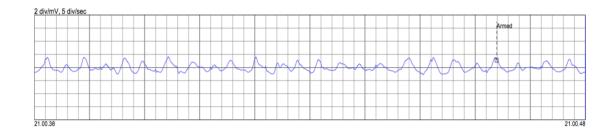
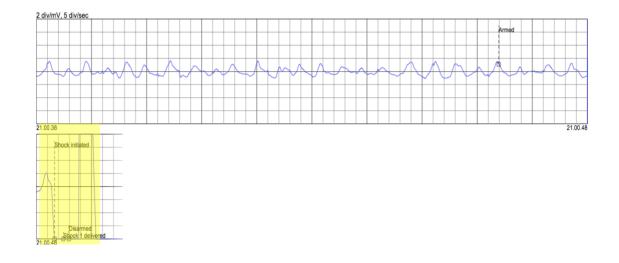
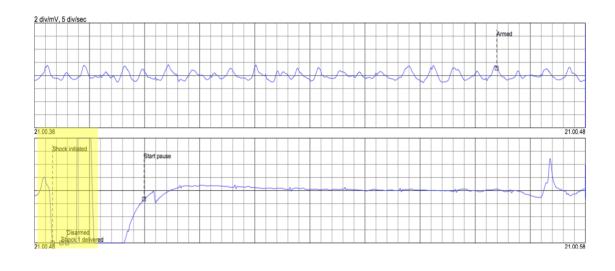
Classification with guaranteed specificity and sensitivity for medical applications

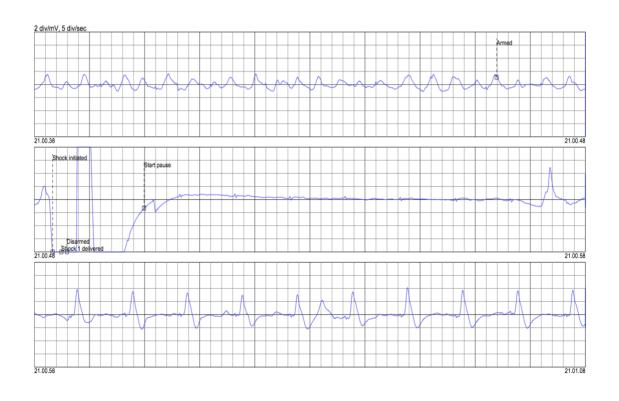
Algo Carè, Marco C. Campi, Federico A. Ramponi

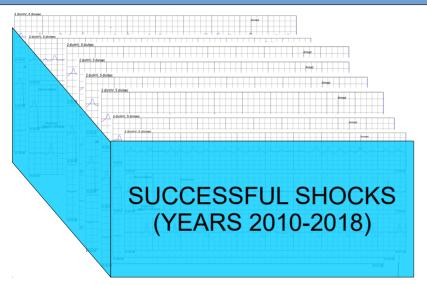
Università degli Studi di Brescia

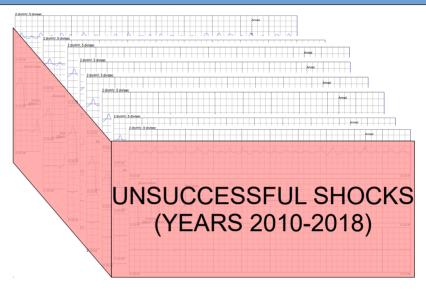


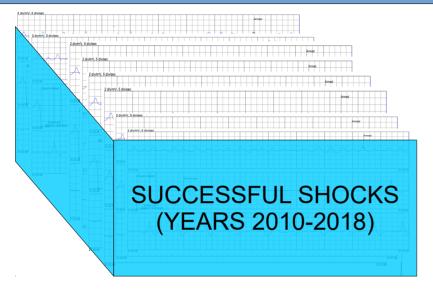


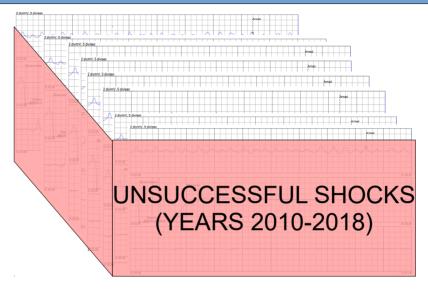




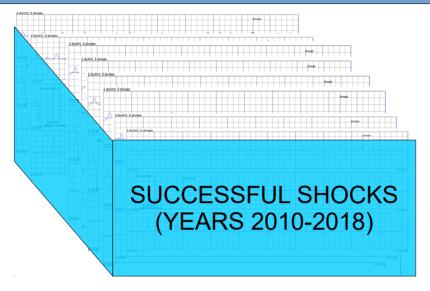


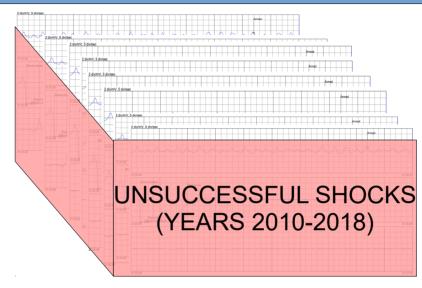






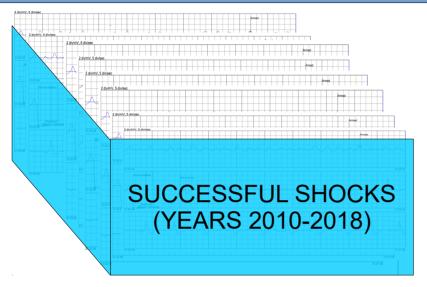
PAST

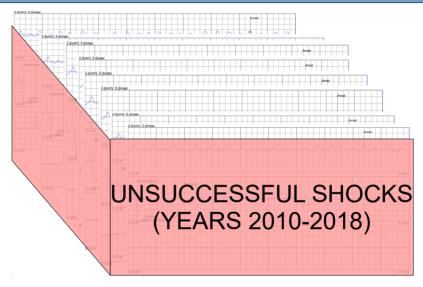




PAST

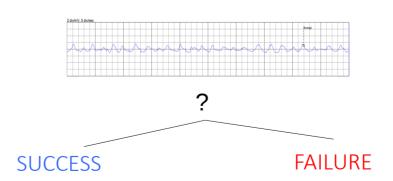
PRESENT



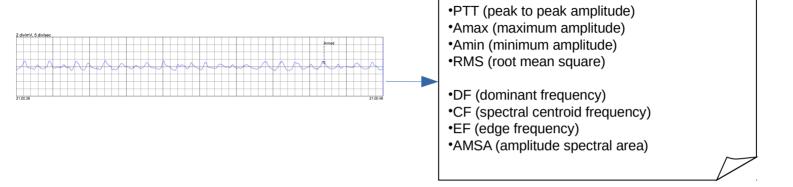


PAST

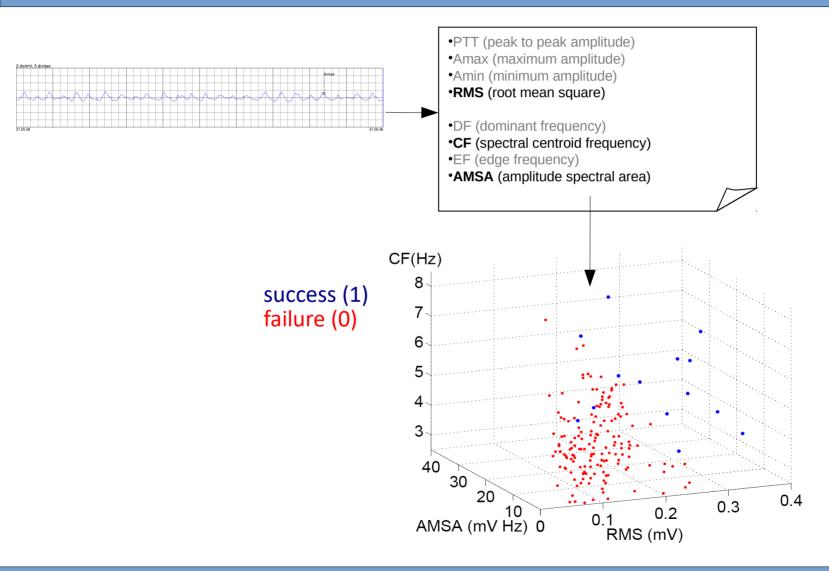
PRESENT



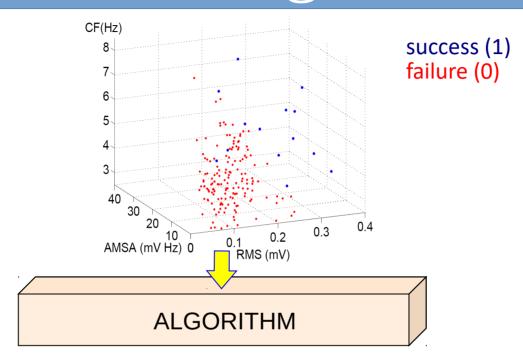
Feature extraction



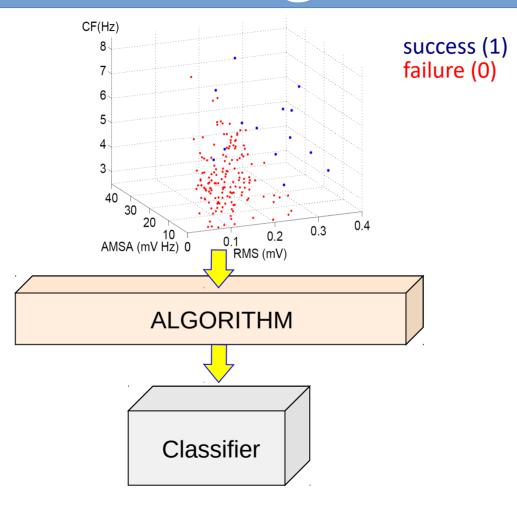
Feature extraction



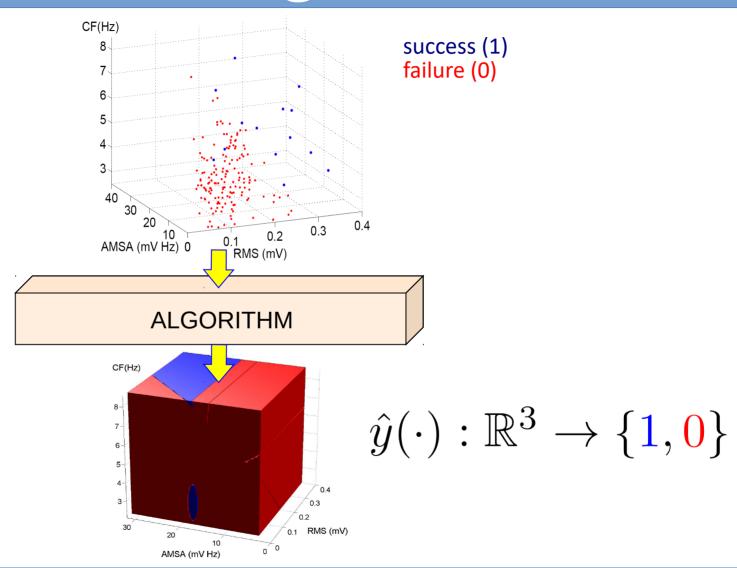
Automatic learning



Automatic learning



Automatic learning



Mathematical set-up

```
x \in \mathbb{R}^n: patient (n features)
y \in \{1,0\}: true outcome
\hat{y}(\cdot): \mathbb{R}^n \to \{1,0\} classifier
(x,y) \sim \mathbb{P}
                    \hat{y}(x) \neq y
```

Mathematical set-up

```
x \in \mathbb{R}^n: patient (n features)
y \in \{1,0\}: true outcome
\hat{y}(\cdot): \mathbb{R}^n \to \{1,0\} classifier
(x,y) \sim \mathbb{P}
PE(\hat{y}) := \mathbb{P}\{\hat{y}(x) \neq y\}
```

Probability of error

Probability of error

Pr("success" | failure)

Pr("failure" | success)

Probability of correct classification

1 – Pr("success" | failure)

1 – Pr("failure" | success)

Probability of correct classification


```
1 – Pr("success" | failure)
=Pr("failure" | failure)
```

```
1 - Pr("failure" | success)
=Pr("success" | success)
```

Probability of correct classification


```
1 – Pr("success" | failure)
=Pr("failure" | failure)
```

specificity

sensitivity

Probability of correct classification

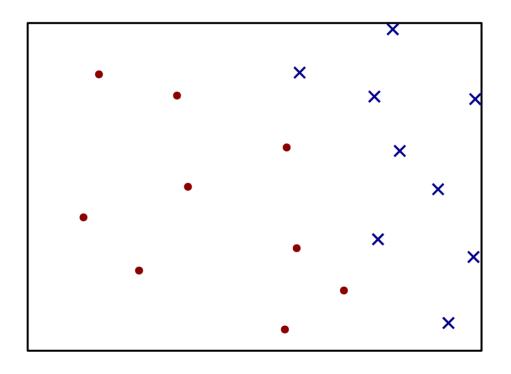

```
1 – Pr("success" | failure)
=Pr("failure" | failure)
```

specificity

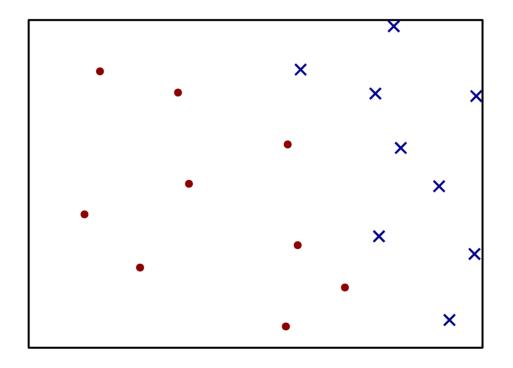
Target 50%

sensitivity

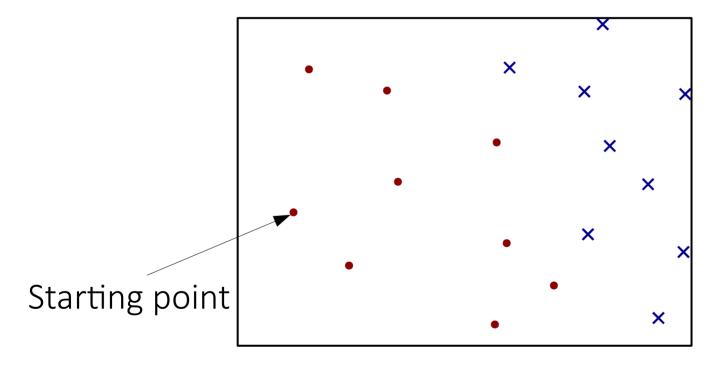
Target 95%



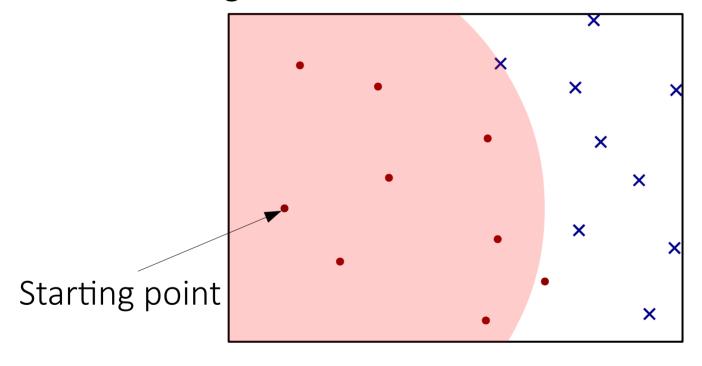
- "0", "negative", "failure"
- × "1", "positive", "success"

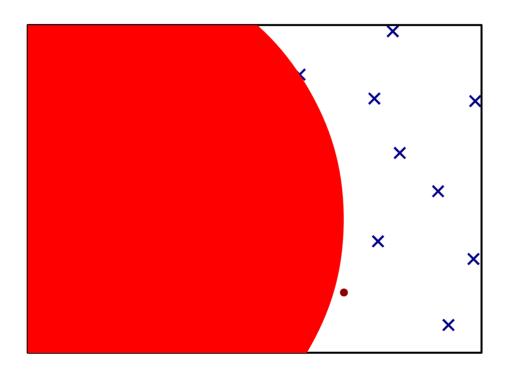


- "0", "negative", "failure"
- × "1", "positive", "success"



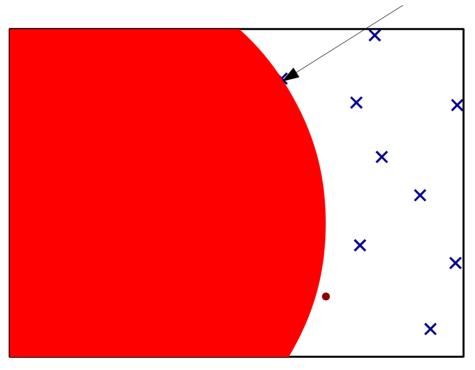
Largest ball that does not include blue points



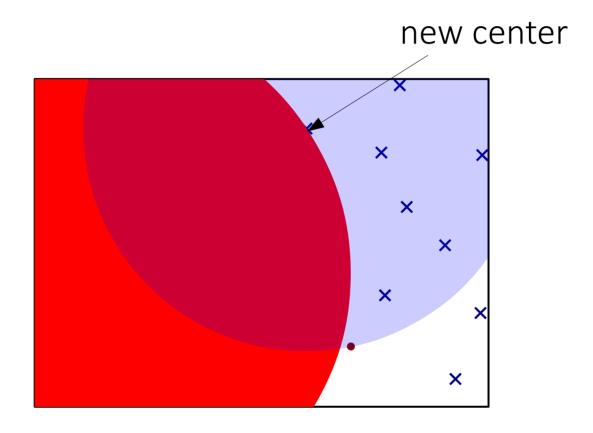


#blue active points so far =1

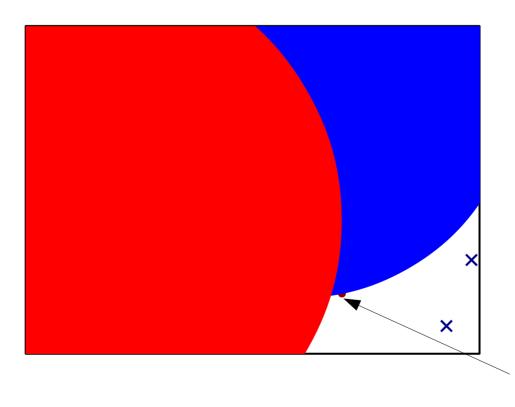
blue active point



#blue active points so far =1

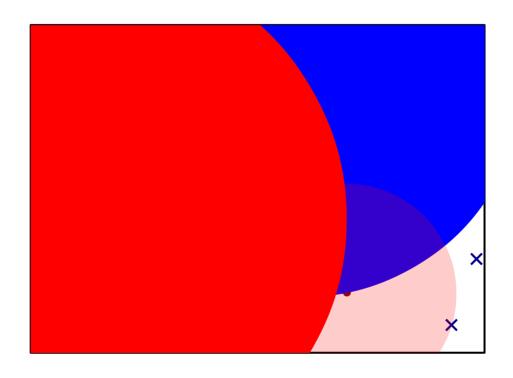


#blue active points so far =1 #red active points so far =1

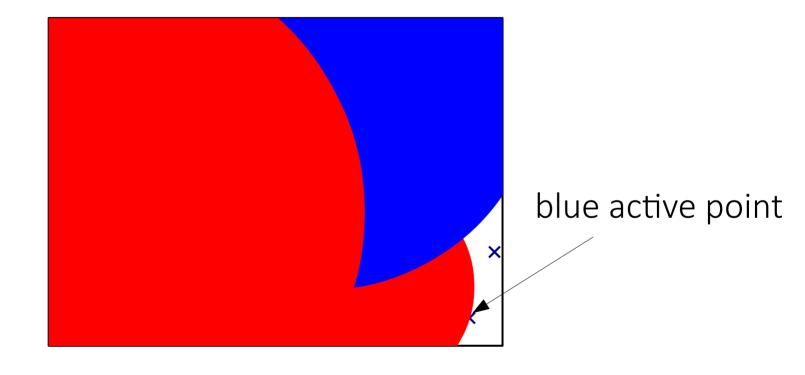


red active point

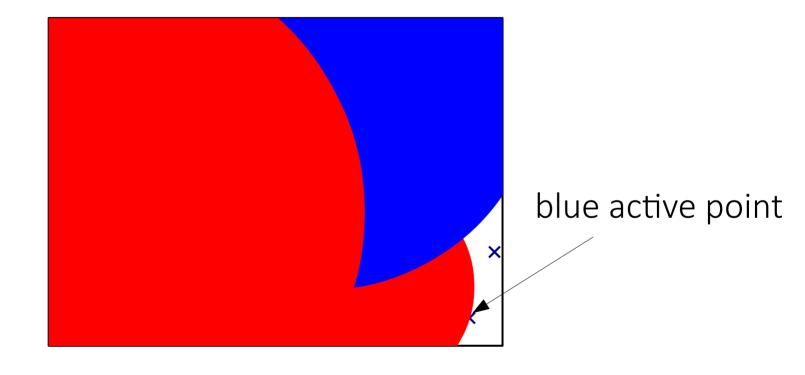
#blue active points so far =1
#red active points so far =1



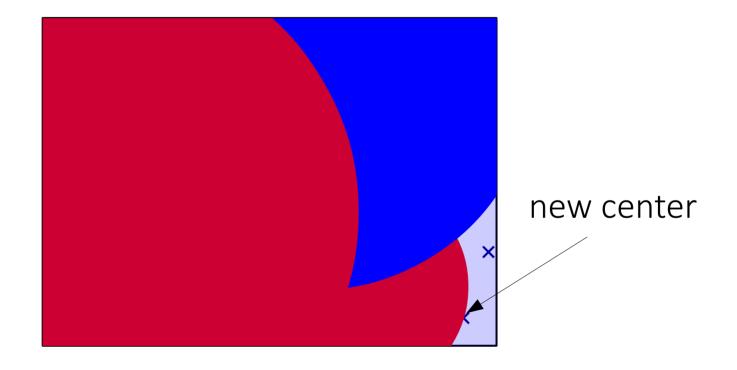
#blue active points so far =1+1 #red active points so far =1



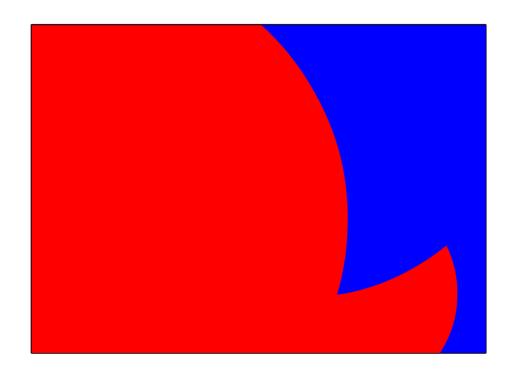
#blue active points so far =2 #red active points so far =1

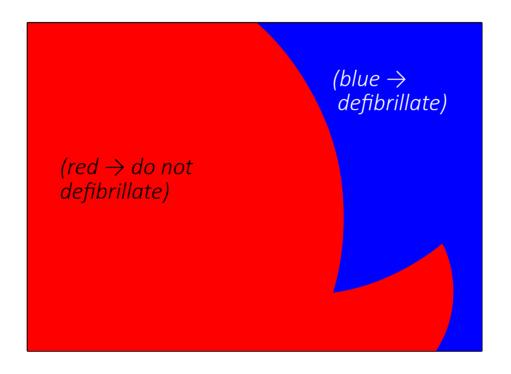


#blue active points so far =2 #red active points so far =1

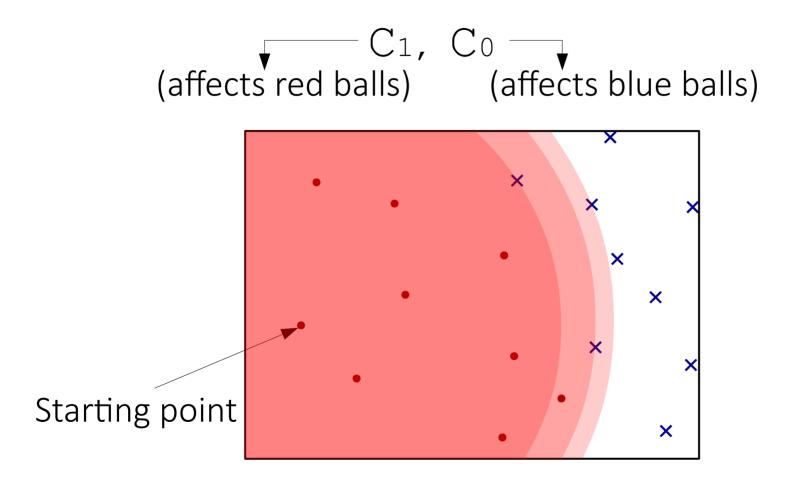


#blue active points so far =2 #red active points so far =1





The tuning knob



 β : small (e.g. 10^{-6}) confidence parameter

 β : small (e.g. 10^{-6}) confidence parameter

 N_1 : # of positives

 β : small (e.g. 10^{-6}) confidence parameter

 N_1 : # of positives

 $k_1: \# active positives$

 β : small (e.g. 10^{-6}) confidence parameter

 N_1 : # of positives

 $k_1: \# \text{ active positives}$

 $\{\epsilon_1(d): d=1,\ldots,N_1\}$: are pre-computed thresholds.

 β : small (e.g. 10^{-6}) confidence parameter

 N_1 : # of positives

 $k_1: \# \text{ active positives}$

 $\{\epsilon_1(d): d=1,\ldots,N_1\}$: are pre-computed thresholds.

 $\epsilon_1(d)$, for $d=1,\ldots,N_1$ is the quantile at level $1-\frac{\beta}{N_1}$ of Beta[d, N_1+1-d]

 \hat{y} (k_1)

"failure" success
$$\mathbb{P}\{\hat{y}(x) = 0 \mid y = 1\} \qquad (k_1)$$

"failure" success
$$\mathbb{P}\{\hat{y}(x)=0\mid y=1\} \quad \epsilon_1(k_1)$$
 precomputed threshold

"failure" success
$$\mathbb{P}\{\hat{y}(x)=0\mid y=1\} \leq \epsilon_1(k_1)$$
 precomputed threshold

"failure" success
$$\mathbb{P}\{\hat{y}(x)=0\mid y=1\} \leq \epsilon_1(k_1)$$
 precomputed threshold

with confidence $1 - \beta$

Theorem - Discussion

"failure" success
$$\mathbb{P}\{\hat{y}(x)=0\mid y=1\} \leq \epsilon_1(k_1)$$
 precomputed threshold sensitivity $\geq 1-\epsilon_1(k_1)$ with confidence $1-\beta$

Theorem - Discussion

"failure" success
$$\mathbb{P}\{\hat{y}(x)=0\mid y=1\} \leq \epsilon_1(k_1)$$
 precomputed threshold
$$\text{sensitivity} \geq 1-\epsilon_1(k_1)$$
 with confidence $1-\beta$

sensitivity
$$\geq 1 - \epsilon_1(k_1)$$

with confidence $1 - \beta$

Theorem - Discussion

sensitivity
$$\geq 1 - \epsilon_1(k_1)$$

with confidence $1 - \beta$

Theorem - Discussion

$$(x_i, y_i) \sim \mathbb{P}$$

sensitivity
$$\geq 1 - \epsilon_1(k_1)$$

$$(x_i, y_i) \sim \mathbb{P}$$

$$\mathbb{P}^N\{\text{sensitivity} \geq 1 - \epsilon_1(k_1)\} \geq 1 - \beta$$

$$(x_i, y_i) \sim \mathbb{P}$$

$$\mathbb{P}^N\{\text{sensitivity} \geq 1 - \epsilon_1(k_1)\} \geq 1 - \beta$$

$$\mathbb{P}^N\{\text{specificity} \geq 1 - \epsilon_0(k_0)\} \geq 1 - \beta$$

sensitivity
$$\geq 1 - \epsilon_1(k_1)$$
 & specificity $\geq 1 - \epsilon_0(k_0)$

with overall confidence $1-2\beta$

sensitivity
$$\geq 1 - \epsilon_1(k_1)$$
 & specificity $\geq 1 - \epsilon_0(k_0)$

with overall confidence $1-2\beta$

Take-home message:

"GEM-BALLS is a self-testing algorithm!"

Benchmark datasets

BreastW (239 positive instances, 444 negative instances), $\beta = 5 \cdot 10^{-3}$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\mathbf{k}_1:\mathbf{k}_0$ 17:17 11:21 10:28 6:28 4:33 10:17 2:66						2:66	
Sens:Spec	83%:91%	87%:89%	88%:87%	90%:87%	92%:86%	88%:91%	94%:76%

	Pima (268 positive instances, 500 negative instances), $\beta = 10^{-3}$						
$c_1:c_0$ 1:1 1:2 2:4 1:4 1:8 1:10 1:50							
$\mathbf{k}_1:\mathbf{k}_0$	$old k_1: k_0 \hspace{0.5em} old \hspace{0.5em} 125: 125 \hspace{0.5em} old 88: 175 \hspace{0.5em} old 96: 189 \hspace{0.5em} old 61: 245 \hspace{0.5em} old 38: 300 \hspace{0.5em} old 33: 324 \hspace{0.5em} old 9: 424 \hspace{0.5em} old $						
Sens:Spec	40%:65%	54%:55%	51%:52%	65%:41%	75%:30%	70%:20%	90% : 9%

Haberman (75 positive instances, 219 negative instances), $\beta = 10^{-3}$							
$c_1:c_0$ 1:1 1:3 1:5 1:10 1:20							
$\mathbf{k}_1 : \mathbf{k}_0$	46:46	28:82	23:114	14:139	9:176		
Sens:Spec	20%:67%	41%:49%	48%:35%	62%:24%	71%:10%		

Benchmark datasets

	BreastW	eastW (239 positive instances, 444 negative instances), $\beta = 5 \cdot 10^{-3}$					
$c_1 : c_0$	1:1	1:2	1:3	1:5	1:10	10:100	1:50
$\mathbf{k}_1:\mathbf{k}_0$	17:17	11:21	10:28	6:28	4:33	10:17	2:66
Sens:Spec	83%:91%	87%:89%	88%:87%	90%:87%	92%:86%	88%:91%	94%:76%

	Pima (268 positive instances, 500 negative instances), $\beta = 10^{-3}$						
$c_1:c_0$ 1:1 1:2 2:4 1:4 1:8 1:10 1:50							
$\mathbf{k}_1:\mathbf{k}_0$	$\mathbf{k}_1:\mathbf{k}_0$ 125:125 88:175 96:189 61:245 38:300 33:324 9:424						
Sens:Spec	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

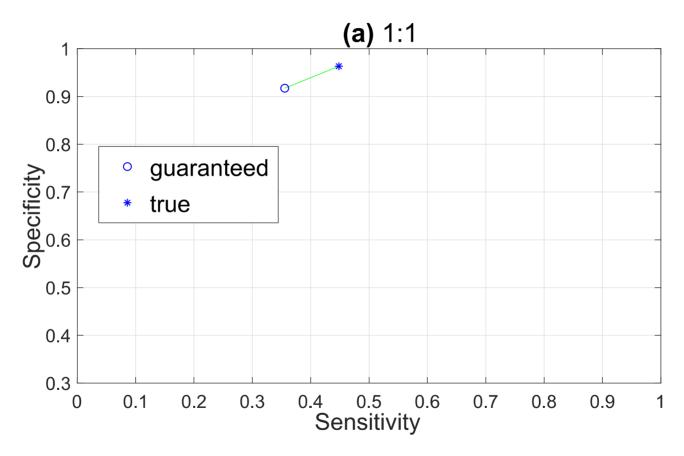
Haberman (75 positive instances, 219 negative instances), $\beta = 10^{-3}$						
$c_1:c_0$ 1:1 1:3 1:5 1:10 1:20						
$\mathbf{k}_1:\mathbf{k}_0$ 46:46 28:82 23:114 14:139 9:176						
Sens:Spec	20%:67%	41%:49%	48%:35%	62%:24%	71%:10%	

Benchmark datasets

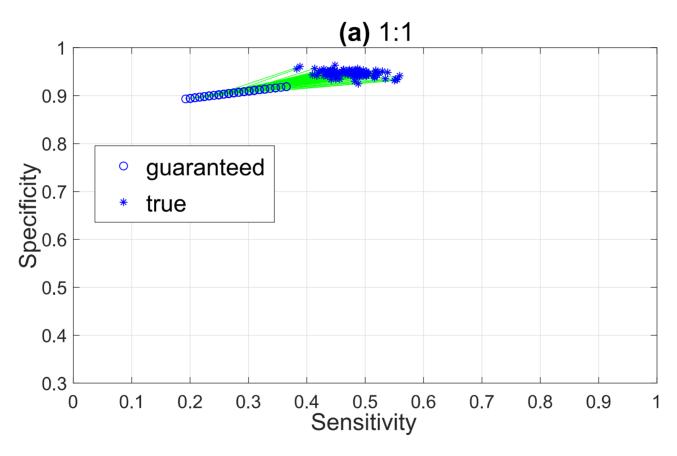
·	BreastW	(239 positive	239 positive instances, 444 negative instances), $\beta = 5 \cdot 10^{-3}$				
$c_1 : c_0$	1:1	1:2	1:3	1:5	1:10	10:100	1:50
$\mathbf{k}_1 : \mathbf{k}_0$	17:17	11:21	10:28	6:28	4:33	10:17	2:66
Sens:Spec	83%:91%	87%:89%	88%:87%	90%:87%	92%:86%	88%:91%	94%:76%

	Pima (268 positive instances, 500 negative instances), $\beta = 10^{-3}$						
$c_1 : c_0$	$c_1:c_0$ 1:1 1:2 2:4 1:4 1:8 1:10 1:50						
$\mathbf{k}_1:\mathbf{k}_0$	$\mathbf{k}_1:\mathbf{k}_0$ 125:125 88:175 96:189 61:245 38:300 33:324 9:424						
Sens:Spec							

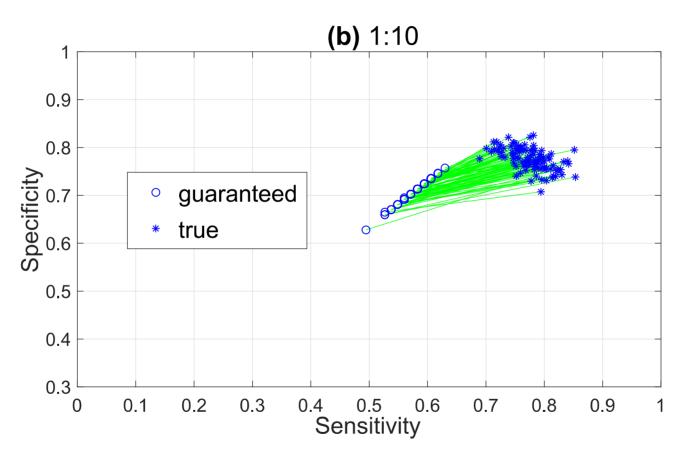
Habern	Haberman (75 positive instances, 219 negative instances), $\beta = 10^{-3}$						
$c_1:c_0$ 1:1 1:3 1:5 1:10 1:20							
$\mathbf{k}_1 : \mathbf{k}_0$	46:46	28:82	23:114	14:139	9:176		
Sens:Spec	20%:67%	41%:49%	48%:35%	62%:24%	71%:10%		



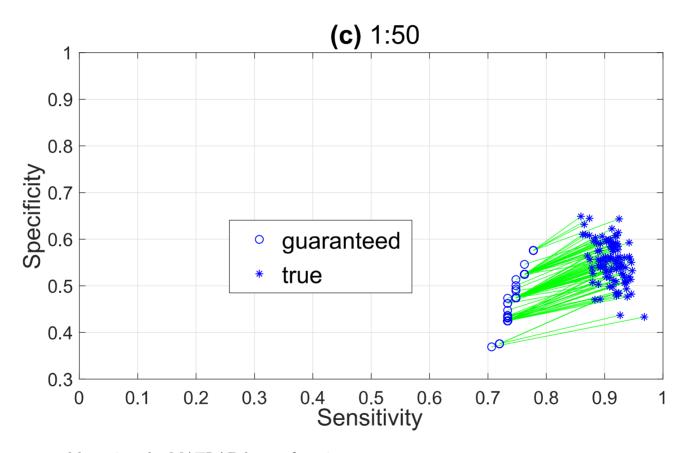
$$N_0 = 1000, N_1 = 100. \beta = 10^{-3}$$



$$N_0 = 1000, N_1 = 100. \beta = 10^{-3}$$



$$N_0 = 1000, N_1 = 100. \beta = 10^{-3}$$



$$N_0 = 1000, N_1 = 100. \beta = 10^{-3}$$

Ventricular Fibrillation (VF) dataset

VF dataset (15 pos, 155 neg), $\beta = 10^{-2}$					
$c_1:c_0$	1:1 $1:10$ $1:80$				
\mathbf{k}_1 : \mathbf{k}_0	9:9	5:41	2:90		
Sens:Spec	11%:85%	30%:59%	51%:28%		

Ventricular Fibrillation (VF) dataset

VF dataset (15 pos, 155 neg), $\beta = 10^{-2}$					
$c_1:c_0$	1:1 1:10 1:80				
\mathbf{k}_1 : \mathbf{k}_0	9:9	5:41	2:90		
Sens:Spec	11%:85%	30%:59%	51%:28%		

Expanded VF dataset (240 pos, 2477 neg), $\beta = 10^{-3}$						
$c_1:c_0$ 1:1 1:10 1:80 1:240						
\mathbf{k}_1 : \mathbf{k}_0	16:16	1:121	8:568	4:1055		
Sens:Spec	84%:98%	86% : 93%	89%:73%	92%: 53%		

SMOTE (Synthetic Minority Over-sampling Technique)

Thank you!

Are you interested in knowing more? Write to us!

algo.care@unibs.it

Try GEM-BALLS now! www.algocare.it/GEM-BALLS/

Bibliography

GEM-BALLS:

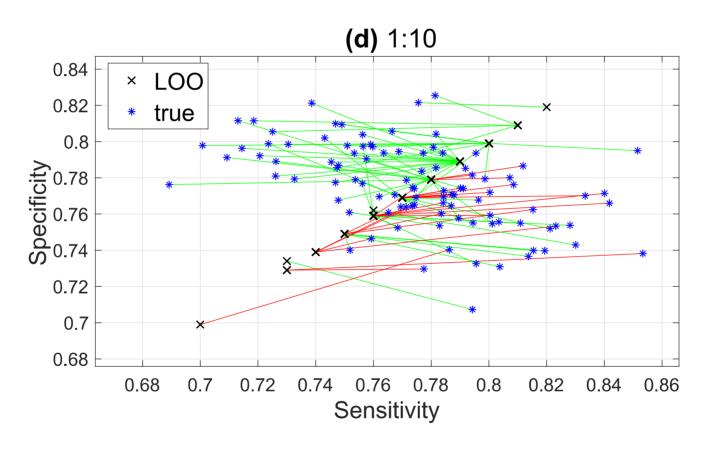
"A new classification algorithm with guaranteed sensitivity and specificity for medical applications,"
 A. Carè, F.A. Ramponi, M.C. Campi IEEE Control Systems Letters. 2(3):393-398 [doi: 10.1109/LCSYS.2018.2840427], 2018 www.algocare.it/GEM-BALLS/

GEM:

- "Classification with Guaranteed Probability of Error"
 M.C. Campi
 Machine Learning, 80:63-84, 2010.
- "Consensus and Reliability: The Case of Two Binary Classifiers" A.T.J.R. Cobbenhagen. A. Carè, M.C. Campi, F.A. Ramponi, W.P.M.H. Heemels 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems Sept. 16-17, 2019, Chicago, IL, USA
- "Ventricular defibrillation: Classification with GEM and a roadmap for future investigations"
 F. Baronio, M. Baronio, M.C. Campi, A. Carè, S. Garatti, G. Perone
 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2718-2723

The problem is that of predicting the output y of the binary function $kstest([x^{(1)}, \ldots, x^{(7)}], Alpha', 0.005)$ in the MATLAB Statistics and Machine Learning Toolbox, when the feature vector $x = [x^{(1)}, \ldots, x^{(7)}]$ is uniformly and independently sampled over $[0, 1]^7$.

Tests on reproducible simulated data



Labels are generated by using the MATLAB kstest function. $N_0 = 1000, N_1 = 100.$

Leave-one-out estimates

$$1- \frac{k_1}{N_1}$$

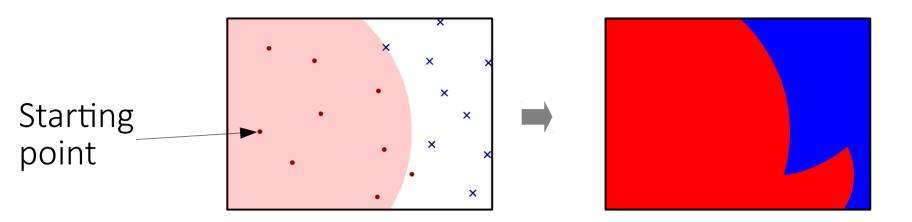
is a sample-based estimate of sensitivity (leave-one-out estimate);

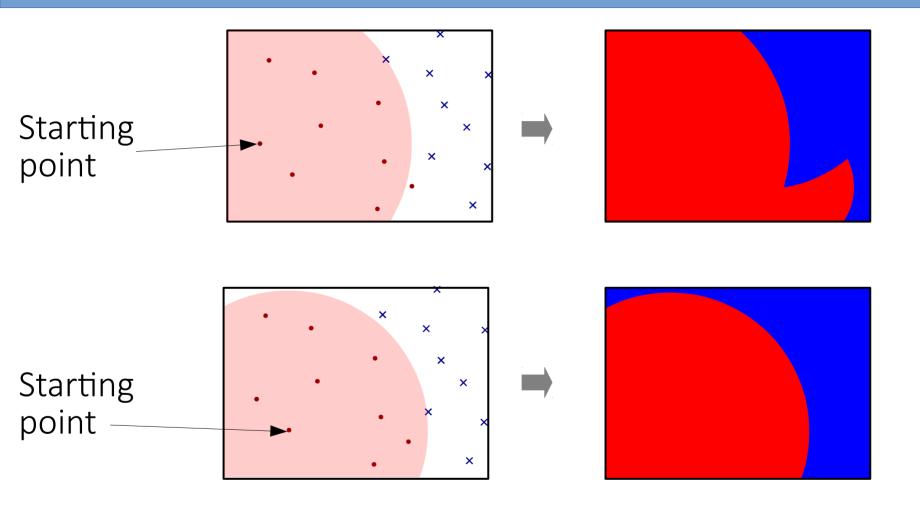
$$1-\frac{ko}{No}$$

is a sample-based estimate of specificity (leave-one-out estimate).

Pool of guaranteed classifiers:

Train many guaranteed classifiers simultaneusly.





Pool of guaranteed classifiers:

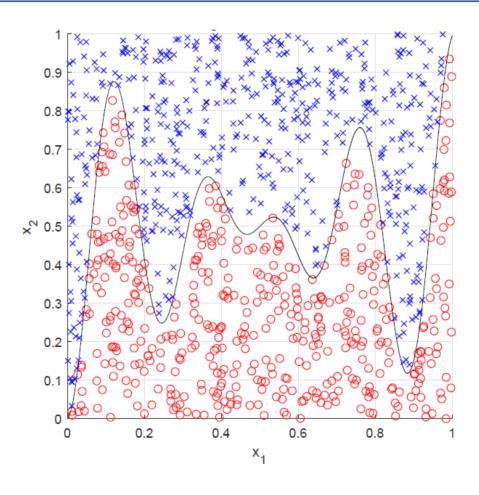
Train many guaranteed classifiers simultaneusly.

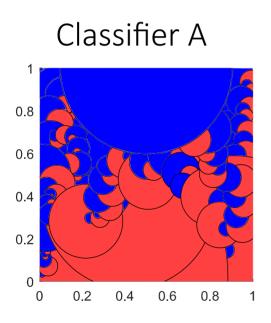
Can we be **more** confident in the case of agreement?

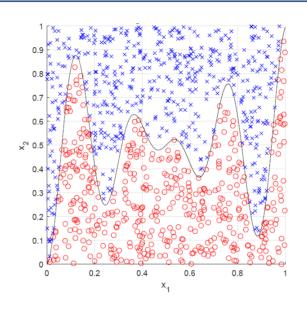
Theorem 2. If $PE_A + PE_B < 1$, then

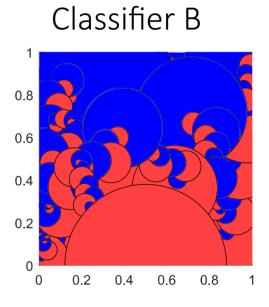
$$PE_{ag} \le \frac{PE_{best}}{1 + PE_{best} - PE_{worst}}.$$

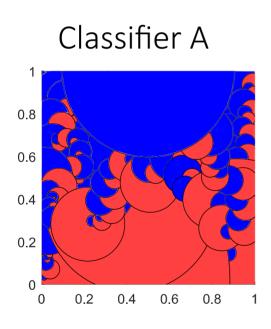
"Consensus and Reliability: The Case of Two Binary Classifiers"
A.T.J.R. Cobbenhagen. A. Carè, M.C. Campi, F.A. Ramponi, W.P.M.H. Heemels
8th IFAC Workshop on Distributed Estimation and Control in Networked Systems Sept. 16-17, 2019, Chicago, IL, USA

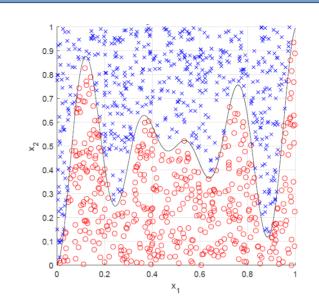


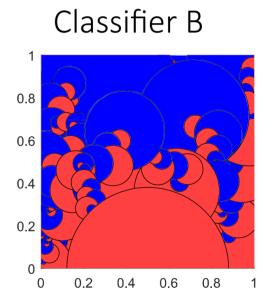












$$PE_A = 0.098, PE_B = 0.10, PE_{A \cap B} = 0.052$$

 $\alpha = 0.90$, which yields $PE_{aq} = 0.057$

Thank you!

Are you interested in knowing more? Write to us!

algo.care@unibs.it

Try GEM-BALLS now! www.algocare.it/GEM-BALLS/

Bibliography

GEM-BALLS:

"A new classification algorithm with guaranteed sensitivity and specificity for medical applications,"
 A. Carè, F.A. Ramponi, M.C. Campi IEEE Control Systems Letters. 2(3):393-398 [doi: 10.1109/LCSYS.2018.2840427], 2018 www.algocare.it/GEM-BALLS/

GEM:

- "Classification with Guaranteed Probability of Error"
 M.C. Campi
 Machine Learning, 80:63-84, 2010.
- "Consensus and Reliability: The Case of Two Binary Classifiers" A.T.J.R. Cobbenhagen. A. Carè, M.C. Campi, F.A. Ramponi, W.P.M.H. Heemels 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems Sept. 16-17, 2019, Chicago, IL, USA
- "Ventricular defibrillation: Classification with GEM and a roadmap for future investigations"
 F. Baronio, M. Baronio, M.C. Campi, A. Carè, S. Garatti, G. Perone
 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2718-2723

Leave-one-out estimates

$$1- \frac{k_1}{N_1}$$

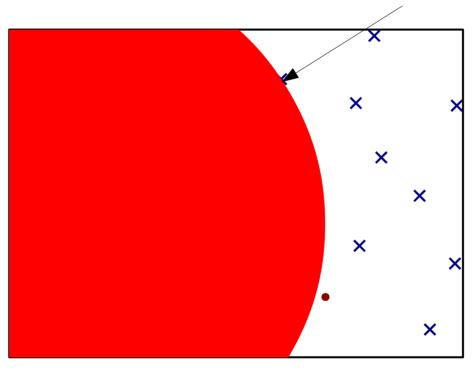
is a sample-based estimate of sensitivity (leave-one-out estimate);

$$1-\frac{ko}{No}$$

is a sample-based estimate of specificity (leave-one-out estimate).

GEM-BALLS

blue active point



GEM-BALLS

wrongly classified when removed from the training set

