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Complexity is an effective observable
to tune early stopping in scenario optimization
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Abstract— Scenario optimization is a broad scheme for
data-driven decision-making in which experimental obser-
vations act as constraints on the feasible domain for the
optimization variables. The probability with which the so-
lution is not feasible for a new, out-of-sample, observa-
tion is called the “risk”. Recent studies have unveiled the
profound link that exists between the risk and a properly
defined notion of “complexity” of the scenario solution. In
the present work, we leverage these results to introduce a
new scheme where the size of the sample of scenarios is
iteratively tuned to the current complexity of the solution
so as to eventually hit a desired level of risk. This new
scheme implies a substantial saving of data as compared to
previous approaches. The paper presents the new method,
offers a full theoretical study and illustrates it on a control
problem.

Index Terms— randomized methods, optimization under
uncertainties, scenario optimization.

I. INTRODUCTION

SCENARIO OPTIMIZATION is a data-driven paradigm
for decision-making in the presence of uncertainty whose

prototype problem is written as:

min
x∈X

c(x)

subject to: x ∈
⋂

i=1,...,N

Xδi , (1)

where x ∈ Rd is a vector of optimization variables, c(x) is
a convex cost function, X ⊆ Rd is a convex set, and Xδi
are convex constraint sets drawn from a family {Xδ}. The
uncertainty parameter δ is modeled as a random outcome
from a probability space (∆,D,P) and δi, i = 1, . . . , N , is
a random sample of independent draws from (∆,D,P). The
solution to (1), possibly after the use of a rule to break ties,
is denoted by x∗N .

The idea behind (1) is that, in a given application, the
mechanism (∆,D,P) by which uncertainty takes place is
unknown, or only partially known, and one uses a sample
of observations δ1, δ2, . . . , δN , the “scenarios”, to build a
decision that is feasible for the situations that have been
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observed (which justifies the constraints x ∈
⋂
i=1,...,N Xδi

in (1)) while trying to optimize the cost function c(x). This
setup is quite broad and encompasses problems of various
nature, ranging from systems theory and signal processing to
health care and economics. In control, the scenario approach
has thrived in various directions and has found application to
controller design [1]–[7], identification [8]–[16], and learning
[17]–[21], also fostered by theoretical advances established in
many contributions [22]–[34].

After it has been designed, a scenario solution will unlikely
be applied to an instance of uncertainty that has been pre-
viously seen and hence incorporated in (1). Therefore, it is
essential to develop a generalization theory that enables one
to draw conclusions on the probability of not satisfying new
constraints, i.e., the probability that x∗N /∈ Xδ for an out-
of-sample δ ∈ ∆. Of course one would desire that such a
theory provides tight results (so that it is useful in practice)
while assuming as little prior knowledge as possible on the
mechanism by which the δ’s are generated (so that the theory
is broadly applicable).

To set the stage of study, we start by formalizing the notion
of risk.

Definition 1 (risk): The risk of a given x ∈ X is defined as
V (x) = P{δ ∈ ∆ : x /∈ Xδ}. ?

In the context of (1), we are interested in V (x∗N ), the risk of
the scenario decision x∗N . While this quantity is not directly
measurable because P is normally not known or only partly
known, nonetheless a breakthrough result established in [35]
allows one to bound the probability with which V (x∗N ) is
bigger than any given threshold ε according to formula1

PN{V (x∗N ) > ε} ≤
d−1∑
i=0

(
N

i

)
εi(1− ε)N−i. (2)

Equation (2) has to be read that, no matter what P is, the left-
hand side is always upper bounded by the right-hand side, a
quantity that does not depend on P. Moreover, the result in (2)
is not improvable since it is exact (i.e., PN{V (x∗N ) > ε} =∑d−1
i=0

(
N
i

)
εi(1−ε)N−i) for a whole class of problems, named

“fully-supported” in Definition 2.3 of [35].
Result (2) provides a quantitative tool to a priori determine

the size N of the sample δ1, δ2, . . . , δN so that the solution

1Note that V (x∗N ) is a random variable defined over the product probability
space (∆N ,DN ,PN ) that hosts (δ1, δ2, . . . , δN ) where PN is a product
probability because of independence.
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x∗N has a risk no bigger than ε with (high) confidence level
1− β. To this purpose one chooses the smallest N such that
the following relation holds:

d−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β. (3)

For fully-supported problems, the value of N selected from
(3) makes V (x∗N ) concentrate near ε, see [35]. On the other
hand, optimization problems encountered in practice are often
not fully-supported, in which case using (3) overestimates the
value of N that is necessary to secure the sought level of risk.
Under these circumstances, using equation (3) is unfortunate
in two respects:
(i) large samples result in a high computational burden for

solving problem (1);
(ii) scenarios are often data collected from experiments (pos-

sibly, expensive or time-consuming) and are a limited and
costly resource.

While item (i) strongly relates to technology and is lessened by
the ever increasing computational power of electronic devices,
item (ii) is more intrinsic, with significant implications in many
branches of science and engineering. Examples are found in
testing the clinical conditions of patients, collecting the rate-
of-returns of various financial assets, or performing crash-tests
in critical or unsafe operating conditions.

A. The contribution of this paper

In this paper, we focus on the key issue posed in point
(ii) above and introduce a sequential scheme in which the
sample size is progressively increased through iterations until
a suitable halting condition is satisfied. As a result, the number
of scenarios is not fixed in advance, but becomes a random
variable whose value is adapted to the situation at hand by a
suitable stopping rule. We show that the algorithm comes to
an early stop in conditions where this suffices to warrant the
desired level of risk, so providing a saving of scenarios.2 While
the stopping rule tunes the scenario scheme to the current
situation, it is very important to remark that the theory of this
paper is distribution-free, pretty much alike the theory in [35],
i.e., it holds independently of P: knowledge on when to stop
iterating is gained through experience without resorting to any
a priori assumption on the underlying mechanism by which
scenarios are generated.

The idea of sequential randomized algorithms is not new,
see e.g. [36]–[40] and the references therein, and it has been
applied to scenario optimization in the contributions [41]
and [42]. It is important to note, however, that the focus of
these two works is point (i) above, that is, the computational
complexity of the algorithm. Correspondingly, the halting con-
dition in the schemes of [41] and [42] is based on validation: at
each iteration one checks whether the current solution satisfies
all (or a preset part of) the constraints associated to new
scenarios that were not used to optimize. This is based on

2While our sequential scheme is effective in reducing the number of scenar-
ios (point (ii) above), there is no claim that it always offers a computational
advantage.

the idea that validating is computationally inexpensive and
repeatedly computing the solution with a small amount of sce-
narios is also less computationally demanding than computing
the scenario solution in one-shot. Thus, the schemes of [41]
and [42] can, and often do, offer a significant computational
saving. On the other hand, in the wake of (ii) one may be
reluctant to use scenarios for validation and, indeed, upon
counting how many scenarios are used in total, one sees that
the algorithms of [41] and [42] are prone to be consuming
because they can go through many validation steps. Hence, in
the end, they use more scenarios than the number N prescribed
by (3).

Focusing a bit closer on the sequential scheme proposed in
this paper, we notice that its halting condition is not based
on validation, instead it exploits a deep connection between
two concepts, risk and complexity, that was first noticed in
[43]. As a consequence, the available scenarios are all used
for design purposes, so eliminating any usage of resources to
validate the solution.

The present paper revisits and substantially develops an idea
that was first presented by two of its authors in the conference
paper [44]. Specifically, a preliminary version of the material
presented in Section II and part of the material in Section III
of this paper can be found in [44], while all other parts are
entirely new.

B. Structure of the paper
In the next section, we introduce our sequential scheme,

which culminates in Algorithm 1. Algorithm 1 articulates a
general procedure but it lacks to specify the sample size that
is used at each iteration to achieve the desired risk upon
termination. Then, the paper proceeds along two parallel paths.
Section III provides a first way to set the sample size: this
approach is simple to understand and, importantly, simple
to implement, but it is not fully optimized. An alternative
approach that offers more scenario saving is then presented
in Section IV. The practical use of the method is illustrated
in Section V on a control problem in mechanics. Conclusions
are drawn in Section VI.

II. THE SEQUENTIAL SCHEME

First, we revise the results in [43], which provides the
ground for the study in this paper, followed by a formal
presentation of the new sequential scheme.

A. Some useful results from [43]
The following assumptions and definitions, borrowed from

[43], are in order.

Assumption 1 (existence and uniqueness): For every N
and for every sample δ1, δ2, . . . , δN , problem (1) admits a
solution. If more than one solution exists, one solution is
singled out by the application of a convex tie-break rule,
which breaks the tie by minimizing an additional convex
function t1(x), and, possibly, other convex functions t2(x),
t3(x), . . . if the tie still occurs. The so-obtained solution is
denoted by x∗N . ?
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The approach for breaking the tie in Assumption 1 is the same
as that in [45]. An example of a tie-break function is the norm
of x, t1(x) = ‖x‖. Another example is the lexicographic
rule, which consists in minimizing the components of x in
succession, i.e., t1(x) = x1, t2(x) = x2, etc.

Definition 2 (support constraint): A constraint x ∈ Xδi of
the scenario optimization problem (1) is called a support
constraint if its removal (while all other constraints are main-
tained) yields a new solution, different from x∗N . ?

Assumption 2 (non-degeneracy): For every N , the solution
x∗N to problem (1) coincides with probability 1 (with respect
to the sample δ1, δ2, . . . , δN ) with the solution that is obtained
after eliminating all the constraints that are not of support. ?

Assumption 2 just rules out situations where the boundary of
distinct constraints accumulate anomalously, and the reader is
referred to [43] for more discussion on this point.

Definition 3 (complexity): The complexity s∗N of the sce-
nario optimization problem (1) is the number of its support
constraints. ?

The terminology “complexity” was first introduced in [46].
It hints at the fact that the solution can be reconstructed
from s∗N scenarios and, hence, s∗N represents a “complexity
of representation” of the solution.

The complexity s∗N depends on the random sample
δ1, δ2, . . . , δN and is therefore a random variable over
(∆N ,DN ,PN ). From results in [45], one knows that s∗N never
exceeds d, the number of optimization variables, and fully-
supported problems give s∗N = d with probability 1, see [35].
Notice also that, unlike V (x∗N ), s∗N is an accessible quantity.3

Under the present assumptions, Theorem 2 of [43] ensures
that, with probability 1−β (β is normally chosen to be a very
small value, such as 10−6, so that a probability of 1− β can
be interpreted as “practical certainty”), it holds that

V (x∗N ) ≤ ε̄(s∗N ),

where ε̄(s∗N ) is equal to the empirical risk s∗N
N plus a small

margin that bears a logarithmic dependence on β (this is the
reason why the margin keeps small, and is therefore useful in
practice, even when β is very small). The reader is referred to
[43] for an exact expression of the function ε̄(k); see also [47]
for an asymptotic analysis on how the margin ε̄(k)− k

N decays
with N . Based on these quantitative results one can conclude
that the two random variables V (x∗N ), the risk, and s∗N , the
complexity, have a universal and strong kinship, so much so
that small values of s∗N

N correspond to small values of V (x∗N ).
As we shall see, this result is the fundamental stepping stone
this paper moves from.

B. Incremental scenario optimization

The result outlined in the previous section makes it pos-
sible to judge the risk without resorting to validation steps.

3According to its definition, computing s∗N requires solving N optimization
problems, each of which obtained by removing one of the constraints from
(1). However, support constraints must be active and, hence, the search can
be restricted to active constraints only.

Accordingly, the Algorithm 1 presented in this section aims
at computing a solution x∗ with guaranteed level of risk (i.e.,
such that V (x∗) ≤ 1 − ε with high confidence 1 − β) by
considering a set of scenarios that is gradually expanded while
the current level of risk is estimated from the complexity
of the solution to decide when to halt the procedure. More
specifically, one starts with a small number of scenarios N0,
computes the solution, and checks whether the complexity is
equal to 0 (while this may sound odd, it is possible that the
solution ends up on the boundary of X in such a way that
there are no support constraints). In this case, the algorithm
comes to termination and the solution is returned. Otherwise,
new scenarios are added to the existing ones so as to reach
a total number of N1. A new solution is then computed and
again its complexity is used to assess whether the solution
meets the prescribed level of risk. Since the total number of
scenarios has been increased, the less restrictive condition that
s∗N1
≤ 1 suffices to secure the desired level of risk. The pro-

cedure continues similarly by adding scenarios and verifying
a progressively less restrictive condition until the condition is
satisfied. This, at worst, happens at the d-th iteration owing to
the theoretical result that the complexity is always less than d.

Algorithm 1 (incremental scenario optimization):

input = N0, N1, . . . , Nd; output = x∗

0. Set j := 0 and N−1 := 0.
1. Collect a sample of independent scenarios

δNj−1+1, δNj−1+2, . . . , δNj , which is also independent
of scenarios collected in previous steps.

2. Compute

x∗Nj = arg min
x∈X⊆Rd

c(x) (4)

subject to: x ∈ Xδi , i = 1, 2, . . . , Nj .

Compute the complexity s∗Nj of problem (4).
3. IF s∗Nj ≤ j THEN halt the algorithm and RETURN

x∗ := x∗Nj ;
ELSE set j := j + 1 and GOTO step 1. ?

While this algorithm incorporates the fundamental idea
of estimating V (x∗Nj ) from s∗Nj , it misses to indicate how
N0, N1, . . . , Nd should be selected to guarantee the desired
level of risk upon termination. Finding suitable values for
N0, N1, . . . , Nd is the main goal of the next sections.

The algorithm has been named “incremental” because all
scenarios used up at a given step are also maintained later
down the procedure, so avoiding any waste of scenarios.
Moreover, at each iteration all the scenarios are used for
optimizing, with no toll paid for validation.

The actual saving of scenarios with respect to the value of
N that can be selected a priori using equation (3) depends on
the specific problem at hand. As is clear, in a fully-supported
problem the algorithm systematically halts at the d-th iteration,
resulting in no saving of scenarios. This is intrinsic since
fully-supported problems do require the number of scenarios
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(a) d = 80, ε = 0.1, and β = 10−6.
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(b) d = 80, ε = 0.05, and β = 10−6.

Fig. 1: Nj obtained from Theorem 1 for two values of ε when
d = 80 and β = 10−6 (blue dots) vs M̄j (red crosses);
the horizontal black solid line is the value of N computed
according to (3). Note that the y-axes in the two plots have
different scales.

computed from (3) to secure the desired level of risk. On the
other hand, in many other problems encountered in practice the
algorithm terminates at an earlier stage and offers a substantial
saving of scenarios as compared to the one-shot approach.

In the next Section III, we provide a first result for comput-
ing N0, N1, . . . , Nd that can be established by a direct use of
previous achievements from [43]. This is done in the interest
of providing a first easy-to-use approach that already captures
all salient aspects of the method. While this first approach
is able to furnish evaluations that are satisfactory in many
applications, an even tighter result can be obtained at the price
of deeper theoretical investigations (and a more cumbersome
implementation) as presented in the following Section IV.

III. SELECTION OF N0,N1, . . . ,Nd

To put our results in place, our discussion starts with a
lemma (Lemma 1) that specifies lower limits (indicated below
by the symbol M̄j) for Nj : owing to fundamental theoretical
limits, any choice of Nj smaller than M̄j cannot attain the
desired result that the risk of the decision x∗ returned by
Algorithm 1 is no more than ε with confidence 1− β.

For a better understanding of the results provided below,
note that Nd is the largest number of scenarios used in the
algorithm so that all random variables involved in the problem
can be seen as being defined over (∆Nd ,DNd ,PNd): this
justifies using PNd to compute the probability of V (x∗) > ε.

Lemma 1: Given a “confidence parameter” β ∈ (0, 1) and
a “reliability parameter” ε ∈ (0, 1), let N0, N1, . . . , Nd be an
instance of the input to Algorithm 1. Under Assumptions 1
and 2, if it holds that PNd{V (x∗) > ε} ≤ β for all P, then it
must hold that Nj ≥ M̄j , where, for j = 1, . . . , d,

M̄j = min

{
N ≥ j :

j−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β

}
, (5)

while M̄0 = M̄1. ?

The proof of Lemma 1 can be found in Appendix A.
Having established the lower bounds M̄j , j = 0, 1, . . . , d,

we are now in a position to state the following theorem, which
provides a valid selection of N0, N1, . . . , Nd. As we shall see
after the theorem, the so-obtained values for Nj do not take
any large margin from M̄j .

Theorem 1: Given a “confidence parameter” β ∈ (0, 1) and
a “reliability parameter” ε ∈ (0, 1), for any j = 0, 1, . . . , d let4

Nj = min

N ≥ M̄j : (6)

β

(d+ 1)(M̄j + 1)

M̄j∑
m=j

(
m

j

)
(1− ε)m−j ≥

(
N

j

)
(1− ε)N−j

 .

Under Assumptions 1 and 2, if these N0, N1, . . . , Nd are used
as input in Algorithm 1, then it holds that PNd{V (x∗) > ε} ≤
β. ?

The proof of Theorem 1 is given in Appendix B.
Figure 1 profiles Nj as given by (6) for two values of ε when

d = 80 and β = 10−6 (blue dots). In the same figure, the solid
line is the value N computed from (3), which is required for
the one-shot scenario problem (1) to guarantee the same level
of risk as for the incremental scheme. Nj marks a gain over
N for most values of j, while it is moderately bigger than N
for values of j close to d (see also Section III-C for a way
of improving the evaluation of Nj near d). Lower bounds M̄j

are also profiled as red crosses.

Remark 1: If one has a problem in dimension j, then one
knows in advance that the complexity of the solution is no
more than j and the value given by the red cross in Figure
1 corresponding to the abscissa j can be applied for an
a priori determination of the number of scenarios. On the
other hand, the number of scenarios given by the blue dot
corresponding to j is sufficient if the corresponding solution
is a posteriori seen to have complexity no more than j.
The relatively small mismatch between the red cross and
the blue dot (this mismatch is further reduced according to
later evaluations provided in Section IV) goes down to the
essence of the approach presented here: exploiting information
collected during the operation of the method levels the possible
advantage that comes from addressing simpler problems. ?

4The definition of Nj is always well-posed because
(N
j

)
(1− ε)N−j → 0

as N →∞.
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A. Computational aspects

The value of Nj given by (6) can be easily computed by
bisection according to the following procedure.

First, check whether it is true that(
M̄j

j

)
(1−ε)M̄j−j ≤ β

(d+ 1)(M̄j + 1)

M̄j∑
m=j

(
m

j

)
(1−ε)m−j .

(7)
If yes, then set Nj = M̄j; otherwise, find Nj in (6)
by running a bisection procedure with M̄j and a
high enough value for N as initial extremes.

In what follows, we provide a justification for this procedure.
First, when j = 0,

(
N
0

)
(1 − ε)N−0 = (1 − ε)N is

decreasing towards 0 and takes value 1 for N = 0, while
β

(d+1)(M̄0+1)

∑M̄0

m=0

(
m
0

)
(1−ε)m−0 ≤ β

(d+1)(M̄0+1)

∑M̄0

m=0(1−
0)m = β

d+1 < 1. Hence, after checking through (7) whether
M̄0 is already the sought solution, N0 can be computed via
bisection with M̄0 and a large enough value as initial extremes.

When instead j = 1, . . . , d, it is easy to see that
(
N
j

)
(1 −

ε)N−j as a function of N , for N ≥ j is first increasing and
then decreasing; moreover,

(
N
j

)
(1 − ε)N−j → 0 as N → ∞.

Denote by Nmax
j the value of N attaining the maximum of(

N
j

)
(1− ε)N−j . Two cases may then arise.

CASE 1] Suppose first that M̄j ≥ Nmax
j so that

(
N
j

)
(1−ε)N−j

is decreasing for N ≥ M̄j . Then, if (7) is satisfied, then the
whole sequence

(
N
j

)
(1 − ε)N−j for N ≥ M̄j lies below the

threshold β
(d+1)(M̄j+1)

∑M̄j

m=j

(
m
j

)
(1 − ε)m−j and the sought

value of Nj coincides with M̄j . Otherwise, if(
M̄j

j

)
(1−ε)M̄j−j >

β

(d+ 1)(M̄j + 1)

M̄j∑
m=j

(
m

j

)
(1−ε)m−j ,

then the sequence
(
N
j

)
(1 − ε)N−j for N ≥ M̄j is initially,

and for a finite number of values of N , above and then,
for all the remaining values of N , below the threshold

β
(d+1)(M̄j+1)

∑M̄j

m=j

(
m
j

)
(1−ε)m−j . Hence, the sought Nj can

be obtained by running the bisection algorithm with M̄j and
a high enough value for N as initial extremes.
CASE 2] Suppose now that M̄j < Nmax

j . In this case, it holds
that

β

(d+ 1)(M̄j + 1)

M̄j∑
m=j

(
m

j

)
(1− ε)m−j

≤ β

(d+ 1)(M̄j + 1)

M̄j∑
m=j

(
M̄j

j

)
(1− ε)M̄j−j

(because
(
m

j

)
(1− ε)m−j is increasing for m ≤ M̄j)

≤
(
M̄j

j

)
(1− ε)M̄j−j

(because β/(d+ 1) < 1).

This means that the sequence
(
N
j

)
(1 − ε)N−j has

its initial value at N = M̄j above the threshold

β
(d+1)(M̄j+1)

∑M̄j

m=j

(
m
j

)
(1 − ε)m−j . Since

(
N
j

)
(1 − ε)N−j

is first increasing and then decreasing to 0 as N → ∞,
this means that the sequence

(
N
j

)
(1 − ε)N−j for N ≥

M̄j is again initially above and then below the threshold
β

(d+1)(M̄j+1)

∑M̄j

m=j

(
m
j

)
(1−ε)m−j and the sought Nj can still

be obtained by bisection with M̄j and a high enough value for
N as initial extremes.

B. An explicit upper bound for Nj

The following theorem, whose proof can be found in
Appendix C, provides some extra insight on the values Nj
given in Theorem 1.

Theorem 2: The values Nj computed according to (6) sat-
isfy the following inequality:

Nj ≤
2

ε

[
j ln

(
2

ε

)
+ ln

(
1

α

)]
+ 1, (8)

where α = min{β, h}, with h := β
(d+1)(M̄j+1)

∑M̄j

m=j

(
m
j

)
(1−

ε)m−j (note that h is the left-hand side of the inequality in
(6)). ?

We hasten to remark that the right-hand side of (8) should
not be used in place of the Nj computed according to (6)
because this would result in a conservative evaluation. Instead,
the importance of equation (8) is firstly that it reveals that Nj
is small for small values of j, with little sensitivity to β and
d (the only term depending on β and d is α, which appears
under the sign of logarithm). Secondly, it allows one to make
a comparison with the following upper bound derived in [6]
for the value of N obtained from (3):

N ≤ 2

ε

[
d+ ln

(
1

β

)]
. (9)

Comparing the right-hand side of (8) with that of (9), one
recognizes the major fact that the number d of optimization
variables in (9) is replaced in formula (8) by j, the iteration
step. This fact is at the basis of the conspicuous saving that
is obtained in the case of early termination.

C. An alternative bound with little penalty on high
complexities

Looking at Figure 1, one can notice a somehow significant
increase of scenarios as compared to the a priori bound
represented by the solid line for values of j larger than
70 (corresponding to “high complexity”), and may wonder
whether this can be avoided. A simple way to do so is
to simultaneously guarantee a sample size adapted to the
complexity, while also keeping the original a priori sample
size, and then pick the most favorable evaluation between
the two depending on the circumstance. To achieve an exact
confidence β, this approach requires to split the confidence by
means of a “trade-off” parameter c ∈ (0, 1) that compromises
between the two bounds: a confidence cβ is assigned to the
complexity-dependent bound, while the confidence (1 − c)β
is assigned to the a priori bound. Along this approach, one
obtains the following theorem.
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Fig. 2: Nj in this section (blue dots) vs. Nj computed
according to (6) (dashed red line); the solid line is the a priori
bound computed according to (3); d = 80, ε = 0.05, and
β = 10−6.

Theorem 3: Given a “confidence parameter” β ∈ (0, 1), a
“reliability parameter” ε ∈ (0, 1), and a “trade-off” parameter
c ∈ (0, 1), let

N̄ = min

{
N :

d−1∑
i=1

(
N

i

)
εi(1− ε)N−i ≤ (1− c)β

}
;

further, for any j = 0, 1, . . . , d let

Ñj = min

N ≥ M̄j :

cβ

(d+ 1)(M̄j + 1)

M̄j∑
m=j

(
m

j

)
(1− ε)m−j ≥

(
N

j

)
(1− ε)N−j

.
Define

Nj = min{Ñj , N̄}.

Under Assumptions 1 and 2, if these N0, N1, . . . , Nd are used
as input in Algorithm 1, then it holds that PNd{V (x∗) > ε} ≤
β. ?

The proof of Theorem 3 is given in Appendix D.
We illustrate the importance of the theorem by choosing

c = 1
2 . With this choice, the obtained Nj takes a small margin

over the old Nj for values of j where Nj = Ñj (this is because
β has been downsized to β/2) to the advantage of getting
close to the a priori bound for large values of the complexity
j. Figure 2 considers again the same situation as case (b) in
Figure 1: the beneficial effects of the approach of this section
are clearly visible for large complexity values (j > 70).

IV. A REFINED APPROACH TO SELECT N0,N1, . . . ,Nd

In this section we present a way to compute N0, N1, . . . , Nd
that outdoes the result of Section III at the price of a more
complicated procedure, as outlined below in Algorithm 2.
One may particularly want to resort to the algorithm in this
section when the gap between Nj as computed from (6) and
the lower bound M̄j in (5) turns out to be large, so leaving
room for improvement. In Algorithm 2, [·]+ denotes positive

part, i.e., [x]+ = x when x ≥ 0 and [x]+ = 0 otherwise.

Algorithm 2:

input = β ∈ (0, 1), ε ∈ (0, 1); output = N0, N1, . . . , Nd.

0. Set λd,d := β
M̄d+1

and compute

N ′d = min

N ≥ M̄d :

λd,d

M̄d∑
m=d

(
m

d

)
(1− ε)m−d ≥

(
N

d

)
(1− ε)N−d

 .

1. FOR k = d− 1, d− 2, . . . , 0
execute the following steps 1.1, 1.2, 1.3.

1.1. Set λk,d := β
M̄d+1

.
1.2. FOR j = d, d− 1, . . . , k + 1

execute the following steps 1.2.1, 1.2.2, 1.2.3.
1.2.1. Set µk,j :=[(N′j

k

)
(1− ε)N

′
j−k − λk,j

∑M̄j

m=M̄j−1+1

(m
k

)
(1− ε)m−k

]
+

λk,j
∑M̄j−1

m=k

(m
k

)
(1− ε)m−k

.

1.2.2. IF µk,j ≥ 1 THEN halt the algorithm and
RETURN an error code.

1.2.3. Set λk,j−1 := (1− µk,j)λk,j .
1.3. Compute

N ′k = min

N ≥ M̄k :

λk,k

M̄k∑
m=k

(
m

k

)
(1− ε)m−k ≥

(
N

k

)
(1− ε)N−k

 .

2. Set N0 := N ′0. FOR k = 1, 2, . . . , d
IF N ′k < Nk−1 THEN set Nk := Nk−1 ELSE set
Nk := N ′k.

3. RETURN N0, N1, . . . , Nd. ?

The somewhat complicated structure of Algorithm 2 finds
its motivation in the proof of Theorem 4 and the reader who
wants to understand the motivation of the various steps is
referred to the proof of this theorem for details.

Remark 2: Step 1.2.2 implements a termination with error.
The reason for issuing an error is that, when µk,j ≥ 1, step
1.2.3 gives a negative value for λk,j−1 and this makes it
impossible to satisfy equation (33) or equation (34) in the
proof of Theorem 4. While in all trials that we have performed
the algorithm has never terminated with an error, it is at
present an open question whether condition µk,j ≥ 1 can
indeed happen. Importantly, if it happens, Algorithm 2 does
not help find improved values for N0, N1, . . . , Nd, but one
can still resort to equation (6) for a valid determination of
N0, N1, . . . , Nd.

Remark 3 (Numerical computation of N ′k in step 1.3):
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Upon entering step 1.3 it holds that µk,j < 1 for all
j = k, . . . , d, so that, given steps 1.1 and 1.2.3, one has
λk,k ≤ β

M̄d+1
. Then, one can repeat, mutatis mutandis, the

argument given in Section III-A to show that N ′k in step 1.3
can be always computed by a standard bisection algorithm
with M̄k and a higher enough value for N as extremes. We
also note here for subsequent use that the same argument
given in Section III-A gives that the sequence

(
N
k

)
(1− ε)N−k

for N ≥ N ′k is decreasing. Hence,(
Nk
k

)
(1− ε)Nk−k ≤

(
N ′k
k

)
(1− ε)N

′
k−k, (10)

since Nk ≥ N ′k by definition (step 2). ?

The following theorem formally states the properties of the
solution returned by Algorithm 1 when N0, N1, . . . , Nd are
obtained from Algorithm 2.

Theorem 4: Given a “confidence parameter” β ∈ (0, 1) and
a reliability parameter ε ∈ (0, 1), let Nj , j = 0, 1, . . . , d, be
the values returned by Algorithm 2, assuming that it comes
to termination without error. Under Assumptions 1 and 2, if
these N0, N1, . . . , Nd are used as input in Algorithm 1, then
it holds that PNd{V (x∗) > ε} ≤ β. ?

The proof of Theorem 4 is given in Appendix E.
Figure 3 depicts the Nj’s returned by Algorithm 2 for the

same values of d, ε and β considered in Figure 1. For the sake
of comparison, in the plots we have also reported the values
of Nj computed according to (6), besides the lower bounds
M̄j and the value of N computed from (3). The margin taken
by N0, N1, . . . , Nd given by Algorithm 2 with respect to the
unsurmountable lower bound given by the M̄j’s is about two
thirds the margin taken by N0, N1, . . . , Nd computed from
(6). It has also to be noted that the same reasoning as in
Section III-C can be adopted in this context to reduce the
sample complexity for values of j close to d.

V. CONTROL OF A FOUR-MASS, FOUR-SPRING SYSTEM

We consider a finite-horizon optimal control problem taken
from [48], which in turn was inspired by an example in [49].
The time horizon is 5s and the optimal control problem can be
thought of as one step of an MPC - Model Predictive Control
- procedure. The study is conducted in silico, which allows
us to compute the actual risk of the solution (because all
probabilities are known) and hence confirm the validity of
the theorems; moreover, we shall be able to provide multiple
runs to empirically compute the distribution of the number of
employed scenarios.

The mechanical system in Figure 4 is composed by four
masses and four springs. The system state is an 8-dimensional
vector ξ = [d1 d2 d3 d4 ḋ1 ḋ2 ḋ3 ḋ4]T , where d1, d2, d3

and d4 are the displacements from the nominal positions l̄1,
l̄2, l̄3 and l̄4 of the masses at equilibrium for zero input, and
the dot symbol denotes time-derivative. The control input is
u = [u1, u2, u3]T , where u1, u2 and u3 are forces acting on
the masses as shown in Figure 4. All masses and stiffness
constants are set to value 1.
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(a) d = 80, ε = 0.1, and β = 10−6.
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(b) d = 80, ε = 0.05, and β = 10−6.

Fig. 3: Nj computed according to Algorithm 2 (magenta
circles) vs Nj computed according to (6) (blue dots). The
figure also represents M̄j (red crosses) and the value of N
computed according to (3) (solid black line). Note that the
y-axes in the two plots have different scales.

Fig. 4: Scheme of the mechanical system (l̄1, l̄2, l̄3, l̄4 are the
nominal positions of the masses).

The control action is actuated by a ZOH - zero-order
hold - and it is constant over the sampling time of 1s. The
corresponding discrete-time dynamics is

ξt+1 = Aξt +But +Dwt,

where

A =



0.19 0.35 0.03 0.00 0.71 0.14 0.01 0.00
0.35 0.22 0.35 0.04 0.14 0.71 0.14 0.01
0.03 0.35 0.23 0.39 0.01 0.14 0.71 0.14
0.00 0.04 0.39 0.58 0.00 0.01 0.14 0.85
−1.28 0.44 0.12 0.01 0.19 0.35 0.03 0.00

0.44 −1.15 0.45 0.13 0.35 0.22 0.35 0.04
0.12 0.45 −1.15 0.57 0.03 0.35 0.23 0.39
0.01 0.13 0.57 −0.71 0.00 0.04 0.39 0.58

 ,
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B =



0.39 0.00 −0.04
−0.39 0.04 −0.42
−0.04 0.39 −0.04
−0.00 −0.42 −0.00

0.57 0.01 −0.14
−0.58 0.13 −0.71
−0.13 0.57 −0.14
−0.01 −0.71 −0.01

 ,

and Dwt models an additional stochastic disturbance on the
system with wt a bivariate process and

D =
[
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

]T
,

which means that the external disturbance affects the fourth
mass only. See [48] for more details on this model.

By reconstructing the disturbance from the state according
to

wt = D†(ξt+1 −Aξt −But),

where D† is the pseudo-inverse of D, the following
parametrization (first proposed in [50]) of the control action
as an affine function of the disturbance is adopted

ut = γt +
t−1∑
τ=0

θt,τwτ , (11)

where γt ∈ R3 and θt,τ ∈ R3×2 are optimization variables.
Parametrization (11) has the advantage of making ut and ξt
linear functions of γt and θt,τ .

The system is initially at rest, that is, ξ0 = 0. Assuming
that N realizations of the disturbance5 over the time horizon
0 to 4 are available, say w(i)

0 , w
(i)
1 , . . . , w

(i)
4 , i = 1, . . . , N , the

control parameters γt and θt,τ are designed according to the
following scenario problem:

min
hS ,hC ,γt,θt,τ
t=0,...,4,
τ=0,...,t−1

hS + hC + 0.1

√√√√ 4∑
t=0

‖γt‖2 + 0.1

√√√√ 4∑
t=0

t−1∑
τ=0

‖θt,τ‖2

subject to:




ξ

(i)
0 = 0

ξ
(i)
t+1 = Aξ

(i)
t +Bu

(i)
t +Dw

(i)
t

u
(i)
t = γt +

t−1∑
τ=0

θt,τw
(i)
τ ,

t = 0, 1, 2, 3, 4

maxt=1,...,5 ‖ξ(i)
t ‖∞ ≤ hS

maxt=1,...,5 ‖Cξ(i)
t ‖∞ ≤ hC

maxt=1,...,5 ‖u(i)
t−1‖∞ ≤ 1,

i = 1, . . . , N

(12)

where

C =

 1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0

 ,
and ξ

(i)
t and u

(i)
t−1 are the state and the control input

corresponding to the i-th realization of the disturbance
w

(i)
0 , w

(i)
1 , . . . , w

(i)
4 . The interpretation of (12) is as follows:

5For reproducibility, we inform the reader that wt is taken as a bi-variate
white Gaussian noise with zero mean and covariance matrix I2×2; however,
the method developed in this paper does not use this information.

hS is an upper bound on the displacement of the masses from
their nominal position and hC is an upper bound on the spring
deformations (note that Cξ(i)

t = [d
(i)
1,t d

(i)
2,t − d

(i)
1,t d

(i)
3,t −

d
(i)
2,t d

(i)
4,t−d

(i)
3,t]

T are indeed spring deformations); hence, one
wants to keep the masses close to their nominal position and
avoid an over-deformation of the springs; the last constraint
in (12) sets a saturation limit on the control action; finally,
the terms under square root are regularization terms that help
keep the coefficients of the control parametrization small.

Note that (12) has the same structure as the problem in (1)
with δi = (w

(i)
0 , w

(i)
1 , . . . , w

(i)
4 ) and the optimization variable

x formed by the two parameters hS , hC and the coefficients
that define the feedback control law, i.e., γt, θt,τ , t = 0, . . . , 4,
τ = 0, . . . , t−1. Since ξt and ut depend linearly on γt and θt,τ ,
problem (12) is convex (in fact, a second-order cone program)
and can be easily solved by standard software.

The total number of optimization variables that are present
in (12) is d = 77 and, selecting ε = 5% and β = 10−6,
an application of (3) gives N = 2498; this is the number of
scenarios that are needed for the one-shot solution of (12) to
have a risk of violating the constraints for a new realization
of the disturbance below 5% with high confidence 1− 10−6.
In order to reduce the number of scenarios, Algorithm 1
was applied to problem (12) with N0, N1, . . . , N77 given by
Algorithm 2; since Algorithm 1 has a stochastic termination
rule, for a better appreciation of the performances this test was
repeated 300 times. In all trials, the solution had a risk below
5%, as expected owing to the high confidence enforced. Upon
termination, the number of scenarios employed by Algorithm 1
was on average equal to 1107 and, in all runs, less than 1295.
Figure 5 depicts the complete histogram of the numbers of
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Fig. 5: Histogram of the number of scenarios used in 300 runs
of Algorithm 1.

scenarios used in the various runs, where the red line indicates
the sample size needed for the one-shot approach.

VI. CONCLUSIONS

Making decisions in an uncertain world always implies
some level of risk and any scientific theory of decision-
making must incorporate assessments of the probability with
which shortfalls or undesired events can occur. In recent years,
the scenario approach has thrived as a general methodology
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to address this issue where rigorous evaluations of the risk
can be formulated a posteriori based on known elements
of the decision process. The present paper moves a new
fundamental step within the scenario framework by reversing
this perspective: one declares a desired level of risk and the
algorithms here developed drive the observational effort to
meet the indicated risk level while using a minimum amount
of resources. To this end, the complexity of the solution is
used as a dependable beacon that provides indications on the
incurred risk without resorting to extra validation data sets.
While deep in nature, this result also furnishes tools to save
data in all practical problems where data are a limited and
costly resource.

APPENDIX

A. Proof of Lemma 1

To prove that any feasible choice of Nj must satisfy the
condition Nj ≥ M̄j , we start by considering a fully-supported
problem in dimension j (j ≤ d) with decision variable
x ∈ X ⊆ Rj , cost function c̄(x) and scenario constraints
x ∈ X̄δi , i = 1, . . . , N . For any problem of this type, the
risk V (x∗N ) exceeds ε with probability

∑j−1
i=0

(
N
i

)
εi(1−ε)N−i

(refer to (2)); consequently, M̄j , by its very definition, is the
minimum possible number of scenarios that is required for
the fully-supported problem in dimension j to secure that
the risk of its solution is no more than ε with confidence
1 − β. Next, we “embed” the fully-supported problem into
an augmented d-dimensional problem defined as follows:
the decision variables are (x1, . . . , xj , xj+1, . . . , xd) ∈ X ×
[0,∞)d−j (X is as before), the cost function is defined as
c̄(x1, . . . , xj)+

∑d−j
`=1 xj+` (c̄(·) is as before), and the scenario

constraints are as before, i.e., they do not constrain the new
d − j variables xj+1, xj+2, . . . , xd, which, therefore, at the
optimum are set to zero to avoid an increase in the cost
value. Owing to the “dummy” nature of the new variables
xj+1, xj+2, . . . , xd, it is easy to see that: the number of
support constraints of the augmented problem remains equal
to j with probability one; the probability that the risk exceeds
ε equals

∑j−1
i=0

(
N
i

)
εi(1− ε)N−i as before; hence, M̄j is still

the minimum possible number of scenarios guaranteeing that
the risk of the solution is no more than ε with confidence 1−β.
It is then clear that when the incremental scenario algorithm is
applied to one of these augmented fully-supported problems, it
will stop with probability one at the j-th iteration and it must
be that Nj ≥ M̄j , j = 1, . . . , d, in order to obtain V (x∗) ≤ ε
with confidence 1− β.

We finally show the very last assertion in the lemma
which is that N0 cannot be smaller than M̄0 = M̄1 =
min

{
N ≥ 1 : (1− ε)N ≤ β

}
. To this purpose consider the

following scenario problem (as before, x2, . . . , xd are dummy
variables and they are introduced to embed the problem in a
generic dimension d):

min
x1≥0,...,xd≥0

d∑
`=1

x`

subject to: x1 ≥ δi, i = 1, . . . , N,

where δ is uniformly distributed over the interval [ε + ϑ −
1, ε + ϑ], 0 < ϑ ≤ 1 − ε, and suppose we run Algorithm 1
for this problem. We then have (the symbol ∧ denotes logical
conjunction)

PNd{V (x∗) > ε}
≥ PN0{V (x∗N0

) > ε ∧ s∗N0
= 0}

= PN0{V (x∗N0
) > ε ∧ x∗N0

= 0}
(because, with probability 1,
s∗N0

= 0 if and only if x∗N0
= 0)

= PN0{x∗N0
= 0}

(because V (0) = P{δ > 0} = ε+ ϑ > ε)

= PN0{δi ≤ 0, i = 1, . . . , N0}
= (1− ε− ϑ)N0 .

Hence, in order to have PNd{V (x∗) > ε} ≤ β, it must be that
(1− ε−ϑ)N0 ≤ β and, since this must hold for all ϑ > 0, we
conclude that N0 ≥ M̄0.

Thus, altogether, it remains proven that M̄j lower bounds
any feasible value of Nj for every j = 0, 1, . . . , d. �

B. Proof of Theorem 1
Since Algorithm 1 stops and returns x∗ = x∗Nj the first

time that s∗Nj ≤ j, condition V (x∗) > ε occurs if and only
if, for some j, it holds that: s∗N` > ` for ` < j; s∗Nj ≤
j; and V (x∗Nj ) > ε. Thus, we have (∧ denotes the logical
conjunction):

PNd{V (x∗) > ε}
= PN0{s∗N0

≤ 0∧ V (x∗N0
) > ε}

+ PN1{s∗N0
> 0 ∧ s∗N1

≤ 1 ∧ V (x∗N1
) > ε}

+ . . .

+ PNj{s∗N0
> 0 ∧ . . . ∧ s∗Nj−1

> j − 1 ∧ s∗Nj
≤ j ∧ V (x∗Nj

) > ε}
+ . . .

+ PNd{s∗N0
> 0∧ . . . ∧ s∗Nd−1

> d− 1 ∧ s∗Nd
≤ d ∧ V (x∗Nd

) > ε}

≤
d∑
j=0

PNj{s∗Nj
≤ j ∧ V (x∗Nj

) > ε}

(where condition s∗N0
> 0 ∧ . . . ∧ s∗Nj−1

> j − 1

has been suppressed)

=

d∑
j=0

j∑
k=0

PNj{s∗Nj
= k ∧ V (x∗Nj

) > ε}. (13)

Since we want next to apply Theorem 1 in [43], we are well
advised to operate a change of notation as follows: let ε̄(k) = ε
for k ≤ j and ε̄(k) = 1 for k > j and re-write the inner sum
in the last expression as follows

j∑
k=0

PNj{s∗Nj = k ∧ V (x∗Nj ) > ε}

=
d∑
k=0

PNj{s∗Nj = k ∧ V (x∗Nj ) > ε̄(k)}

= PNj{V (x∗Nj ) > ε̄(s∗Nj )}. (14)
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Now, applying Theorem 1 in [43] to the right-hand side of
(14) yields

PNj{V (x∗Nj ) > ε̄(s∗Nj )} ≤ γ
∗
j , (15)

where γ∗j is obtained as the solution of the following varia-
tional problem (Cd[0, 1] is the space of continuous functions
with continuous derivatives up to order d and d0

dt0 ξ(t) has to
be interpreted as ξ(t); moreover, 1S is the indicator function:
1S(t) = 1 if t ∈ S and 1S(t) = 0 otherwise):

γ∗j = inf
ξ(·)∈Cd[0,1]

ξ(1) (16)

subject to:
1

k!

dk

dtk
ξ(t) ≥

(
Nj
k

)
tNj−k · 1[0,1−ε)(t), t ∈ [0, 1],

k = 0, 1, . . . , j,

1

k!

dk

dtk
ξ(t) ≥ 0, t ∈ [0, 1],

k = j + 1, . . . , d.

Our goal is to show that, for each j = 0, 1, . . . , d, γ∗j ≤
β
d+1 ,

so that, using (15) in (14) and, in turn, (14) in (13), one obtains

PNd{V (x∗) > ε} ≤
d∑
j=0

γ∗j ≤
d∑
j=0

β

d+ 1
= β, (17)

which is the statement of the theorem.
Fix a value of j ∈ {0, 1, . . . , d} and consider problem (16).

We shall show that function ξ̄(t) = β
(d+1)(M̄j+1)

∑M̄j

m=0 t
m is

feasible for (16); since

ξ̄(1) =
β

(d+ 1)(M̄j + 1)

M̄j∑
m=0

1 =
β

d+ 1
, (18)

this indeed implies that the optimal value γ∗j is no larger than
β
d+1 , which is the sought conclusion.

To show that ξ̄(t) is feasible, note first that

1

k!

dk

dtk
ξ̄(t) =

β

(d+ 1)(M̄j + 1)

M̄j∑
m=k

(
m

k

)
tm−k,

which is non-negative in [0, 1] for all k, showing that all of
the constraints in (16) for k = j + 1, . . . , d are satisfied.

Next consider the constraint for k = j, whose validity can
be checked by evaluating for which t the inequality

1

j!

dj

dtj
ξ̄(t) =

β

(d+ 1)(M̄j + 1)

M̄j∑
m=j

(
m

j

)
tm−j ≥

(
Nj
j

)
tNj−j

(19)
holds true. Given the definition of Nj in (6), we have that

β

(d+ 1)(M̄j + 1)

M̄j∑
m=j

(
m

j

)
(1− ε)m−j ≥

(
Nj
j

)
(1− ε)Nj−j ,

and, applying Lemma 2 in Appendix F with αm =
β

(d+1)(M̄j+1)
for all m, we obtain that the inequality (19) is

verified over the interval [0, 1− ε). That is, the constraint for
k = j in (16) is satisfied.

The validity of the constraints in (16) for k = j − 1, j −
2, . . . , 0 is now checked by induction. Recalling the definition
of ξ̄(t), we have that

1

(k − 1)!

dk−1

dtk−1
ξ̄(t)

= k ·
[

1

k!

dk

dtk
ξ̄(0) +

∫ t

0

1

k!

dk

dtk
ξ̄(τ)dτ

]
≥ k ·

∫ t

0

1

k!

dk

dtk
ξ̄(τ)dτ

(where term
1

k!

dk

dtk
ξ̄(0), which is non-negative,

has been dropped)

≥ k ·
∫ t

0

(
Nj
k

)
τNj−k · 1[0,1−ε)(τ)dτ

(where we have used the inductive
assumption valid for k)

≥
(
Nj
k − 1

)
tNj−k+1 · 1[0,1−ε)(t),

which closes the induction step from k to k − 1.
This concludes the proof. �

C. Proof of Theorem 2
Let N̄ be any integer such that

N̄ ≥ 2

ε

[
j ln

(
2

ε

)
+ ln

(
1

α

)]
, (20)

which is equivalent to

α ≥
(

2

ε

)j
e−

ε
2 N̄ . (21)

Note that(
2

ε

)j
e−

ε
2 N̄

≥
(

2

ε

)j (
1− ε

2

)N̄
(because 1− ε

2
is the tangent at ε = 0 of e−

ε
2 )

=

(
2

ε

)j N̄∑
r=0

(
N̄

r

)( ε
2

)r
(1− ε)N̄−r

≥
(
N̄

j

)
(1− ε)N̄−j ,

which, combined with (21), gives

α ≥
(
N̄

j

)
(1− ε)N̄−j .

Recalling that h ≥ α, one then obtains h ≥
(
N̄
j

)
(1 − ε)N̄−j ,

which proves that N̄ satisfies the inequality in (6).
Further, β ≥ α used in (20) gives

N̄ ≥ 2

ε

[
j ln

(
2

ε

)
+ ln

(
1

β

)]
≥ 2

ε

[
j + ln

(
1

β

)]
,

which, in view of the result in [6], suffices for the condition∑j−1
i=0

(
N̄
i

)
εi(1−ε)N̄−i ≤ β that appears in the right-hand side
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of (5) to hold, so that N̄ ≥Mj .
In conclusion, any N̄ satisfying (20) is in the set defined in
the right-hand side of (6) and this proves (8). �

D. Proof of Theorem 3
We preliminarily observe that the Ñj are computed from

(6) with cβ in place of β, while N̄ is obtained by downsizing
β to (1 − c)β in (3). Let x̃∗ be the solution returned by
Algorithm 1 with Ñj in place of Nj and denote by x̄∗ the
solution to (1) with N = N̄ . When Algorithm 1 is run with
Nj = min{Ñj , N̄}, we have that x∗ is either equal to x̃∗ or
x̄∗. Hence,

V (x∗) > ε =⇒ V (x̃∗) > ε or V (x̄∗) > ε.

This gives

PNd{V (x∗) > ε} ≤ PNd{V (x̃∗) > ε or V (x̄∗) > ε}
≤ PNd{V (x̃∗) > ε}+ PNd{V (x̄∗) > ε}
≤ cβ + (1− c)β = β.

�

E. Proof of Theorem 4
Proceeding as in the first part of the proof of Theorem 1

one obtains

PNd{V (x∗) > ε}

≤
d∑
j=0

j∑
k=0

PNj{s∗Nj = k ∧ V (x∗Nj ) > ε}, (22)

which is the same as (13).
To help the reader, we first outline informally the reasoning

in the proof. Similarly to the proof of Theorem 1, we want
to ensure that the sum (22) is smaller than β for the chosen
values of Nj ; here, however, we will take into account the
mutual dependencies between the (d + 1)(j + 1) terms that
appear in the sum, with the aim of obtaining a more refined
evaluation of (22) than that of Theorem 1. Thus, the terms in
(22) are preliminarily expressed by means of some common
generalized distribution functions, which serve the role of a
“representation basis” that must satisfy certain structural con-
straints. A tight bound to (22) is then obtained by maximizing
the value of (22) subject to these constraints. While this is
the conceptual backbone of the proof, the largest part of it
(from equation (28) onward) consists of tackling the ensuing
maximization problem by means of relaxation and dualization
– see equations (28) and (29) – and then showing by a direct
calculation that (22) is smaller than β.

To continue the proof, note that, for any j and k, the event
Sj,k := {s∗Nj = k ∧ V (x∗Nj ) > ε} can be expressed as the
union of sets Aj,(i1,...,ik) := {s∗Nj = k ∧ V (x∗Nj ) > ε∧ the
support constraints have indexes (i1, . . . , ik)} for (i1, . . . , ik)
ranging over all possible combinations of k indexes from
{1, . . . , Nj}.6 Since the sets Aj,(i1,...,ik) are disjoint and have
all equal probability because of the i.i.d. assumption, we get

PNj{Sj,k} =

(
Nj
k

)
PNj{Aj,(1,...,k)}. (23)

6For k = 0, (i1, . . . , ik) becomes the empty list and Aj,(i1,...,ik) = Sj,k .

Next, for k = 0, 1, . . . , d, let x∗k be the solution to (1)
when only the first k constraints are in place (the remaining
Nj − k are instead removed) and let s∗k be the corresponding
number of support constraints. It is an intuitive fact that
PNj{Aj,(1,...,k)} = PNj{s∗k = k∧V (x∗k) > ε ∧ the constraints
with indexes (k + 1, . . . , Nj) are satisfied by x∗k} (a formal
proof of this fact is given in Section 5.1.1 of [43]). Since
the conditional probability that the constraints with indexes
k + 1, k + 2, . . . , Nj are satisfied under the condition that
V (x∗k) = v is (1− v)Nj−k, by introducing the functions

Fk(v) = Pk{V (x∗k) ≤ v ∧ s∗k = k},

(Fk(v) are generalized distribution functions, see [43]) we can
write

PNj{Aj,(1,...,k)} =

∫
(ε,1]

(1− v)Nj−kdFk(v). (24)

Putting (24), (23) and (22) together, we now have

PNd{V (x∗) > ε}

≤
d∑
j=0

j∑
k=0

(
Nj
k

)∫
(ε,1]

(1− v)Nj−kdFk(v)

=
d∑
k=0

d∑
j=k

(
Nj
k

)∫
(ε,1]

(1− v)Nj−kdFk(v)

(where we have changed the order in which
summations are performed)

=
d∑
k=0

∫
(ε,1]

d∑
j=k

(
Nj
k

)
(1− v)Nj−kdFk(v). (25)

The generalized distribution functions Fk(v) depend on the
problem at hand. Nevertheless, for any problem, they must
obey for any m = 0, 1, 2, . . . the following equation

min{m,d}∑
k=0

(
m

k

)∫
[0,1]

(1− v)m−kdFk(v) = 1. (26)

It is indeed easy to show that the left-hand side of (26)
is equal to Pm{V (x∗m) ∈ [0, 1]}, which is the probability of
an event that is always satisfied (see [43, Equation (18)] for
further details).

In view of the universal validity of (26), when establishing
upper bounds to (25) we can work under the condition that
equations (26) hold for all m. In more formal terms, we write

PNd{V (x∗) > ε} ≤ γ,

where

γ = sup
F0,F1,...,Fd

d∑
k=0

∫
(ε,1]

d∑
j=k

(
Nj
k

)
(1− v)Nj−kdFk(v) (27)

subject to:
min{m,d}∑
k=0

(
m

k

)∫
[0,1]

(1− v)m−kdFk(v) = 1,

m = 0, 1, 2, . . . .
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To proceed, we truncate the infinitely many constraints in (27)
to the first M̄d and let

γM̄d
= sup
F0,F1,...,Fd

d∑
k=0

∫
(ε,1]

d∑
j=k

(
Nj
k

)
(1− v)Nj−kdFk(v) (28)

subject to:
min{m,d}∑
k=0

(
m

k

)∫
[0,1]

(1− v)m−kdFk(v) = 1,

m = 0, 1, . . . , M̄d.

Since (28) is less constrained than (27), it holds that γ ≤ γM̄d
,

∀M̄d.
Standard manipulations further show that dual of Problem

(28) is

γ∗M̄d
= inf
ξ(·)∈PM̄d

ξ(1) (29)

subject to:
1

k!

dk

dtk
ξ(t) ≥

d∑
j=k

(
Nj
k

)
tNj−k·1[0,1−ε)(t), t ∈ [0, 1],

k = 0, 1, . . . , d,

where d0

dt0 ξ(t) has to be meant as ξ(t) and PM̄d
is the class of

polynomials of order M̄d. Moreover, thanks to weak duality
the optimal value γ∗

M̄d
of the dual problem is no smaller than

the optimal value of the primal, which yields

PNd{V (x∗) > ε} ≤ γ∗M̄d
.

Next, we want to upper-bound γ∗
M̄d

. Consider the function

ξ̄(t) = β
M̄d+1

∑M̄d

m=0 t
m. If we succeed in showing that ξ̄(t)

is feasible for problem (29), this concludes the proof because
we then have

PNd{V (x∗) > ε} ≤ γ∗M̄d
≤ ξ̄(1) =

β

M̄d + 1

M̄d∑
m=0

1m = β.

(30)
To show the feasibility of ξ̄(t), note first that

1

k!

dk

dtk
ξ̄(t) =

β

M̄d + 1

M̄d∑
m=k

(
m

k

)
tm−k. (31)

Let k be any number in {0, 1, ..., d}. Given the definition of
λk,j−1 in step 1.2.3 of Algorithm 2, it holds that λk,j−1 +
µk,j · λk,j = λk,j . Moreover, λk,d = β

M̄d+1
(see step 1.1).

This allows one to rewrite 1
k!

dk

dtk
ξ̄(t) in (31) as follows:

1

k!

dk

dtk
ξ̄(t)

= λk,d

M̄d∑
m=k

(
m

k

)
tm−k

= λk,d

M̄d−1∑
m=k

(
m

k

)
tm−k + λk,d

M̄d∑
m=M̄d−1+1

(
m

k

)
tm−k

= (λk,d−1 + µk,d · λk,d)

M̄d−1∑
m=k

(
m

k

)
tm−k

+ λk,d

M̄d∑
m=M̄d−1+1

(
m

k

)
tm−k

= λk,d−1

M̄d−1∑
m=k

(
m

k

)
tm−k

+

µk,d · λk,d M̄d−1∑
m=k

(
m

k

)
tm−k + λk,d

M̄d∑
m=M̄d−1+1

(
m

k

)
tm−k


= (λk,d−2 + µk,d−1 · λk,d−1)

M̄d−2∑
m=k

(
m

k

)
tm−k

+ λk,d−1

M̄d−1∑
m=M̄d−2+1

(
m

k

)
tm−k

+

µk,d · λk,d M̄d−1∑
m=k

(
m

k

)
tm−k + λk,d

M̄d∑
m=M̄d−1+1

(
m

k

)
tm−k


= · · ·

= λk,k

M̄k∑
m=k

(
m

k

)
tm−k

+

d∑
j=k+1

µk,j · λk,jM̄j−1∑
m=k

(
m

k

)
tm−k + λk,j

M̄j∑
m=M̄j−1+1

(
m

k

)
tm−k

.
(32)

Given the definition of N ′k in step 1.3 of Algorithm 2, the
definition of Nk in step 2, and considering that

(
Nk
k

)
(1 −

ε)Nk−k ≤
(
N ′k
k

)
(1 − ε)N ′k−k (see equation (10)), it holds that

Nk ≥ M̄k and that

λk,k

M̄k∑
m=k

(
m

k

)
(1− ε)m−k ≥

(
Nk
k

)
(1− ε)Nk−k.

Hence, an application of Lemma 2 with αm = λk,k for all m
gives that

λk,k

M̄k∑
m=k

(
m

k

)
tm−k ≥

(
Nk
k

)
tNk−k (33)

for 0 ≤ t ≤ 1− ε. Similarly, for j = k+ 1, . . . , d, by the very
definition of µk,j , it holds that

µk,j · λk,j
M̄j−1∑
m=k

(
m

k

)
(1− ε)m−k + λk,j

M̄j∑
m=M̄j−1+1

(
m

k

)
(1− ε)m−k

≥
(
N ′j
k

)
(1− ε)N

′
j−k, (34)

which, along with the fact that
(
Nj
k

)
(1− ε)Nj−k ≤

(N ′j
k

)
(1−

ε)N
′
j−k (see equation (10)), gives that

µk,j · λk,j
M̄j−1∑
m=k

(
m

k

)
(1− ε)m−k + λk,j

M̄j∑
m=M̄j−1+1

(
m

k

)
(1− ε)m−k

≥
(
Nj
k

)
(1− ε)Nj−k.

Since Nj ≥ N ′j ≥ M̄j , applying Lemma 2 with αm = µk,j ·
λk,j for m = k, . . . ,Mj−1 and αm = λk,j for m = M̄j−1 +
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1, . . . , M̄j yields that

µk,j · λk,j
M̄j−1∑
m=k

(
m

k

)
tm−k + λk,j

M̄j∑
m=M̄j−1+1

(
m

k

)
tm−k

≥
(
Nj
k

)
tNj−k (35)

for 0 ≤ t ≤ 1− ε. Thus, using (33) and (35) to bound one by
one the terms in the right-hand side of (32) finally gives

1

k!

dk

dtk
ξ̄(t) ≥

d∑
j=k

(
Nj
k

)
tNj−k

for 0 ≤ t ≤ 1 − ε, k = 0, 1, . . . , d. This means that ξ̄(t) is
feasible for (29), which proves the theorem in the light of (30).

�

F. Auxiliary lemma

Lemma 2: For given integers j ≥ 0, M̄ ≥ j and N̄ ≥ M̄ ,
for given t̄ ∈ [0,+∞) and for given coefficients αm ∈ [0, 1),
m = j, j + 1, . . . , M̄ , suppose that

M̄∑
m=j

αm

(
m

j

)
t̄m−j ≥

(
N̄

j

)
t̄N̄−j . (36)

Then, it holds that

M̄∑
m=j

αm

(
m

j

)
tm−j ≥

(
N̄

j

)
tN̄−j (37)

for all t ∈ [0, t̄].

Proof: In order for (36) to hold, it cannot be that j =
M̄ = N̄ . Hence, the ratio∑M̄

m=j αm
(
m
j

)
tm−j(

N̄
j

)
tN̄−j

=
M̄∑
m=j

αm

(
m
j

)(
N̄
j

) 1

tN̄−m

is a strictly decreasing function that tends to +∞ for t→ 0
and that, for t→∞, tends either to αM̄ < 1 (if M̄ = N̄ ) or
to 0 (if M̄ < N̄ ). This yields that inequality (37) is satisfied
over an interval of the type [0, t′], which for sure includes [0, t̄]
because of (36).
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models with universal reliability,” Automatica, vol. 110, p. 108542, 2019.

[15] L. G. Crespo, D. P. Giesy, and S. P. Kenny, “A scenario optimization
approach to system identification with reliability guarantees,” in Pro-
ceedings of the Americal Control Conference, 2019, pp. 2100–2106.

[16] C. Wang, C. Shang, F. Yang, D. Huang, and B. Yu, “Robust interval
prediction model identification with a posteriori reliability guarantee,”
in Proceedings of the 21th IFAC World Congress, Berlin, Germany, 2020.

[17] M. C. Campi, “Classification with guaranteed probability of error,”
Machine Learning, vol. 80, pp. 63–84, 2010.
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