ m(i)}

≥
i

N + 1
,

where the second last inequality follows because νi is the sup of Q(β̂N ) when m ≤ m(i), while the

last inequality is Lemma 2. 2

C. Proof of Theorem 2

Consider a function f(N) > 0 such that lnN
f(N) → 0. Thus, lnN3

αf(N) =
3
α

lnN
f(N) → 0 and we have that

P

{

1

f(N)
max

i=1,...,N
‖Ki‖ >

lnN3

αf(N)

}

= P

{

max
i=1,...,N

‖Ki‖ >
lnN3

α

}

≤ NP

{

‖Ki‖ >
lnN3

α

}

≤ Ne−α ln N
3

α =
1

N2
,

where the last inequality follows from condition (7). Since
∑∞

N=1
1
N2 < ∞, from the Borel-Cantelli

Lemma (see e.g. Shiryaev (1995)) we conclude that

lim
N→∞

1

f(N)
max

i=1,...,N
‖Ki‖ = 0 almost surely. (26)

Similarly, using (8) in place of (7), it can be proved that

lim
N→∞

1

f(N)
max

i=1,...,N
‖vi‖ = 0 almost surely. (27)

On the other hand, condition (7) also guarantees that the strong law of large numbers applies, so

that

lim
N→∞

1

N

N
∑

ℓ=1

Kℓ = E[Ki] almost surely. (28)

Since E[Ki] ≻ 0 (condition (6)), (26) and (28) with f(N) = N yield

lim
N→∞

min
i=1,...,N

∥

∥

∥

∥

∥

∥

∥

∥

1

N

N
∑

ℓ=1
ℓ 6=i

Kℓ

∥

∥

∥

∥

∥

∥

∥

∥

≥ lim
N→∞

[∥

∥

∥

∥

∥

1

N

N
∑

ℓ=1

Kℓ

∥

∥

∥

∥

∥

−
1

N
max

i=1,...,N
‖Ki‖

]

= ‖E[Ki]‖

> 0 almost surely. (29)

Moreover, again using (26) and (28) with f(N) = N , we also see that relation
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1

N
Ki ≺

1

7

1

N

N
∑

ℓ=1

Kℓ, i = 1, . . . , N,

or, equivalently, relation

Ki ≺
1

6

N
∑

ℓ=1
ℓ 6=i

Kℓ, i = 1, . . . , N,

holds for N large enough almost surely. Thus, almost surely, the q̄i defined in (3) are finite and equal

to (β̂N − vi)
T K̄i(β̂N − vi) + hi for N large enough. Hence, using K̄i = Ki + 6Ki

(

∑N
ℓ=1
ℓ 6=i

Kℓ

)−1

Ki, it

holds that

max
i=1,...,N

(q̄i − qi)

= max
i=1,...,N

(

(β̂N − vi)
T K̄i(β̂N − vi) + hi − (β̂N − vi)

TKi(β̂N − vi)− hi
)

= max
i=1,...,N

(β̂N − vi)
T (K̄i −Ki)(β̂N − vi)

≤ max
i=1,...,N

6

∥

∥

∥

∥

∥

∥

∥

∥









N
∑

ℓ=1
ℓ 6=i

Kℓ









−1∥
∥

∥

∥

∥

∥

∥

∥

‖Ki‖
2‖β̂N − vi‖

2

≤ max
i=1,...,N

6

∥

∥

∥

∥

∥

∥

∥

∥









1

N

N
∑

ℓ=1
ℓ 6=i

Kℓ









−1∥
∥

∥

∥

∥

∥

∥

∥

‖Ki‖
2

N
1

2

‖β̂N‖2 + ‖vi‖
2

N
1

2

,

for N large enough. The last expression tends to zero almost surely in view of (29), (26) and (27)

with f(N) = N
1

4 , and the fact that β̂N =
(

1
N

∑N
ℓ=1 Kℓ

)−1(
1
N

∑N
ℓ=1Kℓvℓ

)

converges almost surely.

This concludes the proof. 2

D. Proof of Theorem 3

To ease the presentation, the following notation is in order

q
[k]
i = Qi(β̂

[k]), i = 0, . . . , N ; k = 0, . . . , N,

where Qi, i = 1, . . . , N , is defined in (16) and Q0 := Q, where Q is defined in (17); β̂[k], k = 1, . . . , N ,

is defined in (18), and β̂[0] := β̂N . In this new notation q is written as q
[0]
0 , and qi as q

[0]
i , i = 1, . . . , N .

Also, for k = 0, . . . , N , define q
[k]
(i) = ord(i)

[

q
[k]
0 , . . . ,q

[k]
k−1,q

[k]
k+1, . . . ,q

[k]
N

]

, where ord(i) is the ith order

statistic of the listed elements.

Fix a value of i ∈ {1, . . . , N}. By the i.i.d. nature of Q0,Q1 . . . ,QN , we have that

P{q
[0]
0 ≤ q

[0]
(i)} = P{q

[k]
k ≤ q

[k]
(i)}, k = 1, . . . , N.
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Hence, denoting by 1 (·) the indicator function, we get

P{q ≤ q(i)} = P{q
[0]
0 ≤ q

[0]
(i)}

=
1

N + 1

N
∑

k=0

P{q
[k]
k ≤ q

[k]
(i)}

=
1

N + 1

N
∑

k=0

E

[

1

(

q
[k]
k ≤ q

[k]
(i)

)]

=
1

N + 1
E

[

N
∑

k=0

1

(

q
[k]
k ≤ q

[k]
(i)

)

]

. (30)

The proof will be now completed by showing that

N
∑

k=0

1

(

q
[k]
k ≤ q

[k]
(i)

)

≤ i (31)

holds almost surely, so that the right-hand side of (30) is bounded by i
N+1 , which is the conclusion

of the theorem. To show (31), define Sk =
∑N

ℓ=0
ℓ 6=k

q
[k]
ℓ , k = 0, . . . , N , and consider a Sk̄ such that

Sk̄ ≤ Sk holds for at least i indexes k different from k̄. (32)

The number of these indexes k̄ is at least N + 1 − i. We show that q
[k̄]

k̄
≥ q

[k̄]
(i)
. By contradiction,

suppose instead that q
[k̄]

k̄
< q

[k̄]
(i). Then, for any index k such that q

[k̄]
(i) ≤ q

[k̄]
k , we have Sk̄ =

∑N
ℓ=0
ℓ 6=k̄

q
[k̄]
ℓ >

∑N
ℓ=0
ℓ 6=k

q
[k̄]
ℓ . Since q

[k̄]
ℓ = Qℓ(β̂

[k̄]) and β̂[k] is the minimizer of
∑N

ℓ=0
ℓ 6=k

Qℓ(β), we conclude that

Sk̄ >

N
∑

ℓ=0
ℓ 6=k

Qℓ(β̂
[k̄]) ≥

N
∑

ℓ=0
ℓ 6=k

Qℓ(β̂
[k]) =

N
∑

ℓ=0
ℓ 6=k

q
[k]
ℓ = Sk. (33)

There are at least N + 1− i values of k such that q
[k̄]
(i) ≤ q

[k̄]
k , so that, by (33), there are at least

N + 1 − i values of k such that Sk̄ > Sk. This contradicts (32). Thus, the conclusion is drawn that

q
[k̄]

k̄
≥ q

[k̄]
(i) is verified for all the indexes k̄, which, as seen, are at least N + 1 − i. Since equality

q
[k̄]

k̄
= q

[k̄]
(i)

holds only with probability 0 by the theorem assumption, it follows that q
[k̄]

k̄
> q

[k̄]
(i)

holds

almost surely for the indexes k̄, and (31) holds almost surely. This concludes the proof. 2
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