A study on majority-voting classifiers with guarantees on the probability of error

> Algo Carè (speaker) Marco C. Campi Federico A. Ramponi Università degli Studi di Brescia (IT)

> > Simone Garatti Politecnico di Milano (IT)

A.T.J. Roy Cobbenhagen University of Technology, Eindhoven (NL)

Classification

$$\mathbf{x} \in \mathbb{R}^n$$
: object (*n* features)
 $y \in \{1, \mathbf{0}\}$: true class

$\hat{y}(\cdot) : \mathbb{R}^n \to \{1, 0\}$ classifier

$\hat{y}(x) \neq y$

Probability of Error

$$(x, y) \sim \mathbb{P} \quad \text{Unknown!} \\ PE(\hat{y}) := \mathbb{P}\{\hat{y}(x) \neq y\}$$

$$S = \{ (x_1, y_1), \dots, (x_N, y_N) \} \text{ i.i.d.}$$

check: $\hat{y}(x_i) \neq y_i$
conclude: $PE(\hat{y}) \leq \hat{\epsilon}(S)$

unless $S \in$ "Unlucky set", where \mathbb{P}^N ("Unlucky set") < β

Typical workflow

$$T = \{(x_1, y_1), \dots, (x_N, y_N)\}$$

 $\hat{y}(\cdot)$ trained on T

 $S = \{ (\mathbf{x}_{N+1}, y_{N+1}), \dots, (x_{N+K}, y_{N+K}) \} \text{ i.i.d.}$ check: $\hat{y}(x_{N+i}) \neq y_{N+i}$ conclude: $PE(\hat{y}) \leq \hat{\epsilon}(S)$

unless $S \in$ "Unlucky set", where $\mathbb{P}^{K}($ "Unlucky set") < β

Self-testing classifiers

$$T = \{(x_1, y_1), \dots, (x_N, y_N)\}$$
 i.i.d.

 $\hat{y}(\cdot)$ trained on T

certificate: $PE(\hat{y}) \leq \hat{\epsilon}(T)$ unless $T \in$ "Unlucky set", where $\mathbb{P}^{N}($ "Unlucky set") < β

For example...

Majority-voting with guarantees (Speaker: Algo Carè)

"0"

× "1"

Majority-voting with guarantees (Speaker: Algo Carè)

IFAC2020

Largest ball that does not include blue points

#blue active points so far =1

#blue active points so far =1

#blue active points so far =1
#red active points so far =1

Majority-voting with guarantees (Speaker: Algo Carè)

IFAC2020

#blue active points so far =1
#red active points so far =1

#blue active points so far =1+1 #red active points so far =1

#blue active points so far =2
#red active points so far =1

#blue active points so far =2
#red active points so far =1

#blue active points so far =2
#red active points so far =1

#blue active points so far =2
#red active points so far =1

Motivating example

The set-up of this paper

Classifier:	$\hat{y}_1(\cdot)$	$\hat{y}_2(\cdot)$	$\hat{y}_3(\cdot)$	• • •	$\hat{y}_M(\cdot)$
$PE \leq$	$\hat{\epsilon}_1$	$\hat{\epsilon}_2$	$\hat{\epsilon}_3$	•••	$\hat{\epsilon}_M$
P.o.F. :	eta	eta	eta	•••	eta
	$\hat{y}^*(x) = \bigg\{$	$\begin{bmatrix} 0 & \text{if } \frac{1}{M} \\ 1 \end{bmatrix}$	$\bar{I} \sum_{i=1}^{M} \hat{y}_i$	(x) < 0 therwis	9.5 e

 $PE(\hat{y}^*) \leq ?$

Is the majority right?

Classifier: $\hat{y}_1(\cdot)$ $\hat{y}_2(\cdot)$ $\hat{y}_3(\cdot)$ \cdots $\hat{y}_M(\cdot)$ $PE \leq \hat{\epsilon} \quad \hat{\epsilon} \quad \hat{\epsilon} \quad \dots \quad \hat{\epsilon}$

 $PE(\hat{y}^*) \le \hat{\epsilon}$?

Counter-example

Is the majority right?

Classifier:

 $\hat{y}_1(\cdot) \qquad \hat{y}_2(\cdot) \qquad \hat{y}_3(\cdot) \qquad \dots$ $\hat{y}_M(\cdot)$ $\hat{\epsilon}$ • • • $\hat{\epsilon}$ $\hat{\epsilon}$ $\hat{\epsilon}$ PE <

$$\begin{array}{l} PE(\hat{y}^*) \leq 2\hat{\epsilon} \\ & \text{Tight!} \end{array}$$

FACT: It is possible that the performance of a majority of equally skilled experts is worse than the performance of any individual expert!

Bound n.1

Classifier: $\hat{y}_1(\cdot)$ $\hat{y}_2(\cdot)$ $\hat{y}_3(\cdot)$ \cdots $\hat{y}_M(\cdot)$ $PE \leq \hat{\epsilon} \quad \hat{\epsilon} \quad \hat{\epsilon} \quad \cdots \quad \hat{\epsilon}$

$$PE(\hat{y}^*) \le \frac{1}{A}\hat{\epsilon}$$

$$A := \min_{x} \{ Agreement(x) \}$$

An example

IFAC2020

Bound n.1

Classifier:

 $PE \leq$

$$PE(\hat{y}^*) \le \frac{1}{A} \left(\frac{1}{M} \sum_{i=1}^M \hat{\epsilon}_i \right)$$

$$A := \min_{x} \{ Agreement(x) \}$$

Let's go back to our set-up

Classifier:	$\hat{y}_1(\cdot)$	$\hat{y}_2(\cdot)$	$\hat{y}_3(\cdot)$	•••	$\hat{y}_M(\cdot)$
$PE \leq$	$\hat{\epsilon}_{1}(T)$	$\hat{\epsilon}_2(T)$	$\hat{\epsilon}_{3}(T)$	•••	$\hat{\epsilon}_M(T)$
P.o.F. :	eta	eta	eta	•••	eta

 $\mathbb{P}^{N}($ "Unlucky set") < $M\beta$

Let's go back to our set-up

$$PE(\hat{y}^*) \le \frac{1}{A} \left(\frac{1}{M} \sum_{i=1}^{M} \hat{\epsilon}_i \right)$$

unless $T \in$ "Unlucky set", where $\mathbb{P}^{N}($ "Unlucky set") < $M\beta$

OK if $M\beta$ is small

Bound n.2

$$PE(\hat{y}^*) \leq \frac{1}{A} \left(\frac{1}{M} \sum_{i=1}^{M} \hat{\epsilon}_i \right) + \varrho$$

unless $T \in$ "Unlucky set", where \mathbb{P}^N ("Unlucky set") $< \frac{1}{\varrho} \beta$

Bound n.2 for weighted majority

$$PE(\hat{y}^*) \leq \frac{1}{A} \left(\sum_{i=1}^{M} \hat{w}_i(T) \hat{\epsilon}_i \right) + \varrho$$

unless $T \in$ "Unlucky set", where \mathbb{P}^N ("Unlucky set") $< \frac{k}{\varrho} \beta$

 $k = 1 \leftarrow \hat{w}_i(T)$ are democratic $\hat{w}_i(T) = 1/M$ $k = 2 \leftarrow \hat{w}_i(T)$ can be zero for half of the classifiers \vdots $k = M \leftarrow \hat{w}_i(T)$ are unconstrained

Error-confidence trade-off

Take-home messages

➤There exist self-testing classifiers

- ➤They can be used as base classifiers in majority-voting classification schemes
- ➢Although empirical studies suggest that majority voting is good, the performance of the majority can in principle be worse than any individual performance.
 - We made steps towards:
 - ightarrow protecting against bad situations

and even

ightarrow detecting favourable situations

 The proliferation of base classifiers is not a real issue
 Data-dependent weighted majority voting schemes are possible (with care)

IFAC2020

Ongoing and future research

Improve the bounds for favourable situations ("1/A" is just the starting point)

► Extensions to the regression framework

CODE AND MORE INFORMATION: http://www.algocare.it/GEM-BALLS/

Thank you!

algo.care@unibs.it

