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Abstract—We propose a novel algorithm to construct binary
classifiers, in the spirit of the recently proposed Guaranteed
Error Machine (GEM) but with a-posteriori assessment of the
“support” instances and without the need for a ternary output.
We provide rigorous guarantees on the probability of misclassi-
fication; differently from GEM, such guarantees aim to bound
the conditional probability of error given the true value of the
classified instance. The proposed classifier can be tuned in order
to give more importance to one of the two kinds of error, and to
balance their ratio also in the presence of unbalanced training
sets. Guaranteeing the conditional probabilities of error is crucial
in many classification problems, in particular medical diagnoses,
where being able to push the trade-off between sensitivity (con-
ditional probability of detecting a “true positive”) and specificity
(conditional probability of detecting a “true negative”) towards
higher sensitivity is of paramount importance. The application
that first motivated our study is the classification of ventricular
fibrillation (VF) into cases where restoration of an organized
electrical activity is achieved immediately after a defibrillatory
shock (“positive”), and cases where prompt resuscitation does
not happen (“negative”). We provide experimental evidence that
our approach is promising by testing it against three well-known
medical datasets, against some data on VF that are available to
the authors, and with Monte Carlo simulations.

Index Terms—Pattern recognition and classification; Statistical
learning; Healthcare and medical systems

I. INTRODUCTION

MACHINE LEARNING (ML) techniques are gaining
popularity as a means for the diagnosis of illnesses

and in the prediction of therapy outcomes. In supervised
ML a classifier is trained from a set of previously recorded
pairs (xi,yi), where xi are vectors of features (parameters
extracted from an image, from a blood analysis, etc.) and
yi ∈ {0,1} are labels denoting the corresponding class (for
example “healthy” and “ill”, or “effective” and “ineffective”
in the case of a therapy). When fed with a new vector of
features x the classifier ŷ(·) provides an automated prediction
ŷ(x) for the corresponding y. In this paper we propose a new
method to construct a classifier that has guaranteed properties
to correctly predict y conditionally to its true value 0 or 1.

The application that originally motivated our study was
the first-aid therapy of patients in ventricular fibrillation
(VF). European guidelines indicate that VF can be of two
kinds. The first one (to which we shall associate the label
“1”) is promptly reversible with rescue shocks, so that
defibrillation results in recovery of circulation and survival,
[7]. By contrast, rescue shocks do not result in spontaneous
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circulation when applied to the other kind of VF (“0”). In this
case there is evidence that reperfusion prior to rescue shocks
improves defibrillation success and survival, [15]. The quest
for effective methods of analysis of VF electrocardiographic
(ECG) waveforms and automatic classification to support
first-aid decisions (defibrillation or reperfusion followed
by defibrillation) is openly endorsed by the last European
guidelines, [13]. In a previous work, [1], the Guaranteed
Error Machine (GEM) algorithm proposed in [3] was applied
to the the problem of VF classification (the features xi ∈ Rd

were extracted by numerical analysis of ECG’s) in view of
its several attractive properties. First, it allows the user to
calibrate the probability of misclassification P [ŷ(x) ̸= y] in a
rigorous mathematical way. Second, GEM can lead to good
generalization performances even in the presence of many
features (d≫ 1). On the other hand, the GEM algorithm used
in [1] was not able to keep control on the two types of error:
misclassifying a “0” (false positive) and misclassifying a “1”
(false negative).

With respect to VF, if a patient of class 1 is classified as 0
then s/he will not be promptly shocked, with potentially fatal
consequences. On the other hand, if a patient of class 0 is
wrongly classified as 1, the action taken will be to defibrillate
as soon as possible, with no benefit. Errors of the first type
are critical and must be guarded against with the maximum
possible care; errors of the second type should be avoided
if possible, but given the circumstances are not as critical.
In the same way, classifying a patient as healthy when s/he
is actually ill has potentially serious consequences and is a
critical error, while classifying someone as ill when s/he is not
will involve further diagnosis procedures (possibly expensive
and invasive), but otherwise cause no harm. Thus, a wise
approach to these classification problems is to distinguish
between the conditional error probabilities P [ŷ(x) ̸= y | y = 1]
and P [ŷ(x) ̸= y | y = 0], and to assign higher importance
to the former. In medical statistics it is commonplace to
focus on correct classification, and to call sensitivity the
probability P [ŷ(x) = y | y = 1] = 1−P [ŷ(x) ̸= y | y = 1]; the
probability P [ŷ(x) = y | y = 0] is instead called specificity. In
the VF classification problem, a 95% sensitivity with a 50%
specificity are considered target values, see e.g. [11], [6], [14].

The algorithm introduced in this paper provides a well-
principled way for building classifiers in the presence of
unbalanced datasets, where different classes are not equally
represented, [10], so as to guarantee a desired balance between
sensitivity and specificity. Hence, the key novelty of our
algorithm is that, while providing a rigorous mathematical
guarantee in the same spirit of GEM, it does so for conditional
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error probabilities, and it can be tuned in order to favor
sensitivity over specificity. Of course, how high sensitivity
and thereby specificity actually are depends on the number of
observations and on how simple the classifier happens to be
(many observations and simple constructions lead to stronger
claims on sensitivity and specificity). The fundamental point
is that, in all cases, the values of sensitivity and specificity
are assessable by means of a precise theory prior to using the
classifier.

II. THE PROPOSED CLASSIFICATION ALGORITHM

A training sequence T = ((x1,y1), . . . ,(xN ,yN)), with xi ∈Rd

and yi ∈ {0,1} has been observed. Assume that (xi,yi), i =
1, . . . ,N are pairs independent and distributed according to a
common distribution P; assume, moreover, that the marginal
probability of xi admits density (except for this assumption, no
knowledge of the underlying distribution of (xi,yi) is required
to formulate precise guarantees on sensitivity and specificity).
Let N0 be the number of points whose label is zero, yi = 0,
and N1 be the number of points whose label is one, yi = 1
(thus N0 +N1 = N).
The algorithm below needs to be initialized with a special pair
(x∗,y∗). This can either be one more data point besides T , or
more simply an arbitrary point x∗ ∈Rd and an arbitrary label,
e.g. y∗ = 0. The theory developed in the sequel applies to
both cases. Moreover, in the algorithm c0, c1 are two positive
integers called the “complexity” parameters. Their values are
chosen by the user and impact on the sensitivity and specificity
guarantees as later described in Theorem 2.1.

The classifier is built according to the following algorithm:

Algorithm A
1) Initialize: xc ← x∗ (current center); y ← y∗ (current

label); B ← () (list of balls and associated labels);
S0 ← ∅ (set of “support” points xi with label 0);
S1 ← ∅ (set of “support” points xi with label 1);
R← (x1, . . . ,xN) (list of remaining points).

2) Repeat the following steps,
a) if there are less than c1−y points in R with label

1− y, set B← Rd ; otherwise let B be the largest
open ball, centered at xc, containing less than c1−y
points in R with label 1−y. If B ̸=Rd , then almost
surely only one point (with label 1−y) lies on the
boundary of B: denote this point x̂;

b) add to S1−y the points in R with label 1− y that
belong to B and, if B ̸= Rd , also add to S1−y the
boundary point x̂;

c) remove from R all points belonging to B;
d) append (B,y) to the list B;
e) if B ̸= Rd , set xc← x̂ and y← 1− y,

until B = Rd ;
3) Define the classifier ŷ(·) as follows: for any x∈Rd , ŷ(x)

:= the label yi associated with the first ball Bi of the list
B that contains x;

4) Output the classifier ŷ(·) and the integers k0 =
card(S0)+ y, k1 = card(S1)+(1− y).

The algorithm stops when B = Rd . Since (when B ̸= Rd) at
step 2.(c) the list R gets reduced, the algorithm certainly
comes to termination.

Algorithm A constructs a sequence of balls, with alternate
labels 0, 1, 0, 1, . . . , until the space Rd is completely
covered. At the exit of the algorithm, the sets S0 and S1
contain the “important points”, those that determine the
construction. While Algorithm A maintains the same spirit
of the GEM algorithm first proposed in [3], it departs from
it in many respects. First, the construction only involves
balls (GEM considered more complex shapes). Second, GEM
was a ternary classifier that admitted the output “unknown”.
This circumstance is inappropriate whenever a decision has
necessarily to be made, hence the new classifier always returns
an answer 0 or 1. Third, Algorithm A contains a fundamental
mechanism to unbalance sensitivity and specificity to favor
the former. This is the presence of the complexity parameters
c0 and c1: increasing the value of c0 generates 1-labelled
balls of larger size so providing higher sensitivity (normally,
at the cost of a smaller specificity). This mechanism was not
present in GEM.

The next theorem, which quantitatively substantiates the
evaluation of sensitivity and specificity, is the main theoretical
result of the paper.

Theorem 2.1: Fix small confidence parameters β0,β1 ∈ (0,1).1
Define ε0(0) = ε1(0) = 0, ε0(N0 + 1) = ε1(N1 + 1) = 1, and,
for 1≤ k0 ≤ N0 and 1≤ k1 ≤ N1, let ε0(k0),ε1(k1) ∈ (0,1) be
quantiles such that∫ 1

ε0(k0)
fk0,N0(p) d p =

β0

N0
,

∫ 1

ε1(k1)
fk1,N1(p) d p =

β1

N1
,

where fk0,N0 and fk1,N1 are the probability density functions of
a Beta(k0,N0 +1− k0) and of a Beta(k1,N1 +1− k1) random
variable respectively. Then, irrespective of the distribution
according to which the pairs (xi,yi), i = 1, . . . ,N, have been
sampled, if (x,y) is a new pair independent of all the (xi,yi)
and sampled according to the same distribution, the statements

P [ŷ(x) = 1 | y = 0]≤ ε0(k0) (1)
P [ŷ(x) = 0 | y = 1]≤ ε1(k1) (2)

(where k0 and k1 are output of the Algorithm A along with
ŷ(·)) hold true simultaneously with confidence 1− β0 − β1,
i.e., the probability with which a training sequence T returns
a classifier such that (1) or (2) are not satisfied is no more
than β0 +β1. �

III. PROOF OF THE MAIN THEOREM

Given N, the number of data points, the proportion of 0
and 1-labelled points, as given by N0 and N1, is random.
First we fix N0 and N1 to given values and show that,
conditionally to the chosen values of N0 and N1, the event

1β0 and β1 are normally very small values like 10−3 or 10−4.
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E0 = {P [ŷ(x) = 1 | y = 0] > ε0(k0)} has probability at most
β0, i.e.,

PN [E0 | N0,N1]≤ β0. (3)

Since this formula holds for any value of N0 and N1, it follows
that PN [E0]≤ β0. The fact that PN [E1 | N0,N1]≤ β1, and hence
PN [E1] ≤ β1, where E1 = {P [ŷ(x) = 0 | y = 1] > ε1(k1)}, is
proven similarly. From PN [E0]≤ β0 and PN [E1]≤ β1, we then
have that (1) and (2) in the statement of Theorem 2.1 hold
true simultaneously with probability 1−β0−β1.2

To proceed with the proof of (3), notice that changing the
order of the pairs (xi,yi), i = 1, . . . ,N, does not change the
classifier ŷ(·) generated by Algorithm A. This yields

PN [P [ŷ(x) = 1 | y = 0]> ε0(k0) | N0,N1]

= PN1
1 ×PN0

0 [P0 [ŷ(x) = 1]> ε0(k0)]

=
∫
(Rd)N1

PN0
0 [P0 [ŷ(x) = 1]> ε0(k0)] dPN1

1 , (4)

where P0 and P1 are the conditional distributions of x, given
y = 0 and given y = 1 respectively, and the second equality is
Fubini’s theorem.

In (4), the integrand PN0
0 [P0 [ŷ(x) = 1]> ε0(k0)] is a function

of the N1 points with label 1. From now on, we will assume
that the values of the N1 points with label 1 are fixed, and we
will show that

PN0
0 [P0 [ŷ(x) = 1]> ε0(k0)]≤ β0 (5)

irrespective of their values. Integrating over the values of the
points with label 1, as is done in (4), gives (3).

To prove (5), start by noting that k0 is a random variable
ranging from 0 to N0 +1. Hence,

PN0
0 [P0 [ŷ(x) = 1]> ε0(k0)]

= PN0
0 [P0 [ŷ(x) = 1]> ε0(k0) and 0≤ k0 ≤ N0 +1] . (6)

The case k0 = 0 happens only when the initialization label
is y∗ = 0 and there are no “ones” (N0 = N, N1 = 0); in this
case ŷ(x) = 0 for all x ∈ Rd , hence P0[ŷ(x) = 1] = 0 and
the inequality P0[ŷ(x) = 1] > ε0(0) = 0 in (6) is false. For
k0 = N0 +1, ε(k0) = 1, so that P0[ŷ(x) = 1]> ε0(N0 +1) = 1
is also clearly false. To handle the other cases k0 = 1, . . . ,N0,
we introduce N0 auxiliary classifiers ŷ1(·), . . . , ŷN0(·), which
are only used to establish certain theoretical relations (these
classifiers are not used in practice). Each classifier ŷk0(·),
k0 = 1, . . . ,N0, is generated by Algorithm B(k0) below.
Differently from Algorithm A, Algorithm B(k0) generates a
set S0 whose cardinality is exactly equal to k0.

Algorithm B(k0)
1) Initialize: xc← x∗; y← y∗; B← (); S0←∅; S1←∅;

R← (x1, . . . ,xN);

2In view of this approach, we notice that the result of the theorem holds,
more strongly, for any values taken by N0 and N1, even though in the theorem’s
statement we have preferred, for the sake of simplicity, not to provide a
conditional statement on N0 and N1.

2) Repeat the following steps,
a) let c̃0 = min{c0, k0 − card(S0)} and c̃1 = c1; if

there are less than c̃1−y points in R with label
1− y, set B← Rd ; otherwise let B be the largest
open ball, centered at xc, containing less than c̃1−y
points in R with label 1−y. If B ̸=Rd , then almost
surely only one point (with label 1−y) lies on the
boundary of B: denote this point x̂;

b) add to S1−y the points in R with label 1− y that
belong to B and, if B ̸= Rd , also add to S1−y the
boundary point x̂;

c) remove from R all points belonging to B;
d) append (B,y) to the list B;
e) if B ̸= Rd , set xc← x̂ and y← 1− y,

until either card(S0) = k0 or B = Rd ;
3) If card(S0) = k0, append (Rd ,0) to the list B;

else (card(S0) < k0), find the smallest closed ball B
centered at x∗ containing k0− card(S0) points in the
set {points in (x1, . . . ,xN) that have label 0 and are not
in S0}; prepend (B,1) to the list B;

4) Define the classifier ŷk0(·) as follows: for any x ∈ Rd ,
ŷk0(x) := the label yi associated with the first ball Bi of
the list B that contains x; output ŷk0(·).

Observe now that, whenever k0 generated by Algorithm A
takes a value k0 in {1, . . . ,N0}, the only difference between
the classifier ŷ(·) generated by Algorithm A and the classifier
ŷk0(·) generated by Algorithm B(k0) is the ball that Algorithm
B(k0) might have introduced in the “else” part of step 3).
Such a ball is prepended to B, and it affects the constructed
classifier in such a way that ŷk0(x) = 1 may happen for values
of x in the ball for which ŷ(x) = 0. Hence, for every training
sequence T such that 1≤ k0 ≤ N0, it holds that

P0 [ŷ(x) = 1]≤ P0
[
ŷk0(x) = 1

]
. (7)

Thus, (6) can be bounded as follows

PN0
0 [P0 [ŷ(x) = 1]> ε0(k0) and 0≤ k0 ≤ N0 +1]

= PN0
0 [P0 [ŷ(x) = 1]> ε0(k0) and 1≤ k0 ≤ N0]

≤ PN0
0

[
P0

[
ŷk0(x) = 1

]
> ε0(k0) and 1≤ k0 ≤ N0

]
≤

N0

∑
k0=1

PN0
0

[
P0

[
ŷk0(x) = 1

]
> ε0(k0)

]
.

The last part of the proof consists in showing that, for any fixed
k0, P0

[
ŷk0(x) = 1

]
has a Beta(k0,N0+1−k0) distribution,3 so

that, by the definition of ε0(·), we can conclude that

PN0
0

[
P0

[
ŷk0(x) = 1

]
> ε0(k0)

]
≤ β0

N0
,

and statement (5) follows from (6).

Algorithm B(k0) is defined for a sequence T of N data
points. As already explained after equation (4), we consider
the N1 points with label 1 fixed and let the N0 points
with label 0 be random and distributed according to P0.

3In this last part of the proof, we will use a moment identity and a
combinatorial argument as in [3], [4].
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It turns out that investigating the probability of the event
{P0

[
ŷk0(x) = 1

]
> ε0(k0)} requires to consider Algorithm

B(k0) fed with an enlarged training sequence, which we call
T j, obtained by joining the original sequence of N pairs with
more pairs (xN+1,0), . . . ,(xN+ j,0) extracted according to P0,
where j is any natural number. Let us maintain the notation
ŷk0(·) for the classifier obtained by feeding B(k0) with T

and let us denote ŷ( j)
k0
(·) the classifier obtained from T j.

Except for an event with probability zero (a subset of the event
{at least one among xN+1, . . . ,xN+ j belongs to the boundary of
a ball in the list B that defines ŷk0(·)}, which has probability
zero), the following implications hold:

1) if all the points xN+1, . . . ,xN+ j are classified correctly by
ŷk0(·), then they do not play any role in the construction
performed by B(k0) when this algorithm is fed with T j,
i.e., ŷ( j)

k0
(·) = ŷk0(·), and the k0 support points ending up

in S0 during the construction of ŷ( j)
k0
(·) are the same

as those in the construction of ŷk0(·) and belong to
(x1, . . . ,xN);

2) conversely, if at least one point among xN+1, . . . ,xN+ j
is misclassified by ŷk0(·), then at least one among
xN+1, . . . ,xN+ j must end up in S0 during the construc-
tion of ŷ( j)

k0
(·).

Together, these two implications lead to the following fact:
almost surely, ŷk0(xN+i) = 0 for all i = 1, . . . , j if and only if
the support points in S0 obtained in the construction of ŷ( j)

k0
(·)

are taken from (x1, . . . ,xN).
Using this fact, we can compute the probability p j of the event{

ŷk0(xN0+i) = 0 for all i = 1, . . . , j
}
.

Start by noticing that, since Algorithm B(k0) is permutation
invariant, we can assume that the points with label 1 are the
first N1 and those with label 0 are those in the positions N1+1
through N (when using T ) or through N+ j (when using T j).
Hence, p j is the probability that the k0 support points in the
construction of ŷ( j)

k0
(·), involving N0+ j points with label 0, are

taken from the first N0 points in the positions N1 +1 through
N. Exploiting the independence of points and applying simple
combinatorics, we then find p j =

(N0
k0

)
/
(N0+ j

k0

)
.

On the other hand, applying Fubini’s theorem, we get

p j = PN0+ j
0

[
ŷk0(xN+i) = 0 for all i = 1, . . . , j

]
=

∫
(Rd)N0

P j
0

[
ŷk0(xN+i) = 0 for all i = 1, . . . , j

]
dPN0

0

=
∫
(Rd)N0

(
P0

[
ŷk0(x) = 0

]) j dPN0
0

= E
[
P0

[
ŷk0(x) = 0

] j
]
,

i.e., p j =
(N0

k0

)
/
(N0+ j

k0

)
is the j-th order moment of the random

variable P0
[
ŷk0(x) = 0

]
.

Finally, it is easy to check, using e.g. the recursion in [9, begin-
ning of p. 36], that the j-th order moment of a Beta(N0 +1−
k0,k0) random variable is indeed equal to p j =

(N0
k0

)
/
(N0+ j

k0

)
.

But then, since the random variable P0
[
ŷk0(x) = 0

]
has com-

pact support and all its moments coincide with those of a

Beta(N0 + 1− k0,k0) random variable, we obtain that the
distribution of P0

[
ŷk0(x) = 0

]
is a Beta(N0 + 1− k0,k0) (see

the uniqueness statement in [12, ch. 2, sec. 12.9, Corollary
1]). This implies that the distribution of P0

[
ŷk0(x) = 1

]
=

1−P0
[
ŷk0(x) = 0

]
is a Beta(k0,N0 + 1− k0), as was to be

shown. This concludes the proof of the Theorem. �

IV. EXPERIMENTAL EVIDENCE AND SIMULATIONS

In this section, we first illustrate the key theoretical properties
of the proposed algorithm on easily reproducible synthetic
data (Section IV-A), then we apply the algorithm on a few
benchmark medical datasets (Section IV-B). We also apply our
methodology to the ventricular fibrillation dataset that moti-
vated our research, and conclude that no significant guarantees
can be issued on the sensitivity and specificity of the obtained
classifier because data are too scarce (N1 = 15), but we argue
that our algorithm might perform well, with strong guarantees,
when more data are considered.

A. Synthetic data

In order to illustrate the validity of the theory, we applied our
algorithm to a synthetic problem that can be easily reproduced.
The problem is that of predicting the output y of the binary
function kstest([x(1), . . . ,x(7)],’Alpha’,0.005) in the MATLAB
Statistics and Machine Learning Toolbox, when the feature
vector x = [x(1), . . . ,x(7)] is uniformly and independently sam-
pled over [0,1]7. For such a distribution of x, the probability
that y = 1 is about 1/10 of the probability that y = 0. We
took N = 1100 and, for the sake of simplicity, we considered
datasets all having N0 = 1000 and N1 = 100.4 Three conditions
for c0 and c1 were tried out, namely c1 : c0 equal to 1 : 1, to
1 : 10, and to 1 : 50. For each of these cases, we generated 100
training sets. For each training set, we constructed a classifier5

and computed the guaranteed lower bounds on its sensitivity
and specificity, with β0 = β1 = 10−3, so that, according to
Theorem 2.1, the bounds are expected to be satisfied unless
the generated training set belongs to a set of small probability
0.2%. For each classifier that we obtained, we also evaluated
the true sensitivity and specificity using the knowledge of the
data generation mechanism (which is usually not available in
non-artificial experiments). The results are reported in Fig.
1 (a), (b), and (c). The true sensitivity-specificity couples
are connected to the guaranteed bounds by a line: in all of
the cases, lines are green to indicate that the bounds are
satisfied by the true values. Note that some conservatism in
the bound is a matter of necessity since bound satisfaction
is enforced with high confidence 99.8%, and sensitivity and
specificity are subject to stochastic fluctuation. In Fig. 1 (d),
we have connected the true sensitivity-specificity points with
the corresponding values (1− k1

N1
,1− k0

N0
). A careful inspection

of the algorithm reveals that (1− k1
N1
,1− k0

N0
) can be interpreted

4Note that the statement of Theorem 2.1 is not conditional on N0 and N1.
However, the theorem’s statement extends to the conditional case, see the
footnote 2.

5In every Monte Carlo run, one extra 0-labelled point was generated and
its value was assigned to x∗. In all the numerical studies in this paper, the
initial point x∗ is a random 0-labelled point that is not included in the count
of N0.
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as a Leave-One-Out estimate (LOO), [8], of the sensitivity
and the specificity of the classifier. Our experiments show
that this estimate provides us with a valuable indication of
the performance of the classifier. Nonetheless, in many cases
the evaluation provided by (1− k1

N1
,1− k0

N0
) is optimistic (red

lines in the picture) and therefore cannot be used reliably as
a lower bound. We here remark that k1

N1+1 is the mean of the
Beta(k1,N1 +1−k1) distribution whose quantile is computed
in Theorem 2.1. Thus, the guaranteed bounds are obtained by
adding a safety margin to the Leave-One-Out estimate, so as
to keep under control the variability of the performance of the
classifier over the different training sets. These margins are
guaranteed for all distributions by which data are generated
and yet they are quite tight owing to the fact that they descend
from an universal Beta distribution that does not depend on
the original distribution of the data.

B. Medical datasets

We applied the classifier developed in this paper to three well-
known medical datasets (BreastW, Haberman, and Pima) that
had been previously used for testing the GEM algorithm, see
[3] for more details and comparisons with other techniques.
The algorithm was applied for different choices of c1 : c0,
which resulted in the values k1 and k0, and the correspond-
ing guaranteed sensitivity and specificity values (Sens:Spec),
reported in Table I. As an additional remark, we note that
the reported confidence 1−β1−β0 is valid when the couple
c1 : c0 is fixed in advance: when n instances of the algorithm
are run for n values of c1 : c0, the bounds are guaranteed with a
(lower) overall confidence 1−nβ1−nβ0. Finally, we applied
the algorithm to the ventricular fibrillation dataset that was
presented in [1], with some additional amplitude and frequency
features.6 The results are given in the upper part of Table II.
Note that even when k1

N1
≈ k0

N0
the guaranteed sensitivity and

specificity differ considerably. This is due to the fact that the
variability of the critical type of error when only 15 samples
are available is large, so that a considerably large margin
from the leave-one-out estimate k1

N1
is necessary to guarantee

the claimed sensitivity with the same confidence as for the
claimed specificity. Overall, we must conclude that this dataset
results in poor guarantees due to the small number of positive
instances, and that we need more data. As a proof of concept,
we artificially generated more data by using the Synthetic

6Overall, we considered 19 features: Root Mean Square, Average Segment
Amplitude, Mean Amplitude, Wave Amplitude, Maximum Value of the Signal,
Minimum Value of the Signal, Peak-To-Trough, Mean Slope, Median Slope,
AMSA (sum of the absolute value of the product between the amplitude
spectral density and the corresponding frequency), absAMSA (absolute value
of the sum of the product between the amplitude spectral density and
the corresponding frequency), PSA (like AMSA, but with power spectral
density instead of amplitude spectral density), Centroid Frequency (frequency
of the “center of mass” of the power spectral density), Centroid Power,
Dominant Frequency, Edge Frequency, Spectral Flatness Measure, ([1], [2]).
Including some features that might look redundant is intentional. In fact, the
dimensionality of the feature vector does not enter Theorem 2.1, and we
expect that the algorithm performs implicit feature selection as discussed in
[1].

Minority Oversampling TEchnique7(SMOTE, [5]). We thus
obtained an (artificial) dataset with N0 = 2476 and N1 = 240.
Results are in the bottom part of Table II. If these data were
real, performances would be guaranteed to be very good, close
to the values of 95% sensitivity and 50% specificity that are
commonly indicated as target values in the literature, [11], [6],
[14].

V. CONCLUSIONS

In this paper we have introduced a new Guaranteed Error
Machine algorithm for binary classification. The algorithm
inherits from GEM the capability of accommodating the
systematic use of many features and, like GEM, is grounded
on a rigorous statistical framework that makes it attractive for
critical applications. Differently from GEM, the new algorithm
has no reject option (its output is always 0 or 1), and
has tunable sensitivity and specificity balancing. Moreover,
rigorous certificates on the sensitivity and the specificity of
the constructed classifier can be issued based on the training
set only (i.e., no independent validation set is required).
We applied the method to synthetic and medical datasets.
Although we have focused on a simple construction based on
covering balls, a whole class of algorithms with certificates
on sensitivity and specificity can be designed in line with the
scheme proposed in this paper. The discussion of the main
design knobs (such as the shape of the regions, the possibility
of allowing misclassifications in the training set, etc.) will
be the subject of future research. In addition, the proposed
algorithm contains some freedom in its initialization: the first
ball that is being constructed is centered at an observation
which, in a generalized form of the algorithm, can be selected
by the user. We plan to exploit this degree of freedom to train
different classifiers and then boost the performance of the final
algorithm by majority-based decisions.
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