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Abstract

Estimating a function from noisy measurements is a crucial problem in statistics and engineering, with an impact on machine
learning predictions and identification of dynamical systems. In view of robust control design and safety-critical applications
such as autonomous driving and smart healthcare, estimates are required to be complemented with uncertainty bounds
quantifying their reliability. Most of the available results are derived by constraining the estimates to belong to a deterministic
function space; however, the returned bounds often result overly conservative and, hence, of limited usefulness. An alternative
is to use a Bayesian framework. The regions thereby obtained however require complete specification of prior distributions
whose choice may significantly affect the probability of inclusion. This study presents a framework for the effective computation
of regions that include the unknown function with exact probability. In this setting, the users not only have the freedom to
modulate the amount of prior knowledge that informs the constructed regions but can, on a different plane, finely modulate
their commitment to such information. The result is a versatile certified estimation framework capable of addressing a multitude
of problems, ranging from parametric estimation (where the probabilistic guarantees can be issued under no commitment to
the prior information) to non-parametric problems (that call for fine exploitation of prior information).

Key words: system identification; finite sample system identification; uncertainty quantification; kernel-based
non-parametric methods; Gaussian regression

1 Introduction

We consider the problem of estimating a function from a
finite number of input-output examples {xi, yi}, where
each yi is a noisy measurement of the function evaluated
at xi. Popular approaches to this problem include the
so called kernel-based methods [27,53,20] that rely on
the theory of reproducing kernel Hilbert spaces (RKHS)
[5,26]. Notable applications of the theory of RKHS to
function approximation and estimation are found in sup-
port vector machines [19,58] and regularization networks
(RN) [61,48,55]. Given the importance played by RNs in
this work, it is worth already recalling their structure.
Letting y = [y1 . . . yn]> andH be the RKHS of functions
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f with norm denoted by ‖ · ‖H, RN returns the estimate

f̂ = arg min
f∈H

(y − f1:n)>Σ−1
v (y − f1:n) + ‖f‖2H (1)

where f1:n = [f(x1) . . . f(xn)]> and Σv is a weighting
matrix. The estimator balances two terms: the first ac-
counts for the adherence to experimental data, while the
second is a penalty term which restores well-posedness.
This approach thus enables selecting in a principled
manner the entire f from a finite amount of measure-
ments also when H is infinite-dimensional. Importantly,
it also enables recasting regularized system identifica-
tion as function estimation. In this setting, f represents
the input-output relationship induced by a dynamic
system where xi are the past input values. The linear
system scenario is then recovered by selecting a linear
kernel [46,47].

An important feature of any estimation algorithm is the
ability to return uncertainty bounds around the esti-
mates. Given their importance, studies on error bounds
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and learning rates abound in the machine learning lit-
erature. One approach consists of constraining the esti-
mate to a given function space like a RKHS, and bounds
are typically computed leveraging stochastic inequali-
ties. Examples of non-asymptotic uncertainty regions
built around (1) can be found, e.g., in [54,65,64,62,31];
see also [7], where the study involves a large class of reg-
ularization methods. Even if of great theoretical value,
such results appear however of limited applicability: the
resulting bounds are much conservative and often de-
pend on the unknown function, making them not com-
putable in practice. Recently, error bounds for dynamic
systems learning, connected with those obtained in [29],
have been also derived [57,8,16]. They can be evaluated
before any data is observed but, since they must be valid
for all (or most of the) models falling in a particular
class, they are often too loose for the particular dynamic
system at hand.

Other approaches return bounds that, beyond being
non-asymptotic, are also exact, i.e., with the desired
inclusion probability. This requires additional assump-
tions on data generation, like the introduction of prior
distributions on f . A notable example is the use of a
Bayesian framework [23,37] where (1) is interpreted
as the solution to a Gaussian regression problem [52].
In fact, the link with Gaussian regression is obtained
by modeling the measurement noise and the unknown
predictor f as (independent) Gaussian processes [39].
Hence, the posterior density becomes available in closed
form and Bayes intervals can be easily computed. Appli-
cations here abound: see, e.g., [25,17,50]. However, this
approach may be subject to the following limitations
(denoted with GR-L):

GR-L1 it is common practice to set Σv = γI in (1), hence
assuming stationary measurement noises. Such
model is not adequate, e.g., when data are col-
lected by sensors with different precisions, a situa-
tion often encountered in wireless sensor networks
[1]. This simplification is often made since the ex-
act calibration of the noise variances is difficult.
This problem has been treated in the context of
heteroscedastic Gaussian process regression, e.g.,
assuming that the noise variances smoothly de-
pend on the inputs {xi} [28,41]. Solutions however
require the introduction of delicate prior distribu-
tions on Σv. Inference then requires using Markov
chain Monte Carlo (MCMC) or variational Bayes
methods [38,40,33] whose implementation may be
non-trivial. For instance, MCMC needs careful
tuning of proposal densities and a different design
is required for any different adopted prior, e.g.,
Gaussian [42], Laplacian [44], horseshoe [36] or
leading to Bayesian bridge estimation [49].

GR-L2 Gaussian assumptions are often inadequate: many
natural phenomena are better represented, e.g.,
by Laplacian or Student’s t distributions. Non-
Gaussian distributions can be used to describe

outliers that contaminate the measurements or to
promote sparsity in the estimation process like in
the LASSO [56,67]. Non-Gaussian models can be
handled in finite-dimensional settings, but infer-
ence typically requires stochastic simulation tech-
niques (like the above mentioned MCMC) that
can be computationally demanding and subject to
uncertain convergence [51,3,22];

GR-L3 sometimes there is not sufficient information to pos-
tulate a parametric form for some distributions,
making difficult even to define the posterior.

Another approach to build bounds for linear regression
is the sign-perturbed sums (SPS) technique [14]. Follow-
ing a randomization principle, it constructs guaranteed
uncertainty regions for deterministic parametric models
in a quasi-distribution free set-up [9,10]. Recently, there
have been notable attempts to extend the class of models
that SPS can handle. The first line of thought still con-
siders the unknown parameter as deterministic but intro-
duces regularization, see [59,13,45] and also [15], which
is a first attempt to move beyond the strictly parametric
nature of SPS. A second line of thought enables exploit-
ing some form of prior knowledge at a more fundamental
probabilistic level: this is the case of the approaches pre-
sented in [45,11], where, however, only knowledge about
the symmetry around zero of the parameter densities
can be exploited. Overall, a more widespread use of SPS
has so far been hindered by the following limitations (de-
noted with SPS-L):

SPS-L1 computational difficulties and the lack of freedom to
include knowledge of some prior distributions. E.g.,
also in connection with GR-L1, one could know
that measurements are collected by different sen-
sors. Some of them could be reliable (providing data
corrupted by noises of small variance) while others
could be less reliable (possibly returning outliers
[32]). This information is important but currently
it cannot be included in any SPS algorithm;

SPS-L2 the parametric nature of SPS that prevents com-
puting uncertainty bounds around the estimates re-
turned by RNs equipped with infinite-dimensional
RKHSs. Such spaces are adopted in system iden-
tification (see Section 7 for an example) and are a
key tool in the broader area of statistics and ma-
chine learning: in fact, they define important uni-
versal models [43] like those induced by Gaussian
or spline kernels.

As we shall see, the present paper makes a significant
step to overcome all the five aforementioned limitations
affecting Gaussian regression and SPS. In particular,
we develop a framework that greatly generalizes SPS. It
can handle stochastic linear models containing random
variables that have either known probability densities
(of any form) or just assumed to be symmetric around
zero, hence addressing SPS-L1 and connecting with
Bayesian statistics. Nevertheless, our approach does
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not use the concept of a posteriori density function in
that the latter cannot be defined when prior distribu-
tions are not completely specified, as allowed by our
setting. It returns uncertainty regions that have the de-
sired and exact coverage level in a Bayesian frequentist
sense [6], i.e., they have the exact probability to contain
the unknown function in many repetitions of the ex-
periment (where each experiment consists of observing
a new/independent joint realizations of the noise and
the parameters). They are built around the regularized
least squares estimates as given in (1) and are easily
computable as the union of a finite number of ellipsoids.

From a technical viewpoint, we extend the classic SPS
framework [14] and its existing Bayesian generalizations
[45,11] by introducing new perturbed versions of the SPS
reference function, which are either constructed via sign-
perturbations or sampling from the distribution of the
parameter and noises (whenever available), depending
on the user’s choice. These newly introduced test func-
tions allow us to address SPS-L1 and establish a new
SPS-based algorithm returning uncertainty regions with
exact coverage probability even when prior information
on the parameter and noise distributions is exploited.
In addition, we propose an extension of our algorithm
which, for the first time in the literature, returns ex-
act regions also when regularization and kernel param-
eters need to be estimated from data and some priors
turn out to be wrong.

As illustrated in the paper, our Bayesian frequentists
bounds (BFB) find wide applicability and usefulness
in many different contexts. For instance, in connection
with GR-L2, these include robust and sparse estimation
implemented, e.g., by the Bayesian LASSO in which
unknown parameters follow a Laplacian distribution
[56,44]. In response to SPS-L2 and GR-L3, our technique
can handle RNs equipped with infinite-dimensional
RKHSs and return exact uncertainty regions just as-
suming that noise densities are symmetric around zero.
This addresses also GR-L1 by providing a novel ap-
proach to heteroscedastic Gaussian process regression:
exact bounds can be obtained without knowing the de-
pendence of the noise variance on input locations. An
important application concerns the construction of un-
certainty regions around estimates of dynamic systems.

The paper is organized as follows. Section 2 describes the
problem in mathematical terms setting up some useful
notation. An estimator which can capture any sampled
version of the infinite-dimensional estimate returned by
(1) is also introduced. Section 3 provides an informal
presentation of the rationale behind the proposed BFB
and its evolution from existing SPS approaches. Section
4 describes our algorithm to build BFB and displays the
statement of the main Theorem. First applications are
illustrated in Section 5. Section 6 describes the exten-
sion of our results to the case of regularization and ker-
nel parameters estimated from data and wrong priors.

The importance of BFB for linear system identification
is then illustrated in Section 7 through a numerical ex-
periment. The Appendix contains the proofs of the main
results, some technical details, and additional examples.

2 Problem statement

Let us start by formalizing our problem. Data are in the
vector y ∈ Rn and the measurement model is

y = Aθ0 +Bν (2)

where A ∈ Rn×m and B ∈ Rn×n are known matrices,
both assumed full rank, θ0 ∈ Rm is the unknown vector
while ν contains the noise components. We model both
θ0 and ν as (independent) random vectors. The unknown
vector θ0 is the sum of a (known) vector µ ∈ Rm and
the output of a linear system described by the m × m
(known, full rank) matrix C fed with noise ω:

θ0 = µ+ Cω. (3)

Observe that (2) is a standard linear measurement model
whereA is the regression matrix, v = Bν is the measure-
ment noise and θ0 the unknown (random) parameter.

Remark 1 The vectors v and θ0 are defined in terms
of the random vectors ν and ω, respectively, and of the
parameters µ, B, C. The latter parameters add flexibility
to the model as they can be used to encode second-order
information on v and θ0. In fact, Equations (2)-(3) offer
a general model that captures many relevant situations
as special cases. Consider, for instance, the Gaussian
regression framework, where

θ0 ∼ N (µ,Σθ), v ∼ N (0, σ2I).

This situation can be described by our model by letting
ω and ν be (independent and standardized) white Gaus-

sian noises, ω, ν ∼ N (0, I), B = σI and C = Σ
1/2
θ .

Similarly, if the covariance of v is Σv, we can simply set

B = Σ
1/2
v . The possibility to specify B and C is partic-

ularly useful when the distributions of θ0 and v are only

partially known. In fact, with the choice B = Σ
1/2
v and

C = Σ
1/2
θ , the covariances of v and θ0 remain equal to

Σv and Σθ for all the possible distributions of ν and ω,
provided that they are standardized white.

In this paper, we will make use of the following mild
assumption on the noises ν and ω.

Assumption 1 The components of ν and ω are inde-
pendent and divided into two distinct sets. The first, de-
noted by A, contains random variables of known proba-
bility distribution. The second, named B, contains ran-
dom variables with probability densities just known to be
symmetric around zero.
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Notice from Assumption 1 that our framework departs
from a purely Bayesian setting because it does not re-
quire complete information about prior distributions:
the distributions of some or all the components of ν and
ω can be just known to be symmetric around zero. We
stress that symmetry around zero is satisfied in many
common and relevant noise scenarios, such as for inde-
pendent zero-mean uniform, Laplace, Student’s t noises.

Our problem is to build regions, based on the measure-
ments collected in vector y, containing the true vector θ0

with prescribed probability α ∈ (0, 1). Any realization
of our regions will be guaranteed to contain the estimate

θ̂ = arg min
θ

(y−Aθ)>Σ−1
v (y−Aθ)+(θ−µ)>Σ−1

θ (θ−µ)

= µ+ (A>Σ−1
v A+ Σ−1

θ )−1A>Σ−1
v (y −Aµ) (4)

where matrices Σv = BB> and Σθ = CC> are in-
vertible by assumption. Although other estimators may
be preferable to (4) depending on the intended appli-
cation and on the available prior information on the
noise distributions, it is worth recalling two impor-
tant facts about (4):

• if the components of ν and ω are all mutually un-
correlated, with zero mean and unit variance, the
covariances of the stochastic terms Bν and Cω in
(2) and (3) correspond exactly to Σv and Σθ, re-
spectively, and θ̂ thus becomes the minimum vari-
ance linear estimator of θ0, see, e.g., [2];

• (4) can capture any sampled version of the infinite-
dimensional estimate returned by (1). In fact, con-

sider the estimator f̂ given by (1), function of the
measurements in y collected on the inputs {xi}ni=1.
Consider other n∗ − n generic input locations
{xi}n

∗

i=n+1 on which we want to perform prediction
and let K be the kernel matrix of dimension n+n∗

with (i, j)-entry K(xi, xj). Then, defining

A = [In 0n×n∗ ], µ = 0(n+n∗)×1 and Σθ = K,
(5)

where In is the n-dimensional identity matrix and
0p×q the p×q zero matrix, and using the Represen-
ter Theorem [53, Theorem 4.2] one obtains that

θ̂ = f̂1:n+n∗ := [f̂(x1) f̂(x2) . . . f̂(xn+n∗)]>. (6)

Ultimately, we point out that in many situations
it is important to explicitly include a scale factor
γ > 0 in the penalty term of (1). In our setting, this

is simply achieved by rewriting C as C = γ−1/2C̃.

3 Overview of SPS and the new BFB

In this section, we review the main idea of SPS and
outline the evolution that has led to the present work.

The original set-up of SPS was first presented in [14]
and is the following. Let us consider the measurements
model (2), where B = In (this is without loss of gener-
ality because, if B 6= In, all the terms can be multiplied
by B−1 on the left); it is here further assumed that
(i) all the components in the noise vector ν are indepen-
dent, with probability distributions that are symmetric
around 0;
(ii) vector θ0 is deterministic, fixed yet unknown.
The SPS approach is set in a frequentist framework,
and its goal is to return a confidence region, denoted by
ΘSPS(y), containing the true value θ0 with exact user-
chosen probability.

We recall the following important facts that have been
proven for this set-up in [14] and [63].

Fact 1 ([14], Theorem 1): The confidence region ΘSPS(y)
returned by the SPS algorithm contains θ0 with proba-
bility 1−q/r, where q are r are user-chosen positive inte-
gers such that q < r. That is, P(θ0 ∈ ΘSPS(y)) = 1−q/r.
Fact 2 ([14], Theorem 2): ΘSPS(y) is built around the

least-squares estimate θ̂LS , i.e., the minimizer of the
quadratic function (y −Aθ)>(y −Aθ).
Fact 3 ([14], Appendix B): One can express ΘSPS(y) as
a union of intersections of ellipsoids.
Fact 4 ([63]): Under nonvanishing excitation, and suit-
able restrictions on the growth rate of the moments of the
noise and the regressors, the SPS algorithm is strongly
consistent (see Theorem 2 in [63] for details). Moreover,
when the noise is i.i.d. with bounded 4th moment, the
shape of the region is asymptotically optimal (see The-
orem 3 in [63] and the discussion therein).

The SPS region ΘSPS(y) is formally defined as the set
of candidate parameters θ that pass an inclusion test,
which we now describe. The test is based on the so-called
normal equation A>(y−Aθ) = 0, whose solution is θ̂LS .
Denoting by A(t, :) the t-th row of matrix A, the normal
equation can also be written as

n∑
t=1

A(t, :)>(yt −A(t, :)θ) = 0. (7)

Denote by H0(θ) the left-hand side of (7), and consider
r − 1 “sign-perturbed” versions of H0(θ) defined as

Hi(θ) =

n∑
t=1

A(t, :)> (ςt,i(yt −A(t, :)θ)) , (8)

where ς1,i, . . . , ςn,i, i = 1, . . . , r−1, are i.i.d. Rademacher
random variables (i.e., each ςt,i takes value +1 or−1 with
equal probability; we informally denote such variables
with ±). The inclusion test prescribes to compute the
Euclidean norm ‖Hi(θ)‖ for all i = 0, . . . , r − 1 and to
sort these values: a candidate θ is excluded from ΘSPS(y)
if and only if ‖H0(θ)‖ is among the q highest values.
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Let us now briefly connect this construction with Facts

1÷4. Considering that ‖Hi(θ̂LS)‖ is positive for all i 6= 0,

while ‖H0(θ̂LS)‖ = 0 holds by construction, one has that

θ̂LS ∈ ΘSPS(y), thus showing Fact 2. Fact 1 follows by
proving that, when θ = θ0, ‖H0(θ0)‖, . . . , ‖Hr−1(θ0)‖
are identically distributed, and that the probability that
‖H0(θ0)‖ is the j-th in the ranking is 1/r for each j =
1, . . . , r. In fact, this implies that the ranking of ‖H0(θ0)‖
is smaller than q with probability 1− q/r, which is also
the probability that θ0 ∈ ΘSPS(y). Regarding, instead,
the shape of the region, it is important to note that
wrong values of θ tend to be excluded from the SPS re-
gion because, when θ 6= θ0, the random signs induce
cancellations in the perturbed sums (8) and ‖H0(θ)‖
tends to be larger than any other ‖Hi(θ)‖. In this line,
the consistency of the algorithm can be proven. At this
point, we must observe that the standard SPS algo-
rithm relies on an inclusion test that slightly differs from
the one that we have just described. Precisely, in stan-
dard SPS, H0(θ), . . . ,Hr−1(θ) are pre-multiplied by the

“shaping matrix” (A>A)−
1
2 before taking norms and

ranking them (in fact, (A>A)−
1
2 equalizes the compo-

nents of H0(θ) in the sense that (A>A)−
1
2H0(θ0) has

unit covariance when ν has unit covariance). The “shap-
ing matrix” improves the shape of the SPS region and
plays a role in the proofs of Facts 3 and 4, see Section
IV.A in [14] and the proof of Theorem 3 in [63] for more
details.

Following the analysis of [13,45,60], SPS can be easily

modified so that the regularized estimate θ̂ in (4) takes

the place of the least squares estimate θ̂LS . To this pur-

pose, we note that θ̂ is the solution to the equation
A>(y−Aθ) + Σ−1

θ (µ− θ) = 0. Proceeding, mutatis mu-
tandis, as in the least squares case, and recalling that
Σ−1
θ =

∑m
k=1 C

−1(k, :)>C−1(k, :), we can redefine the
test functions as

H̃0(θ) = A>(y −Aθ) + Σ−1
θ (µ− θ) (9)

H̃i(θ) =

n∑
t=1

A(t, :)> (ςt,i(yt −A(t, :)θ)) (10)

+

m∑
k=1

C−1(k, :)>(C−1(k, :)µ− C−1(k, :)θ),

(the shaping matrix can also be redefined as (A>A +

(C−1)>C−1)−
1
2 ), all the rest being unchanged. Impor-

tantly, in the so-obtained regularized SPS, µ and Σθ =
CC> are just user-chosen parameters that help improve
the stability of the estimate; as such, they are not sub-
ject to random sign perturbations. Although they can
be used to bias the estimation algorithm towards values
of θ that are deemed to be more likely, a bad specifica-
tion of them can only affect the size of the region, while
the coverage probability remains always equal to 1−q/r.
This robustness against the user’s wrong beliefs is a no-

table property but comes at a price: it limits the extent
to which prior knowledge about θ0 can be exploited by
the algorithm. An illustration of this limitation is offered
by Example 1 in Section 9.1 of the Appendix.

The new approach of this paper, BFB, extends the orig-
inal SPS idea in two ways. Firstly, following the prelimi-
nary studies in [45,11], θ0 is no more deterministic but is
random (as is typical of a Bayesian approach): namely,
model (2) is complemented by model (3) that accounts
for the variability of θ0 through the random ω, and the
probability of including θ0 is now computed with respect
to the joint distribution of ν and ω. Secondly, we mod-
ify the test functions to accommodate the case where
knowledge on the distribution of ν and ω is available and
the user is willing to commit to it, either partially or
entirely. At an algorithmic level, the reference function
H̃0(θ) for BFB is defined as in (9), while the perturbed
versions are instead

H̃i(θ) =

n∑
t=1

A(t, :)>ν̃t,i(θ) +

m∑
k=1

C−1(k, :)>ω̃k,i(θ),

(11)
where ν̃t,i(θ) and ω̃k,i(θ) are user-generated random el-
ements. If the user wants to commit only to the belief
that νt or ωk are symmetrically distributed (i.e., they
belongs to B according to Assumption 1), then the ran-
dom elements ν̃t,i(θ) or ω̃k,i(θ) are constructed by means
of sign-perturbations as ν̃t,i(θ) = ±(yt − A(t, :)θ) or
ω̃k,i(θ) = ±(C−1(k, :)µ−C−1(k, :)θ). On the other hand,
if, for some (or even all) t and k, the distributions of νt
or ωk are known (i.e., νt or ωk belong to A according to
Assumption 1) and the user wants to exploit this knowl-
edge, then ν̃t,i or ω̃k,i are generated as fresh, indepen-
dent samples according to the known distributions. This
latter extension of SPS which accounts for distributions
that are fully known for some (or even all) νt and ωk, is
introduced and studied for the first time in the present
work.

The last ingredient of the BFB algorithm as presented in
the next section is the choice of the parameter q, which
is no more a free parameter as in SPS but is always
set equal to 1. Thanks to this choice, the computation
of BFB does not involve intersections of ellipsoids as in
SPS (see Fact 3 above), but only unions: see (15) in the
BFB Algorithm 1. All the algorithmic details and the
relevant finite-sample properties of BFB are presented
in the next section.

4 Bayesian frequentist bounds

We are now ready to describe the proposed algorithm.
It will return a region containing the unknown vector θ0

with exact probability α = 1−1/r, where r is a positive
integer. Here, with an eye to practical applications, we
focus on the computation of 95% (r = 20) and 99% (r =
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100) uncertainty bounds, however, the generalization of
our results to any choice of r is trivial.

First, we introduce some preliminary notation. We define
Ω ∈ RN×m, z ∈ RN , and ε ∈ RN , where N = n + m,
respectively, as

Ω =

[
B−1A

C−1

]
, z =

[
B−1y

C−1µ

]
, ε =

[
ν

ω

]
. (12)

For i = 1, . . . , r − 1 and t = 1, . . . , N , we use {ξit} to
denote a sequence of (r−1)N independent random vari-
ables satisfying{

P(ξit = 0) = 1 if εt ∈ A,
P(ξit = −1) = P(ξit = 1) = 1

2 if εt ∈ B.
(13)

Further, for i = 1, . . . , r − 1, we use ζi to indicate
independent random vectors whose components ζit ,
t = 1, . . . , N , are samples from the distribution of εt if
εt ∈ A, and zero with probability one if εt ∈ B. The
quantities introduced above allow us to define random-
ized copies of the vector ε: its components in B will
be perturbed by random signs, while those in A will
be drawn from their prior distribution. Finally, we let
π = (π(0), π(1), . . . , π(r − 1)) denote a uniformly dis-
tributed random permutation of the set {0, 1, . . . , r− 1}
whose (merely technical) role is discussed in Lemma 1
of Section 9.2 of the Appendix.

Theorem 1 (Exact inclusion probability) Con-
sider the model in (2)-(3) and Assumption 1. Then,
the Bayesian frequentist region Θ(y) defined through
Algorithm 1 is a union of convex sets, contains (4) if
non-empty, and satisfies

P(θ0 ∈ Θ(y)) =

{
0.95, if r = 20,

0.99, if r = 100.
(16)

The proof of Theorem 1 is deferred to Section 9.2 of the
Appendix.

The probability in (16) is unconditional, so Θ(y) is a
Bayesian frequentist error bound, which can be inter-
preted as follows: consider M independent experiments
where, in each of them, we observe a joint realization of
θ0 and of y generated through (2)-(3). This results in a
sequence of M distinct regions Θ(y) of coverage level α.
Then, as M goes to infinity, the frequency with which
each regions contains the corresponding value of θ0 will
tend to α.

In practice, to compute the region Θ(y) in (15) one has
to run Algorithm 1 using a realization of the random
elements z, {ξit}, {ζit}, and π. The main cost of Algorithm

Algorithm 1 Bayesian frequentist uncertainty region of
probability α = 1− 1/r

Compute

Qi =
1

N

N∑
t=1

ξitΩ(t, :)>Ω(t, :),

ψi =
1

N

N∑
t=1

ξitΩ(t, :)>zt +
1

N

N∑
t=1

Ω(t, :)>ζit

for i = 1, . . . , r − 1, where Ω(t, :) is the t-th row of Ω
(thus Ω(t, :)> is a column vector).

Define the sets

Ei = {θ ∈ Rm : θ>Aiθ + 2θ>bi + ci ≤π,i 0}, (14)

for i = 1, . . . , r − 1, where

RN =
1

N
Ω>Ω, Ai = RN −QiR−1

N Qi,

bi = QiR
−1
N ψi −RN θ̂, ci = θ̂>RN θ̂ − ψ>i R−1

N ψi,

with θ̂ defined as in (4), and “≤π,i” stands for “≤” if
π(0) < π(i), and for “<” otherwise.

Return the region

Θ(y) =

r−1⋃
i=1

Ei. (15)

1 comes from the computation of the r−1 convex regions
Ei that define Θ(y). The main cost of computing such
regions in turn arises from the computation ofRN , which
requires the multiplication of two matrices of dimensions
m × N and N ×m, where N = n + m. This yields an
overall complexity of O(m2N), which scales cubically in
the dimension m of the unknown vector and linearly in
the number of measurements n.

Importantly, the probability of Ai to be singular is nor-
mally negligible in real applications (see Section 9.4 of
the Appendix for details), so that (the closure of) the
region (15) is the union of r − 1 ellipsoids of the form

Ei = {θ ∈ Rm : (θ − b̄i)>Ai(θ − b̄i) ≤ c̄i}

for i = 1, . . . , r − 1, where b̄i = −A−1
i bi and c̄i = −ci +

b>i A
−1
i bi, and always contains the estimate (4). From the

latter expression, useful information about the region
(15) can be easily extracted. In particular, it follows that
lower and upper bounds of the components of the vectors
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in Θ(y) can be computed as follows:

θmin = min
i=1,...,r−1

{
b̄i − (c̄i diag(A−1

i ))
1
2

}
,

θmax = max
i=1,...,r−1

{
b̄i + (c̄i diag(A−1

i ))
1
2

}
,

(17)

where diag(Ai) denotes the vector of diagonal entries

of Ai and the (·) 1
2 , min, max operators are applied

component-wise. Finally, the region can be efficiently
reconstructed in sampled form. In fact, one can draw in-
dependent and uniform realizations from each ellipsoid,
e.g., via the algorithm described in [18]. The sampled-
form representation of Θ(y) and the component-wise
bounds in (12)-(13) serve as useful tools to graphically
represent Θ(y), especially when m is large, and they
will be used in the numerical experiments described in
the next section.

5 Numerical experiments

To demonstrate the relevance and applicability of our
Bayesian frequentist framework, we present two numer-
ical applications of our uncertainty bounds.

5.1 BFB with completely specified probability distribu-
tions

We consider three examples where the probability distri-
bution on θ0 and the noise distributions are completely
specified, and we commit to this specification when we
compute the probability of the region. Thus, referring to
Assumption 1, all the noises ν and ω belong to the setA.
In this case, uncertainty bounds could be extracted from
the posterior p(θ0|y). Typically, for non Gaussian den-
sities, one has to resort to stochastic simulation schemes
(like MCMC) whose design depends on the involved dis-
tributions and can be far from trivial. We now show that,
when data come from the model specified by (2) and
(3), Algorithm 1 returns alternative and informative un-
certainty regions in a very efficient way: in all tests the
computational time never exceeds one tenth of a second.
Before describing the examples, we mention that when
ν and ω contain i.i.d. Gaussian variables (full Gaussian
case), the uncertainty regions proposed in this paper and
Bayes credible regions are often comparable in size. In
particular, it can be shown that the two regions coincide
as m, the dimension of θ0, tends to infinity.

Laplacian noise. Let θ0 and ν be, respectively, Gaussian
and Laplacian random vectors. Their components are
independent, with zero-mean and unit variance:

θ0
i ∼ N (0, 1), νj ∼ Lap(0, 1),

i = 1, . . . ,m, j = 1, . . . , n.

This is an important model: Laplacian distributions are
often used to describe stochastic sources that can con-
taminate the data with outliers, e.g., see [35,34,4]. Their
use can define more robust bounds accounting for un-
expected noise model deviations. Consider an example
where the data set size is n = 200, the dimension of θ0

is m = 20, and the entries of the regression matrix A
were set equal to values randomly drawn according to
independent zero-mean Gaussian distributions of unit
variance. One realization of y is in the top left panel of
Figure 1 while the bottom left panel displays that of θ0

(solid line). Algorithm 1 was used to build the uncer-
tainty region setting in (3) all the entries of µ to zero
and B = In, C = Im. The bottom left panel of Figure 1
displays the 95% bounds reporting the upper and lower
limits of (17) using dashed lines. They are very infor-
mative and give a clear picture about the information
provided by the outputs. Differently from MCMC, they
are obtained without the need of defining any proposal
density. In Section 9.5 of the Appendix, a detailed com-
parison between BFB and Bayesian intervals computed
via MCMC is provided.

Laplacian and Gaussian noise. To illustrate the versa-
tility of our approach, consider the same experiment ex-
cept that the first 50 outputs are generated in a different
way. They depend only on the first 5 components of θ0.
Specifically, the regression matrix A is as before except
for its first 50 rows which are now set to zero from column
6 to column 20. The measurements noise is now white
and Gaussian with small variance 0.01. This means that
measurements contain more information to reconstruct
the first portion of the parameter vector θ0 than to es-
timate the last 15 components. Data and bounds by Al-
gorithm 1 with B = In, C = Im, µ = 0m×1 are in the
middle panels of Figure 1. One can see that BFB well
accounts for the new data by returning tighter bounds

around the first 5 components of θ̂.

Bayesian LASSO. LASSO is a popular technique for lin-
ear regression that adopts the `1 penalty to regularize
coefficients and induce sparse solutions [56]. Building un-
certainty bounds around LASSO estimates is however
difficult and (approximate) error estimators like, e.g.,
those described in [56,21] often do not return satisfac-
tory results. An alternative developed in [44] is to use
MCMC exploiting a stochastic intepretation of the prob-
lem, the so called Bayesian LASSO, where parameters
follow a Laplacian distribution. For our example, let now
θ0 and ν contain, respectively, independent Laplace and
Gaussian variables with zero-mean and unit variance,
i.e. θ0

i ∼ Lap(0, 1) and νj ∼ N (0, 1). As in the previous
case, the data set size is n = 200, the dimension of θ0 is
m = 20 and the regression matrix A is the same as in
the Laplacian noise case. Data and results by Algorithm
1 with B = In, C = Im, µ = 0m×1 are in the right panels
of Figure 1. BFB bounds appear somewhat informative
also for variable selection purposes where one wants to
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Fig. 1. Example of output data y and BFB for θ0 for Laplacian noise (left panels), Gaussian and Laplacian noise (middle)
and Bayesian LASSO (right).

assess the actual influence of the components of θ0 on y.

5.2 BFB for heteroscedastic Gaussian regression with
uncertain noise distributions

We consider two heteroscedastic Gaussian regression
problems. The function f is a continuous-time normal
process to be estimated from {xi, yi}ni=1. The measure-
ment noise is Gaussian with variances that depend on
the input {xi}. Two kinds of bounds built around (1) will
be compared: those classical, that assume both f and
the noise ν to be Gaussian; and the new BFB, where f
is Gaussian but we assume only that noise densities are
symmetric around zero. Thus, according to Assumption
1, we have ω ∈ A and ν ∈ B; bounds are then computed
by Algorithm 1 on the 500 inputs {0.2, 0.4, . . . , 100}
using (5). BFB will be displayed in sampled form by
drawing 10000 realizations uniformly distributed over
the ellipsoids forming the uncertainty region.

Cubic spline regression. Let f be two-fold integration of
white Gaussian noise of unit variance:

f ∼ N (0,K),

K(xi, xj) =
xixj min(xi, xj)

2
− min(xi, xj)

3

6
.

This fundamental model introduces in (1) the regular-

izer ‖f‖2H =
∫
f̈ 2(x) dx and leads to cubic smooth-

ing splines [61]. The yi are collected over the 80 inputs
{1, 2, . . . , 20}

⋃
{41, 42, . . . , 100}. Measurements are af-

fected by white Gaussian noises of variances σ2
i . We sim-

ulate a situation where wrong information on such vari-
ances is available due, for example, to some sensors be-
ing broken. Precisely, all the sensors collecting the yi

are assumed to have the same nominal precision, i.e.
σ2
i = σ2 = 2.5 for all i; instead, data {yi}20

i=1 are more
noisy, namely σ2

i = 50σ2, i = 1, . . . , 20, as if the first
20 sensors were broken. Figure 2 plots a realization of
f (red line), the data y and the estimate (1) obtained
with γ−1 = σ2 (black line). At the beginning, the esti-
mate suffers of the large measurement errors and predic-
tions are poor over [20, 40] where no data are available.
The left panel of the same figure displays 95% Gaussian
bounds. They do not contain the true function: assum-
ing constant noise variance, the uncertainty is underesti-
mated. They could be refined by estimating the σ2

i from
data but such calibration is difficult. Our new frame-
work provides an important alternative: the same Gaus-
sian prior on f is adopted but the noise components of ν
are now just assumed independent with densities sym-
metric around zero. The right panel of Figure 2 plots
the new bounds. They are able to contain the true func-
tion and give important insights on the actual informa-
tion contained in the training data. Differently from the
Gaussian bounds, they clearly reveal that the estimate
is more uncertain where data were less informative.

Gaussian kernel regression. The function f is now the re-
alization of a normal process with covariance equal to the
Gaussian kernel K(xi, xj) = exp{−

(
0.01(xi − xj)2

)
}.

The yi are collected over the inputs {1, 2, . . . , 100}.
The Gaussian noises have variances described by the
stochastic volatility model used in financial time series
and described in [40, Section 6.3.1]. Variances realiza-
tions are in the left panel of Figure 3, while the middle
and right panels show the realization of f (red line).
The Gaussian bounds (middle panel) are obtained hav-
ing full knowledge of noise statistics, i.e., Σv is set to
the diagonal matrix with entries given by the variances
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Fig. 2. Cubic spline kernel regression. Unknown function f (red line), noisy data (◦), 95% Gaussian bounds with (wrong) constant
variance σ2 = 2.5 (left) and 95% BFB that uses only knowledge regarding the symmetry of noise probability densities (right).

Fig. 3. Gaussian kernel regression. Noise variances as function of input locations (left), unknown function f (red line), noisy
data (◦), 95% Gaussian bounds with perfect variances knowledge (middle) and 95% BFB with knowledge only on symmetric
noises distributions (right).

reported in the left panel. BFB (right panel) instead
only exploits information on symmetry of noises dis-
tributions and computes the bounds by setting B in
(2) to the identity matrix. Remarkably, BFB are simi-
lar to the Gaussian bounds.

6 BFB handling uncertainty in the priors

In many applications the matrix C that defines the prior
on θ0 in (3) depends on a hyperparameter vector η that
needs to be estimated from data. This includes the im-
portant situation where the regularization parameter γ
and possibly also some kernel parameters in (1) are un-
known and need to be determined from data. Another
fundamental issue is that the prior on the function to es-
timate is never perfect in practice and one would like to
achieve bounds robust also with respect to model mis-
specification. Then, our aim is now to construct uncer-
tainty regions around the estimate (4) with the exact
coverage level even if the prior on θ0 is wrong and irre-
spective of the way η is estimated. As already pointed
out, only if the prior matches the true function proper-
ties (e.g., smoothness) the regularizer will be useful to
reduce the uncertainty associated to the estimates. We
will make use of the following assumption.

Assumption 2 Assumption 1 still holds but matrix B
in (2) is diagonal and matrix C in (3) can depend on

an unknown hyperparameter vector η that needs to be
estimated from data.

Now, let us assume that the first n̄ < n components of
the data vector y, namely ȳ = [y1, . . . , yn̄]>, are used to
estimate η by any calibration procedure, e.g. cross vali-
dation or empirical Bayes [32]. We also need to redefine
some objects previously introduced in Section 4.

The (r − 1)N independent random variables {ξit} are
now redefined as
P(ξit = 0) = 1 if t ∈ (n̄, n] and εt ∈ A,
P(ξit = −1) = P(ξit = 1) = 1

2 if t ∈ (n̄, n] and εt ∈ B,
P(ξit = 1) = 1 if t ∈ [1, n̄] ∪ (n,N ],

(18)
for i = 1, . . . , r − 1 and t = 1, . . . , N . Moreover, the ζi

now indicate independent random vectors whose com-
ponents ζit, t = 1, . . . , N , are independent samples from
the distribution of εt if εt ∈ A and t ∈ (n̄, n], and zero
with probability one otherwise. This construction im-
plies that only the last n− n̄ components of the output
vector y are considered as stochastic and are affected by
random quantities in the algorithm (they are either mul-
tiplied by random signs or replaced by fresh realization
of νt from its known distribution), while ȳ and θ0 are
treated as deterministic quantities.

We call Algorithm 2 the version of Algorithm 1 with {ξit}
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and {ζit} redefined as above. The following result then
holds (see Section 9.3 of the Appendix for the proof).

Theorem 2 Consider the model in (2)-(3) and Assump-
tion 2. Then, the region defined through Algorithm 2 is a
union of ellipsoids, contains (4) if non-empty, and sat-
isfies

P(θ0 ∈ Θ(y) | ȳ, θ0) =

{
0.95, if r = 20,

0.99, if r = 100.
(19)

The fundamental difference between (16) and (19) is that
now the region’s probability is exact even if conditioned
on a realization of ȳ and θ0. Hence, Algorithm 2 returns
an exact uncertainty region even when η is estimated
from data and/or the prior on θ0 is completely wrong.

Remark 2 Assume that the distributions of the inde-
pendent components of ν are just known to be symmetric
around zero, and matrix B depends on a scale factor esti-
mated using ȳ. Then, following the same arguments car-
ried out above, Theorem 2 still holds. This fact is relevant
since calibration of the covariance of Bν can be impor-
tant to make (4) close to the linear minimum variance
estimator and to suitably shape the uncertainty region.

7 System identification experiment

We now propose a numerical test for the scenario pro-
posed in Section 6.

Let us assume now that θ0 is the impulse response of
a linear dynamic system to be estimated from input-
output data. Differently from all the previous case stud-
ies, θ0 is not drawn from any probability distribution: it
is a deterministic 100-dimensional vector whose values
are represented in Figure 4 (red line). In what follows,
the dimension m of θ0 is set to 100, leaving no room for
undermodeled dynamics. 1

The system input is white Gaussian noise of variance
103 filtered by the transfer function 1/(z−0.5). Its real-
izations define the (Toeplitz) matrix A in (2). The noise
ν is white and Gaussian with variance σ2 = 1. Data set
size is n = 1000.
To estimate θ0, one can use (4) with the so-called sta-
ble spline kernel that includes smooth-exponential decay
information [46,47]. With such a kernel, the regulariza-
tion matrix is K̄ with entries [K̄]ij = βmax(i,j), where
0 ≤ β < 1 regulates how fast the impulse response goes

to zero. The estimates β̂ and γ̂ of the decay rate β and

1 BFB can be used to identify more general systems than
finite impulse responses, provided that they can be expressed
in linear regression form: see, e.g., the examples in Section
2.B in [14].

of the regularization parameter γ (that here corresponds
to the inverse of the kernel scale factor) are obtained by
generalized cross validation (GCV) [30,61] using the first
200 data. The impulse response estimation is then ob-
tained by (4) setting B = In, µ = 0 and C = γ̂−1/2K̄1/2

with K̄ built using β̂. The estimate is displayed in Fig-
ure 4 (black line) and appears very close to truth (red
and black lines are very similar). We will build two dif-
ferent kinds of bounds around the stable spline estimate
with the desire to have a 95% coverage level. Specifically,
we will compare the performance of Algorithms 1 and 2
when the prior on θ0 is wrong. As regards measurement
noises, we will build both regions just assuming that all
components of ν belong to the set B defined in Assump-
tion 1. Not having access to prior knowledge on the noise
distribution prevents from computing Bayesian poste-
rior bounds, which are the state-of-the-art for kernel-
based system identification [25,17,50].

First, we adopt Algorithm 1 modelling θ0 as a zero-mean
Gaussian random vector with covariance γ̂−1K̄, i.e., Al-
gorithm 1 runs with A,B,C, µ defined above and as-
suming ω white Gaussian noise of unit variance. BFBs
by Algorithm 1 are reported in sampled form in the left
panel of Figure 4 using 5000 realizations. The bounds
are very tight and informative: all the realizations are
close to the red line. However, there is no guarantee that
the uncertainty region (15) contains the truth with the
desired confidence level. In fact, let us think of many
repeated experiments where θ0 is the same determinis-
tic vector as shown in Figure 4 (red line) and only new
noise realizations are drawn: since the prior on the im-
pulse response is wrong (the true distribution of θ0 is
concentrated, which does not match the way in which
we have defined µ, C and ω), the confidence level of the
region returned by Algorithm 1 could be lower than the
desired 95%. This is shown by a Monte Carlo test of
1000 runs: the regions built with Algorithm 1 contained
θ0 only in 64% of the trials, thus highlighting the weak-
ness of this approach.

We can now resort to Algorithm 2, setting ȳ to the vector
containing the first 200 outputs (those used to estimate
β and γ). For the first time in the literature, to the best of
our knowledge, we obtain an uncertainty region with ex-
act 95% coverage level even if the hyperparameters have
been determined from data and the prior on θ0 is not
correct. BFB are displayed in sampled form in the right
panel of Figure 4. They are still built around the stable
spline estimate, do not largely differ from the previous
ones but partially rebel against the prior by becoming
more conservative (this is especially evident looking at
the impulse response’s tail). In this way, they are now
able to contain θ0 with the desired coverage level. A
Monte Carlo test of 1000 runs reveals that the 95% re-
gion returned by Algorithm 2 includes the true impulse
response 95.1% of the times, confirming the theory.
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Fig. 4. True deterministic impulse response θ0 (thick red line) and stable spline estimate (black). Left panel: BFB via Algorithm
1. Measurement noises are assumed independent with symmetric distributions around zero, i.e., ν ∈ B. The distribution of the
unknown θ0 is (erroneously) modeled as Gaussian with hyperparameters estimated from data. Bounds are quite informative,
but they are not guaranteed to contain the true impulse response with the desired coverage level due to the wrong information
on the prior. Right panel: BFB via Algorithm 2 under the same assumptions on noise generation. The bounds are more
conservative, but now they contain θ0 with the desired probability of inclusion (in the frequentist sense) even if hyperparameters
are estimated from data the prior of θ0 is misspecified.

8 Conclusions

This paper focused on providing theoretical guarantees
on the reliability and safety of kernel-based algorithms
for machine learning and system identification. Such pro-
cedures are increasingly being deployed in safety-critical
applications, including autonomous driving and smart
healthcare. Complementing the estimates with reliable
confidence measures is therefore crucial in these settings,
as failures could be catastrophic. Current approaches are
subject to important limitations connected with the ex-
cessive level of conservatism of the uncertainty regions
they return. Modern applications require instead bounds
that are exact for a wide class of useful models. The
uncertainty regions established in this paper have ex-
act coverage probability under a minimal set of assump-
tions on the distributions of the noises, and are com-
putationally tractable. Thus, they can be employed to
efficiently quantify the reliability of many data-driven
predictions and guide machine learning algorithms to-
wards safe decisions. Applications abound, including re-
gression, sparse estimation, and reinforcement learning.

Our bounds have been obtained by designing a novel
Bayesian frequentist framework that deeply expands the
original SPS approach introduced in [14]. Many other
developments of this work are however still possible in
several directions, e.g., by combining BFB with under-
modelling detection mechanisms [12] and by extending
the BFB approach to the case of non-exogenous regres-
sors where the regression matrix may depend on past
outputs [60,10]. This will provide a basis to obtain exact
bounds for more complex systems. Further, it would be
interesting to extend the proposed framework so as to ex-
ploit information on higher order moments (beyond first
and second moments) as partial information on the dis-
tribution of the noises. Other applications could then in-
clude on-line reinforcement learning, where uncertainty

has to be computed in real-time as new training data
become available. Finally, evaluating the performance of
our bounds in real testbeds is another compelling direc-
tion of research that we plan to investigate in the future.

Data availability. The MATLAB code which implements
all the algorithms described in this paper can be found
at https://www.dei.unipd.it/∼giapi/software.html.
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[11] A. Carè, G. Pillonetto, and M. C. Campi. Uncertainty bounds
for kernel-based regression: A Bayesian SPS approach.
In 2018 IEEE 28th International Workshop on Machine
Learning for Signal Processing (MLSP), pages 1–6, 2018.

[12] A. Car, M.C. Campi, B.Cs. Csji, and E. Weyer.
Facing undermodelling in Sign-Perturbed-Sums system
identification. Systems & Control Letters, 153:104936, 2021.
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9 Appendix

9.1 From SPS to BFB through a toy example

This section expands the informal introduction to SPS
that motivated the new BFB in Section 3. There, we
have seen that classic SPS approaches build confidence
regions around classic and regularized least squares (e.g.,
[14] and [15], respectively), but treat θ0 as a determinis-
tic quantity. The goal of this Section is to highlight the
benefit of treating θ0 as a random variable, as done in
the proposed BFB. The first Example aligns with the
original (regularized) SPS set-up, where randomization
affects noise components only.

Example 1 Assume that we only have one observation
y1 = θ1 + ν1 and our prior is the generation mecha-
nism (3) with µ = 0, ω distributed as a zero-mean unit-
variance Gaussian, and C = c, c ∈ R. A 50%-probability
region is constructed asR = {θ : ‖H̃0(θ)‖ ≤ ‖H̃1(θ)‖} =

{θ : ((y − θ)− 1
c2 θ)

2 ≤ (±(y − θ)− 1
c2 θ)

2}, where H̃i(θ)
has been defined in (11). Note that in this case the clas-
sic least-squares oriented SPS region is obtained when
c = ∞ (no prior), which always gives an uninforma-
tive region. However, no matter how small c is (i.e., how
strong the prior is), the region remains uninformative ev-
ery time that± is + (which happens with probability 0.5).
The reason is that the region R is guaranteed to include
θ0 independently of how θ0 is generated: the probability
of including θ0 is the same conditionally to any value of
θ0, no matter if this value is absolutely unlikely given the
prior adopted by the user.

We show in the next Example that BFB, which involves
random perturbation also for θ0, is capable of returning
informative regions in the context above.

Example 2 Consider the same set-up as in Example
1. Let ω be a random variable from a zero-mean, unit-
variance distributionD from which we can generate sam-
ples. A region that is guaranteed to include θ0 with proba-
bility 0.5 with respect to the variability of ν1 and θ0 = cω
is {θ : ((y− θ)− 1

c2 θ)
2 ≤ (±(y− θ)− 1

c2 ω̃)2}, where ω̃ is
an independent sample from the distribution D. The fact
that the quadratic term in θ grows faster at the left-hand
side than at the right-hand side of the inequality reveals
immediately that the region is always limited (except for
the case c =∞).

9.2 Proof of Theorem 1

In this Section we prove Theorem 1 and explain the ra-
tionale of Algorithm 1. To this purpose, we will state

13



first some instrumental definitions and lemmas.

Definition 1 (Exchangeable sequence) Let x :=
(x1, . . . , xn) be a finite sequence of random variables.
The sequence x is said to be exchangeable if, for every
permutation σ of the indices {1, . . . , n}, it holds x

d
=xσ,

where xσ := (xσ(1), . . . , xσ(n)) and
d
= denotes equality in

distribution.

Lemma 1 Let x := (x1, . . . , xn) be an exchangeable
sequence of real-valued random variables, and let π be
a uniformly distributed random permutation of the set
{1, . . . , n}. Further, let R(x) be the function that, given
the values of x1, . . . , xn, returns the ranking of x1 in
the ascending-ordered sequence of all x1, . . . , xn. In case
there exist indices i ∈ {1, . . . , n} such that xi = x1, we
assume that x1 precedes xi in the ranking if and only if
π(1) < π(i). Then, R(x) is uniformly distributed over
{1, . . . , n}.

Proof. Since x is exchangeable by assumption, all pos-
sible permutations of the elements of x are equally prob-
able. Thus, for the values of x which do not feature ties
between x1 and other elements of the sequence, R(x)
takes values in {1, . . . , n} with equal probability. In case
there exist one or more indices i ∈ {1, . . . , n} such that
xi = x1, then the random permutation π, which is uni-
formly distributed over all permutations of {1, . . . , n},
is such thatR(x) takes equal probability over all admis-
sible rankings of x1. Hence, we conclude that R(x) is
uniformly distributed over {1, . . . , n}. �

Lemma 2 Let D ∈ Rn×n be a diagonal matrix with 0,
1, −1 diagonal entries. Then,

H :=

[
In D

D In

]
� 0, (20)

where � denotes the Löwner partial ordering of symmet-
ric matrices.

Proof. Define the matrix T :=
[
In −D
0 In

]
, which is parti-

tioned conformably to H. It holds

H � 0 ⇐⇒ H ′ := THT> =

[
In −D2 0

0 In

]
� 0. (21)

By definition of D, it follows that In −D2 is a diagonal
matrix with either 0 or 1 diagonal entries. Thus, from
(21), H ′ � 0, which concludes the proof. �

Proof of Theorem 1. The proof is divided in two parts.
First, we prove that the Bayesian frequentist region Θ(y)
obtained via Algorithm 1 contains θ0 with the exact cov-
erage level, according to equation (16); then we show

that Θ(y) is the union of a finite number of convex sets
and, if non-empty, always contains the estimate (4).

As for the first part, given a random vector θ ∈ Rm and
resorting to (12) and (13), we define the prediction errors

ρt(θ) := zt − Ω(t, :)θ, t = 1, . . . , N, (22)

ρit(θ) := ξit(zt − Ω(t, :)θ) + ζit,

t = 1, . . . , N, i = 1, . . . , r − 1. (23)

Further, recalling that RN = Ω>Ω/N , we define the test
functions

S0(θ) := R
−1/2
N

1

N

N∑
t=1

Ω(t, :)>ρt(θ) (24)

Si(θ) := R
−1/2
N

1

N

N∑
t=1

Ω(t, :)>ρit(θ), i = 1, . . . , r − 1

(25)

generalizing the SPS approach.
Notice that ‖S0(θ)‖2 and ‖Si(θ)‖2 are quadratic func-
tions of θ which generalize the SPS approach in line
with the discussion of Section 3 (when B = In, (25)
is precisely (11), pre-multiplied by the shaping matrix

(A>A)−
1
2 rescaled by 1/

√
N), and that can be written,

after some simple computations, as

‖S0(θ)‖2 = (θ − θ̂)>RN (θ − θ̂), (26)

‖Si(θ)‖2 = θ>QiR
−1
N Qiθ − 2θ>QiR

−1
N ψi + ψ>i R

−1
N ψi,

(27)

where Qi and ψi, i = 1, . . . , r − 1, are as in Algorithm

1 and θ̂ is the estimate (4). Using (26) and (27), we can
rewrite the sets (14) in Algorithm 1 as

Ei = {θ ∈ Rm : ‖S0(θ)‖2 ≤π,i ‖Si(θ)‖2},
i = 1, . . . , r − 1, (28)

where we recall that the ordering “≤π,i” is defined as
“≤” if π(0) < π(i), and as “<” otherwise. Finally, we
define the “ranking” function

R(θ) := r −
r−1∑
i=1

1(‖S0(θ)‖ ≤π,i ‖Si(θ)‖), (29)

where 1(·) stands for the indicator function which equals
1 when the argument is true, and 0 otherwise. The func-
tion R(θ) in (29) equals the ranking of ‖S0(θ)‖ in the
ascending-ordered sequence of all ‖Si(θ)‖, i = 0, . . . , r−
1. Note, in particular, that if there exists an index i such
that ‖S0(θ)‖ = ‖Si(θ)‖, then ‖S0(θ)‖ precedes ‖Si(θ)‖
in the ranking if and only if π(0) < π(i).
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By definition, Θ(y) =
⋃r−1
i=1 Ei, so that, in view of (28)

and (29),

P(θ0 ∈ Θ(y)) = P(R(θ0) ≤ r − 1). (30)

This, in turn, implies that (16) holds true if and only if

P(R(θ0) = r) = 1/r. (31)

We will prove (31) by showing that R(θ0) is uniformly
distributed over {1, . . . , r}. To this end, using that νt =
B−1(t, :)(y − Aθ0) (see (2)) and ωk = C−1(k, :)(µ −
θ0) (see (3)), we first rewrite the function S0(θ) in (24)
evaluated at θ = θ0 as

S0(θ0) = R
−1/2
N

1

N

[
n∑
t=1

Ω(t, :)>νt −
m∑
k=1

C−1(k, :)>ωk

]
.

(32)
Note that S0(θ0) is a random variable through its de-
pendence on ν and ω. We define

Z(r) := ‖S0(θ0)‖ (33)

as the deterministic function that, given the values of
r := (ν1, . . . , νn, ω1, . . . , ωm), computes ‖S0(θ0)‖ ac-
cording to (32). Further, for i = 1, . . . , r − 1, we define
ξi and ζi, i = 1, . . . , r− 1, as the sequences (ξi1, . . . , ξ

i
N )

and (ζi1, . . . , ζ
i
N ), respectively. Then, ‖Si(θ0)‖ can be

compactly rewritten as

‖Si(θ0)‖ = Z(ξi ◦ r + ζi), i = 1, . . . , r − 1, (34)

where Z(·) is the same function as before and ◦ denotes
component-wise multiplication of sequences. Next, we
define r′ := ξ0 ◦ r + ζ0, where ξ0 is a new independent
sample of the sequence of {ξit}, defined according to (13),
and ζ0 is a new independent sample of the sequence of
{ζit}, and

R′(θ0) := r −
r−1∑
i=1

1(Z(r′) ≤π,i Z(ξi ◦ r′ + ζi)). (35)

Notice that, since the distribution of the components of
the independent noises in r is symmetric around zero and
the elements of ξ0 are either i.i.d. random signs or zero
with probability one, we have r′

d
= r, where the symbol

d
= denotes equality in distribution. It follows that(

Z(r′), Z(ξ1 ◦ r′ + ζ1), . . . , Z(ξN ◦ r′ + ζN )
)

(36)

d
=
(
Z(r), Z(ξ1 ◦ r + ζ1), . . . , Z(ξN ◦ r + ζN )

)
,

and, therefore,

R(θ0)
d
= R′(θ0). (37)

Conditioning on a given value of r, say r̄, we can write(
Z(r′), Z(ξ1 ◦ r′ + ζ1), . . . , Z(ξN ◦ r′ + ζN )

)
(38)

=
(
Z(ξ0 ◦ r̄ + ζ0), Z(ξ1 ◦ (ξ0 ◦ r̄ + ζ0) + ζ1), . . .

. . . , Z(ξN ◦ (ξ0 ◦ r̄ + ζ0) + ζN )
)

=
(
Z(ξ0 ◦ r̄ + ζ0), Z((ξ0 ◦ ξ1) ◦ r̄ + ξ1 ◦ ζ0 + ζ1), . . .

. . . , Z((ξ0 ◦ ξN ) ◦ r̄ + ξN ◦ ζ0 + ζN )
)
.

Since ξ0, ξ0 ◦ ξ1, . . . , ξ0 ◦ ξN are i.i.d. sequences, inde-
pendent of ζ0, . . . , ζN , and, for all i, ξi ◦ ζ0 equals the
sequence of all zeros with probability one, it follows that
the sequence (Z(ξ0 ◦ r̄ + ζ0), Z((ξ0 ◦ ξ1) ◦ r̄ + ξ1 ◦ ζ0 +
ζ1), . . . , Z((ξ0 ◦ ξN ) ◦ r̄ + ξN ◦ ζ0 + ζN ) is exchange-
able. By Lemma 1, this implies that the ranking R′(θ0)
of Z(ξ0 ◦ r̄ + ζ0) in the ascending-ordered (with respect
to “≤π,i”) sequence (Z(ξ0 ◦ r̄+ζ0), Z((ξ0 ◦ξ1)◦ r̄+ξ1 ◦
ζ0 +ζ1), . . . , Z((ξ0 ◦ξN )◦ r̄+ξN ◦ζ0 +ζN ) is uniformly
distributed over {1, . . . , r}. Thus, we have proved that
P(R′(θ0) = r | r = r̄) = 1/r, irrespective of the choice
of r̄; by integrating over r̄, we conclude that

P(R′(θ0) = r) = 1/r, (39)

and (31) follows from (37). This concludes the first part
of the proof.

As for the second part, we will prove that each set Ei,
i = 1, . . . , r−1, is convex and contains (4) if non-empty.
This part of the proof is based on the same arguments
of [14, Appendix B], which are adapted to the present
context as follows. In view of (28), proving convexity of
Ei is equivalent to showing that the quadratic function
‖S0(θ)‖2 − ‖Si(θ)‖2 is convex. Thus, it suffices to prove
that each Ai = RN −QiR−1

N Qi is a positive semidefinite
matrix, or, equivalently, that

RN � QiR−1
N Qi (40)

where� denotes the Löwner partial ordering of symmet-
ric matrices. Since RN is positive definite, using a Schur
complement argument (see, e.g., [66, Section 7.3]), we
have that (40) holds if and only if

Hi :=

[
RN Qi

Qi RN

]
� 0. (41)

Next, notice that, using the definition of Ω in (12), RN
and Qi can be rewritten in matrix form as

RN =
1

N
(B−1A)>B−1A+

1

N
(C−1)>C−1 (42)

Qi =
1

N
(B−1A)>Di

nB
−1A+

1

N
(C−1)>Di

mC
−1, (43)
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with Di
n := diag(ξi1, . . . , ξ

i
n) and Di

m := diag(ξin+1,

. . . , ξin+m), where diag(x1, . . . , xn) denotes a diagonal
matrix with entries x1, . . . , xn on the diagonal. There-
fore, Hi in (41) can be written as

Hi =
1

N
Hi
n +

1

N
Hi
m, (44)

where

Hi
n :=

[
B−1A 0

0 B−1A

]>[
In Di

n

Di
n In

][
B−1A 0

0 B−1A

]
,

(45)

Hi
m :=

[
C−1 0

0 C−1

]>[
Im Di

m

Di
m Im

][
C−1 0

0 C−1

]
. (46)

Since, by Lemma 2, the middle matrices of Hi
n and Hi

m
are always positive semidefinite, the matrices Hi

n and
Hi
m, and henceHi, are positive semidefinite. Hence, from

(40) we conclude that each Ai is positive semidefinite,
so that each set Ei, i = 1, . . . , r − 1, is convex. To prove
that the estimate θ̂ in (4) is contained in the Bayesian
frequentist region Θ(y), if this region is non-empty, we
show that each set Ei, i = 1, . . . , r − 1 contains θ̂ if
non-empty. To this end, we distinguish two cases which
depend on the random permutation π:

(1) π(0) < π(i): In this case, the set Ei is

Ei = {θ ∈ Rm : ‖S0(θ)‖2 ≤ ‖Si(θ)‖2}. (47)

From the definition of ‖S0(θ)‖2 in (26), it holds

‖S0(θ̂)‖2 = 0, which implies θ̂ ∈ Ei.
(2) π(0) > π(i): In this case, the set Ei is

Ei = {θ ∈ Rm : ‖S0(θ)‖2 < ‖Si(θ)‖2}. (48)

and can be can be either empty or not. If Ei is non-
empty, then θ̂ ∈ Ei, as we prove next. Assume, for
the sake of contradiction, that θ̂ 6∈ Ei. Since Ei is
non-empty, there exists θ̄ 6= θ̂ such that θ̄ ∈ Ei.
Such θ̄ satisfies ‖S0(θ̄)‖2 < ‖Si(θ̄)‖2. Further, from
(26) and (48), it must be ‖S0(θ̂)‖2 = ‖Si(θ̂)‖2 = 0
which implies that both ‖S0(θ)‖2 and ‖Si(θ)‖2 have
a minimum at θ̂ with value 0, and therefore the gra-

dient of ‖Si(θ)‖2−‖S0(θ)‖2 is zero at θ̂. Thus, over
the segment θλ = (1−λ)θ̂+λθ̄, λ ∈ [0, 1], the func-
tion ‖Si(θλ)‖2 − ‖S0(θλ)‖2 grows from 0 with zero
derivative to a strictly positive value and therefore
‖Si(θλ)‖2−‖S0(θλ)‖2 must have a positive second-
order derivative for some λ ∈ (0, 1]. This contra-
dicts the fact that ‖S0(θ)‖2 − ‖Si(θ)‖2 has a posi-
tive semidefinite Hessian (cf. equation (40)), yield-
ing the desired conclusion.

This concludes the second part and completes the proof.�

9.3 Proof of Theorem 2

The proof proceeds along the lines of the one of The-
orem 1 presented in Section 9.2, except that now in
the summation defining the functions Si(θ) in (25) for
i = 1, . . . , r− 1, the first n̄ and the last N −n terms are
equal to the ones of S0(θ). This fact is key since it ensures
that (31) can be replaced by P(R(θ0) = r | ȳ, θ0) = 1/r,
and the inclusion property holds conditionally on any
realization of ȳ and θ0. The rest of the proof then re-
mains unchanged. �

9.4 Invertibility of Ai

Consider the uncertainty region Θ(y) returned by Algo-
rithm 1, which is defined as the union of convex sets Ei,
i = 1, . . . , r − 1, in (14). The sets Ei can be unbounded
in general. In practice, however, the probability for Ei to
be unbounded is negligible, as we illustrate next.

From the definition of Ei in (14), if the set Ei is un-
bounded then the matrix Ai is singular. Indeed, if Ai is
invertible, then Ai is positive definite and Ei coincides
with the ellipsoid

Ei = {θ ∈ Rm : (θ − b̄i)>Ai(θ − b̄i) ≤π,i c̄i}, (49)

where b̄i = −A−1
i bi and c̄i = −ci + b>i A

−1
i bi, which

is always bounded. Matrix Ai is singular if and only
if Hi

n + Hi
m is singular, where Hi

n and Hi
m are the

positive semidefinite matrices defined in (45) and (46)
which depend on the random variables ξi1, . . . , ξ

i
N (see

the second part of the proof of Theorem 1). Thus, Ai
is singular if and only if the null spaces of Hi

n and Hi
m

have a non-empty intersection. This event may have a
positive probability. For instance, if we perturb both ν
and θ0 with random signs (that is, all components of ε
belong to set B, thus all ξi1, . . . , ξ

i
N take values ±1 with

equal probability), then Ai is singular when all {ξij}
have the same sign. However, such probability becomes
negligible when the number of measurements in y is
larger than the dimension of the unknown vector θ0

and/or when the distributions of some components of
the noises ν and ω are assumed to be known. Remark-
ably, Algorithm 1 returns an informative region even if
n ≤ m, provided that the distribution of ω is known. In
Table 1 we numerically evaluate the probability of Ai to
be singular for m = 3, randomly generated matrices A,
B, C and different values of both the number of mea-
surements n and of the number of noise components
with known distribution.

9.5 Comparison with Markov Chain Monte Carlo

In this section we compare the bounds obtained via Algo-
rithm 1 with Bayes intervals computed via MCMC. The
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Fig. 5. Laplacian noise Output data (left), realization of θ0 (solid line, middle and right) and 95% confidence intervals returned
by MCMC (middle) and the new BFB (right).

Table 1
Probability of Ai to be singular for m = 3 and matrices A,
B, C with i.i.d. normal entries. The indices t of the εt ∈ A
have been drawn randomly from the set {1, . . . , N}.

# εt ∈ A

0 1 2

n = 8 6.54% 2.15% 0.39%

n = 10 2.25% 0.63% 0.0976%

n = 12 0.74% 0.18% 0.0244%

n = 14 0.23% 0.0518% 0.0061%

n = 16 0.0728% 0.0145% 0.00152%

n = 18 0.0221% 0.00401% 0.00038%

n = 20 0.0066% 0.00109% 0.00009%

comparison requires a caveat : both approaches provide
non-asymptotic and exact uncertainty bounds around
the (regularized) estimate of θ0, but the two regions have
different interpretations. As regards BFB, the probabil-
ity (16) in Theorem 1 holds unconditionally from θ0 and
y. On the other hand, Bayes intervals leverage the pos-
terior distribution

p(θ0|y) =
p(y|θ0)p(θ0)

p(y)
(50)

and compute the region with coverage level α by ex-
tracting the suitable quantiles of this conditional proba-
bility. Therefore, such regions are built conditionally on
the value of y, and the α-level guarantee holds for that
specific realization. Thus, when comparing the bounds
for a single experiment, we do not discuss whether the
bounds contain the realization of θ0 or not, but we focus
on their size.

Bayes regions are known to perform very well in terms of
tightness, but they could be difficult to obtain: the pos-
terior in (50) is often not available in closed form, so the
integrals required to compute the α-level region are an-
alytically intractable. In those cases, stochastic simula-
tion schemes are widely used. In particular, MCMC ob-
tains p(θ0|y) in sampled form by constructing a Markov

chain whose invariant distribution is the posterior of in-
terest. This may be far from trivial, since a careful choice
of proposal distributions has to be done; moreover, a
large number of samples has to be drawn to reach sta-
tionarity and to extract the desired quantiles.

We now consider the set-up in the first kind of experi-
ments of Section 5 (i.e., the measurements model with
Gaussian prior on θ0 and Laplacian noise ν) and show
that BFB yields regions that are comparable to the ones
of MCMC in terms of tightness, but require less com-
putational time. The same consideration holds for the
other scenarios studied in the first part of Section 5, so
their thorough discussion is omitted.

Let us recall the details of the experiment. We assume
independent components of θ0 and ν such that

θ0
i ∼ N (0, 1), νj ∼ Lap(0, 1),

i = 1, ...,m, j = 1, ..., n.

We first implement MCMC to simulate the posterior
in (50). Some care is needed to select a suitable pro-
posal density: to this aim, we implement a random walk
Metropolis scheme [24, Section 1] with candidates ob-
tained by Gaussian independent increments of standard
deviation 0.4 (this ensures an acceptance rate around
30%). A Markov chain of length 105 is then generated to
achieve the posterior in sampled form. Quantiles 0.025
and 0.975 are then extracted to obtain 95%-level bounds.
Next, Algorithm 1 is used to obtain the bounds. As re-
gards model parameters of equations (2) and (3), we set
B = In, C = Im and µ = 0m×1, and the entries of A are
realizations of independent zero-mean Gaussians of unit
variance. In this experiment we choose n = 200 output
samples and a dimension of θ0 equal tom = 20. A sample
outcome of the bounds obtained via MCMC and BFB
is presented in Figure 5. The bounds look quite similar:
BFB still gives a clear picture about the information pro-
vided by the outputs. It does not require defining a pro-
posal density, and it provides the result in one tenth of
a second. On the other hand, the computational time of
MCMC is two orders of magnitude greater, since about
103 samples have to be drawn.
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